Hans Petter Selasky 3d23c0a436 Convert the mlxen driver to use the BUSDMA(9) APIs instead of
vtophys() when loading mbufs for transmission and reception. While at
it all pointer arithmetic and cast qualifier issues were fixed, mostly
related to transmission and reception.

MFC after:	1 week
Sponsored by:	Mellanox Technologies
Differential Revision:	https://reviews.freebsd.org/D4284
2015-12-03 14:56:17 +00:00

1103 lines
30 KiB
C

/*
* Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/page.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
#include "mlx4_en.h"
enum {
MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
MAX_BF = 256,
MIN_PKT_LEN = 17,
};
static int inline_thold __read_mostly = MAX_INLINE;
module_param_named(inline_thold, inline_thold, uint, 0444);
MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring, u32 size,
u16 stride, int node, int queue_idx)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
uint32_t x;
int tmp;
int err;
ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
if (!ring) {
ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed allocating TX ring\n");
return -ENOMEM;
}
}
/* Create DMA descriptor TAG */
if ((err = -bus_dma_tag_create(
bus_get_dma_tag(mdev->pdev->dev.bsddev),
1, /* any alignment */
0, /* no boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */
MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */
MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&ring->dma_tag)))
goto done;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE));
mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
/* Allocate the buf ring */
ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
M_WAITOK, &ring->tx_lock.m);
if (ring->br == NULL) {
en_err(priv, "Failed allocating tx_info ring\n");
err = -ENOMEM;
goto err_free_dma_tag;
}
tmp = size * sizeof(struct mlx4_en_tx_info);
ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node);
if (!ring->tx_info) {
ring->tx_info = kzalloc(tmp, GFP_KERNEL);
if (!ring->tx_info) {
err = -ENOMEM;
goto err_ring;
}
}
/* Create DMA descriptor MAPs */
for (x = 0; x != size; x++) {
err = -bus_dmamap_create(ring->dma_tag, 0,
&ring->tx_info[x].dma_map);
if (err != 0) {
while (x--) {
bus_dmamap_destroy(ring->dma_tag,
ring->tx_info[x].dma_map);
}
goto err_info;
}
}
en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
ring->tx_info, tmp);
ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
/* Allocate HW buffers on provided NUMA node */
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
2 * PAGE_SIZE);
if (err) {
en_err(priv, "Failed allocating hwq resources\n");
goto err_dma_map;
}
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map TX buffer\n");
goto err_hwq_res;
}
ring->buf = ring->wqres.buf.direct.buf;
en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
"buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
MLX4_RESERVE_BF_QP);
if (err) {
en_err(priv, "failed reserving qp for TX ring\n");
goto err_map;
}
err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
if (err) {
en_err(priv, "Failed allocating qp %d\n", ring->qpn);
goto err_reserve;
}
ring->qp.event = mlx4_en_sqp_event;
err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
if (err) {
en_dbg(DRV, priv, "working without blueflame (%d)", err);
ring->bf.uar = &mdev->priv_uar;
ring->bf.uar->map = mdev->uar_map;
ring->bf_enabled = false;
} else
ring->bf_enabled = true;
ring->queue_index = queue_idx;
if (queue_idx < priv->num_tx_rings_p_up )
CPU_SET(queue_idx, &ring->affinity_mask);
*pring = ring;
return 0;
err_reserve:
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
err_map:
mlx4_en_unmap_buffer(&ring->wqres.buf);
err_hwq_res:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_dma_map:
for (x = 0; x != size; x++)
bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
err_info:
vfree(ring->tx_info);
err_ring:
buf_ring_free(ring->br, M_DEVBUF);
err_free_dma_tag:
bus_dma_tag_destroy(ring->dma_tag);
done:
kfree(ring);
return err;
}
void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring = *pring;
uint32_t x;
en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
buf_ring_free(ring->br, M_DEVBUF);
if (ring->bf_enabled)
mlx4_bf_free(mdev->dev, &ring->bf);
mlx4_qp_remove(mdev->dev, &ring->qp);
mlx4_qp_free(mdev->dev, &ring->qp);
mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
for (x = 0; x != ring->size; x++)
bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
vfree(ring->tx_info);
mtx_destroy(&ring->tx_lock.m);
mtx_destroy(&ring->comp_lock.m);
bus_dma_tag_destroy(ring->dma_tag);
kfree(ring);
*pring = NULL;
}
int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int cq, int user_prio)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
ring->cqn = cq;
ring->prod = 0;
ring->cons = 0xffffffff;
ring->last_nr_txbb = 1;
ring->poll_cnt = 0;
ring->blocked = 0;
memset(ring->buf, 0, ring->buf_size);
ring->qp_state = MLX4_QP_STATE_RST;
ring->doorbell_qpn = ring->qp.qpn << 8;
mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
ring->cqn, user_prio, &ring->context);
if (ring->bf_enabled)
ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
&ring->qp, &ring->qp_state);
return err;
}
void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
}
static volatile struct mlx4_wqe_data_seg *
mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg,
struct mbuf *mb, int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
/* copy data into place */
m_copydata(mb, 0, len, inl + 4);
dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
return (dseg);
}
static void
mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg,
int len, __be32 owner_bit)
{
}
static void
mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, u32 index, u8 owner)
{
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *)
(ring->buf + (index * TXBB_SIZE));
volatile __be32 *ptr = (__be32 *)tx_desc;
const __be32 stamp = cpu_to_be32(STAMP_VAL |
((u32)owner << STAMP_SHIFT));
u32 i;
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
}
}
static u32
mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, u32 index)
{
struct mlx4_en_tx_info *tx_info;
struct mbuf *mb;
tx_info = &ring->tx_info[index];
mb = tx_info->mb;
if (mb == NULL)
goto done;
bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
m_freem(mb);
done:
return (tx_info->nr_txbb);
}
int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int cnt = 0;
/* Skip last polled descriptor */
ring->cons += ring->last_nr_txbb;
en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
ring->cons, ring->prod);
if ((u32) (ring->prod - ring->cons) > ring->size) {
en_warn(priv, "Tx consumer passed producer!\n");
return 0;
}
while (ring->cons != ring->prod) {
ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
ring->cons & ring->size_mask);
ring->cons += ring->last_nr_txbb;
cnt++;
}
if (cnt)
en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
return cnt;
}
static bool
mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring)
{
int wqs;
wqs = ring->size - (ring->prod - ring->cons);
return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS)));
}
static int mlx4_en_process_tx_cq(struct net_device *dev,
struct mlx4_en_cq *cq)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
struct mlx4_cqe *cqe;
u16 index;
u16 new_index, ring_index, stamp_index;
u32 txbbs_skipped = 0;
u32 txbbs_stamp = 0;
u32 cons_index = mcq->cons_index;
int size = cq->size;
u32 size_mask = ring->size_mask;
struct mlx4_cqe *buf = cq->buf;
int factor = priv->cqe_factor;
if (!priv->port_up)
return 0;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
ring_index = ring->cons & size_mask;
stamp_index = ring_index;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cons_index & size)) {
/*
* make sure we read the CQE after we read the
* ownership bit
*/
rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
((struct mlx4_err_cqe *)cqe)->
vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
}
/* Skip over last polled CQE */
new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
do {
txbbs_skipped += ring->last_nr_txbb;
ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
/* free next descriptor */
ring->last_nr_txbb = mlx4_en_free_tx_desc(
priv, ring, ring_index);
mlx4_en_stamp_wqe(priv, ring, stamp_index,
!!((ring->cons + txbbs_stamp) &
ring->size));
stamp_index = ring_index;
txbbs_stamp = txbbs_skipped;
} while (ring_index != new_index);
++cons_index;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
}
/*
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
mcq->cons_index = cons_index;
mlx4_cq_set_ci(mcq);
wmb();
ring->cons += txbbs_skipped;
/* Wakeup Tx queue if it was stopped and ring is not full */
if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) {
ring->blocked = 0;
if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
ring->wake_queue++;
priv->port_stats.wake_queue++;
}
return (0);
}
void mlx4_en_tx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
if (!spin_trylock(&ring->comp_lock))
return;
mlx4_en_process_tx_cq(cq->dev, cq);
mod_timer(&cq->timer, jiffies + 1);
spin_unlock(&ring->comp_lock);
}
void mlx4_en_poll_tx_cq(unsigned long data)
{
struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
u32 inflight;
INC_PERF_COUNTER(priv->pstats.tx_poll);
if (!spin_trylock(&ring->comp_lock)) {
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
return;
}
mlx4_en_process_tx_cq(cq->dev, cq);
inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
/* If there are still packets in flight and the timer has not already
* been scheduled by the Tx routine then schedule it here to guarantee
* completion processing of these packets */
if (inflight && priv->port_up)
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
spin_unlock(&ring->comp_lock);
}
static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
{
struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
/* If we don't have a pending timer, set one up to catch our recent
post in case the interface becomes idle */
if (!timer_pending(&cq->timer))
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
if (spin_trylock(&ring->comp_lock)) {
mlx4_en_process_tx_cq(priv->dev, cq);
spin_unlock(&ring->comp_lock);
}
}
static u16
mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb)
{
u16 retval;
/* only copy from first fragment, if possible */
retval = MIN(ring->inline_thold, mb->m_len);
/* check for too little data */
if (unlikely(retval < MIN_PKT_LEN))
retval = MIN(ring->inline_thold, mb->m_pkthdr.len);
return (retval);
}
static int
mlx4_en_get_header_size(struct mbuf *mb)
{
struct ether_vlan_header *eh;
struct tcphdr *th;
struct ip *ip;
int ip_hlen, tcp_hlen;
struct ip6_hdr *ip6;
uint16_t eth_type;
int eth_hdr_len;
eh = mtod(mb, struct ether_vlan_header *);
if (mb->m_len < ETHER_HDR_LEN)
return (0);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
eth_type = ntohs(eh->evl_proto);
eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
eth_type = ntohs(eh->evl_encap_proto);
eth_hdr_len = ETHER_HDR_LEN;
}
if (mb->m_len < eth_hdr_len)
return (0);
switch (eth_type) {
case ETHERTYPE_IP:
ip = (struct ip *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip))
return (0);
if (ip->ip_p != IPPROTO_TCP)
return (0);
ip_hlen = ip->ip_hl << 2;
eth_hdr_len += ip_hlen;
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip6))
return (0);
if (ip6->ip6_nxt != IPPROTO_TCP)
return (0);
eth_hdr_len += sizeof(*ip6);
break;
default:
return (0);
}
if (mb->m_len < eth_hdr_len + sizeof(*th))
return (0);
th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
tcp_hlen = th->th_off << 2;
eth_hdr_len += tcp_hlen;
if (mb->m_len < eth_hdr_len)
return (0);
return (eth_hdr_len);
}
static volatile struct mlx4_wqe_data_seg *
mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg,
struct mbuf *mb, int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
if (unlikely(len < MIN_PKT_LEN)) {
m_copydata(mb, 0, len, inl + 4);
memset(inl + 4 + len, 0, MIN_PKT_LEN - len);
dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT);
} else if (len <= spc) {
m_copydata(mb, 0, len, inl + 4);
dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
} else {
m_copydata(mb, 0, spc, inl + 4);
m_copydata(mb, spc, len - spc, inl + 8 + spc);
dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT);
}
return (dseg);
}
static void
mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg,
int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
if (unlikely(len < MIN_PKT_LEN)) {
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN);
} else if (len <= spc) {
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | len);
} else {
*(volatile uint32_t *)(inl + 4 + spc) =
SET_BYTE_COUNT((1 << 31) | (len - spc));
wmb();
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | spc);
}
}
static uint32_t hashrandom;
static void hashrandom_init(void *arg)
{
/*
* It is assumed that the random subsystem has been
* initialized when this function is called:
*/
hashrandom = m_ether_tcpip_hash_init();
}
SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL);
u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
u32 rings_p_up = priv->num_tx_rings_p_up;
u32 up = 0;
u32 queue_index;
#if (MLX4_EN_NUM_UP > 1)
/* Obtain VLAN information if present */
if (mb->m_flags & M_VLANTAG) {
u32 vlan_tag = mb->m_pkthdr.ether_vtag;
up = (vlan_tag >> 13) % MLX4_EN_NUM_UP;
}
#endif
queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom);
return ((queue_index % rings_p_up) + (up * rings_p_up));
}
static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt)
{
__iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8);
}
static u64 mlx4_en_mac_to_u64(u8 *addr)
{
u64 mac = 0;
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mac <<= 8;
mac |= addr[i];
}
return mac;
}
static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp)
{
enum {
DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT,
CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
MLX4_WQE_CTRL_SOLICITED),
};
bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS];
volatile struct mlx4_wqe_data_seg *dseg;
volatile struct mlx4_wqe_data_seg *dseg_inline;
volatile struct mlx4_en_tx_desc *tx_desc;
struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
struct ifnet *ifp = priv->dev;
struct mlx4_en_tx_info *tx_info;
struct mbuf *mb = *mbp;
struct mbuf *m;
__be32 owner_bit;
int nr_segs;
int pad;
int err;
u32 bf_size;
u32 bf_prod;
u32 opcode;
u16 index;
u16 ds_cnt;
u16 ihs;
if (unlikely(!priv->port_up)) {
err = EINVAL;
goto tx_drop;
}
/* check if TX ring is full */
if (unlikely(mlx4_en_tx_ring_is_full(ring))) {
/* every full native Tx ring stops queue */
if (ring->blocked == 0)
atomic_add_int(&priv->blocked, 1);
/* Set HW-queue-is-full flag */
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
priv->port_stats.queue_stopped++;
ring->blocked = 1;
priv->port_stats.queue_stopped++;
ring->queue_stopped++;
/* Use interrupts to find out when queue opened */
mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]);
return (ENOBUFS);
}
/* sanity check we are not wrapping around */
KASSERT(((~ring->prod) & ring->size_mask) >=
(MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring"));
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32) (ring->prod - ring->cons - 1));
/* Track current mbuf packet header length */
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
/* Grab an index and try to transmit packet */
owner_bit = (ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0;
index = ring->prod & ring->size_mask;
tx_desc = (volatile struct mlx4_en_tx_desc *)
(ring->buf + index * TXBB_SIZE);
tx_info = &ring->tx_info[index];
dseg = &tx_desc->data;
/* send a copy of the frame to the BPF listener, if any */
if (ifp != NULL && ifp->if_bpf != NULL)
ETHER_BPF_MTAP(ifp, mb);
/* get default flags */
tx_desc->ctrl.srcrb_flags = CTRL_FLAGS;
if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
/* do statistics */
if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) {
priv->port_stats.tx_chksum_offload++;
ring->tx_csum++;
}
/* check for VLAN tag */
if (mb->m_flags & M_VLANTAG) {
tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN;
} else {
tx_desc->ctrl.vlan_tag = 0;
tx_desc->ctrl.ins_vlan = 0;
}
/* clear immediate field */
tx_desc->ctrl.imm = 0;
/* Handle LSO (TSO) packets */
if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
u32 payload_len;
u32 mss = mb->m_pkthdr.tso_segsz;
u32 num_pkts;
opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) |
owner_bit;
ihs = mlx4_en_get_header_size(mb);
if (unlikely(ihs > MAX_INLINE)) {
ring->oversized_packets++;
err = EINVAL;
goto tx_drop;
}
tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs);
payload_len = mb->m_pkthdr.len - ihs;
if (unlikely(payload_len == 0))
num_pkts = 1;
else
num_pkts = DIV_ROUND_UP(payload_len, mss);
ring->bytes += payload_len + (num_pkts * ihs);
ring->packets += num_pkts;
priv->port_stats.tso_packets++;
/* store pointer to inline header */
dseg_inline = dseg;
/* copy data inline */
dseg = mlx4_en_store_inline_lso_data(dseg,
mb, ihs, owner_bit);
} else {
opcode = cpu_to_be32(MLX4_OPCODE_SEND) |
owner_bit;
ihs = mlx4_en_get_inline_hdr_size(ring, mb);
ring->bytes += max_t (unsigned int,
mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
ring->packets++;
/* store pointer to inline header */
dseg_inline = dseg;
/* copy data inline */
dseg = mlx4_en_store_inline_data(dseg,
mb, ihs, owner_bit);
}
m_adj(mb, ihs);
/* trim off empty mbufs */
while (mb->m_len == 0) {
mb = m_free(mb);
/* check if all data has been inlined */
if (mb == NULL) {
nr_segs = 0;
goto skip_dma;
}
}
err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
mb, segs, &nr_segs, BUS_DMA_NOWAIT);
if (unlikely(err == EFBIG)) {
/* Too many mbuf fragments */
m = m_defrag(mb, M_NOWAIT);
if (m == NULL) {
ring->oversized_packets++;
goto tx_drop;
}
mb = m;
/* Try again */
err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
mb, segs, &nr_segs, BUS_DMA_NOWAIT);
}
/* catch errors */
if (unlikely(err != 0)) {
ring->oversized_packets++;
goto tx_drop;
}
/* make sure all mbuf data is written to RAM */
bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
BUS_DMASYNC_PREWRITE);
skip_dma:
/* compute number of DS needed */
ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs;
/*
* Check if the next request can wrap around and fill the end
* of the current request with zero immediate data:
*/
pad = DIV_ROUND_UP(ds_cnt, DS_FACT);
pad = (~(ring->prod + pad)) & ring->size_mask;
if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) {
/*
* Compute the least number of DS blocks we need to
* pad in order to achieve a TX ring wraparound:
*/
pad = (DS_FACT * (pad + 1));
} else {
/*
* The hardware will automatically jump to the next
* TXBB. No need for padding.
*/
pad = 0;
}
/* compute total number of DS blocks */
ds_cnt += pad;
/*
* When modifying this code, please ensure that the following
* computation is always less than or equal to 0x3F:
*
* ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) +
* (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT)
*
* Else the "ds_cnt" variable can become too big.
*/
tx_desc->ctrl.fence_size = (ds_cnt & 0x3f);
/* store pointer to mbuf */
tx_info->mb = mb;
tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT);
bf_size = ds_cnt * DS_SIZE_ALIGNMENT;
bf_prod = ring->prod;
/* compute end of "dseg" array */
dseg += nr_segs + pad;
/* pad using zero immediate dseg */
while (pad--) {
dseg--;
dseg->addr = 0;
dseg->lkey = 0;
wmb();
dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
}
/* fill segment list */
while (nr_segs--) {
if (unlikely(segs[nr_segs].ds_len == 0)) {
dseg--;
dseg->addr = 0;
dseg->lkey = 0;
wmb();
dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
} else {
dseg--;
dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr);
dseg->lkey = cpu_to_be32(priv->mdev->mr.key);
wmb();
dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len);
}
}
wmb();
/* write owner bits in reverse order */
if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO))
mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit);
else
mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit);
if (unlikely(priv->validate_loopback)) {
/* Copy dst mac address to wqe */
struct ether_header *ethh;
u64 mac;
u32 mac_l, mac_h;
ethh = mtod(mb, struct ether_header *);
mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
if (mac) {
mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
mac_l = (u32) (mac & 0xffffffff);
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
tx_desc->ctrl.imm = cpu_to_be32(mac_l);
}
}
/* update producer counter */
ring->prod += tx_info->nr_txbb;
if (ring->bf_enabled && bf_size <= MAX_BF &&
(tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) {
/* store doorbell number */
*(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
/* or in producer number for this WQE */
opcode |= cpu_to_be32((bf_prod & 0xffff) << 8);
/*
* Ensure the new descriptor hits memory before
* setting ownership of this descriptor to HW:
*/
wmb();
tx_desc->ctrl.owner_opcode = opcode;
wmb();
mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset,
(volatile unsigned long *) &tx_desc->ctrl, bf_size);
wmb();
ring->bf.offset ^= ring->bf.buf_size;
} else {
/*
* Ensure the new descriptor hits memory before
* setting ownership of this descriptor to HW:
*/
wmb();
tx_desc->ctrl.owner_opcode = opcode;
wmb();
writel(cpu_to_be32(ring->doorbell_qpn),
((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL);
}
return (0);
tx_drop:
*mbp = NULL;
m_freem(mb);
return (err);
}
static int
mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *next;
int enqueued, err = 0;
ring = priv->tx_ring[tx_ind];
if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || priv->port_up == 0) {
if (m != NULL)
err = drbr_enqueue(dev, ring->br, m);
return (err);
}
enqueued = 0;
if (m != NULL)
/*
* If we can't insert mbuf into drbr, try to xmit anyway.
* We keep the error we got so we could return that after xmit.
*/
err = drbr_enqueue(dev, ring->br, m);
/* Process the queue */
while ((next = drbr_peek(dev, ring->br)) != NULL) {
if (mlx4_en_xmit(priv, tx_ind, &next) != 0) {
if (next == NULL) {
drbr_advance(dev, ring->br);
} else {
drbr_putback(dev, ring->br, next);
}
break;
}
drbr_advance(dev, ring->br);
enqueued++;
if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (enqueued > 0)
ring->watchdog_time = ticks;
return (err);
}
void
mlx4_en_tx_que(void *context, int pending)
{
struct mlx4_en_tx_ring *ring;
struct mlx4_en_priv *priv;
struct net_device *dev;
struct mlx4_en_cq *cq;
int tx_ind;
cq = context;
dev = cq->dev;
priv = dev->if_softc;
tx_ind = cq->ring;
ring = priv->tx_ring[tx_ind];
if (dev->if_drv_flags & IFF_DRV_RUNNING) {
mlx4_en_xmit_poll(priv, tx_ind);
spin_lock(&ring->tx_lock);
if (!drbr_empty(dev, ring->br))
mlx4_en_transmit_locked(dev, tx_ind, NULL);
spin_unlock(&ring->tx_lock);
}
}
int
mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
int i, err = 0;
/* Compute which queue to use */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
i = m->m_pkthdr.flowid % priv->tx_ring_num;
}
else {
i = mlx4_en_select_queue(dev, m);
}
ring = priv->tx_ring[i];
if (spin_trylock(&ring->tx_lock)) {
err = mlx4_en_transmit_locked(dev, i, m);
spin_unlock(&ring->tx_lock);
/* Poll CQ here */
mlx4_en_xmit_poll(priv, i);
} else {
err = drbr_enqueue(dev, ring->br, m);
cq = priv->tx_cq[i];
taskqueue_enqueue(cq->tq, &cq->cq_task);
}
return (err);
}
/*
* Flush ring buffers.
*/
void
mlx4_en_qflush(struct ifnet *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *m;
for (int i = 0; i < priv->tx_ring_num; i++) {
ring = priv->tx_ring[i];
spin_lock(&ring->tx_lock);
while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
m_freem(m);
spin_unlock(&ring->tx_lock);
}
if_qflush(dev);
}