freebsd-nq/sys/ufs/ffs/ffs_vnops.c
2003-06-15 21:50:38 +00:00

1734 lines
42 KiB
C

/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/extattr.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include "opt_directio.h"
#ifdef DIRECTIO
extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
#endif
static int ffs_fsync(struct vop_fsync_args *);
static int ffs_getpages(struct vop_getpages_args *);
static int ffs_read(struct vop_read_args *);
static int ffs_write(struct vop_write_args *);
static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
struct ucred *cred);
static int ffsext_strategy(struct vop_strategy_args *);
static int ffs_closeextattr(struct vop_closeextattr_args *);
static int ffs_getextattr(struct vop_getextattr_args *);
static int ffs_listextattr(struct vop_listextattr_args *);
static int ffs_openextattr(struct vop_openextattr_args *);
static int ffs_setextattr(struct vop_setextattr_args *);
/* Global vfs data structures for ufs. */
vop_t **ffs_vnodeop_p;
static struct vnodeopv_entry_desc ffs_vnodeop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperate },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_getpages_desc, (vop_t *) ffs_getpages },
{ &vop_read_desc, (vop_t *) ffs_read },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_write_desc, (vop_t *) ffs_write },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
};
static struct vnodeopv_desc ffs_vnodeop_opv_desc =
{ &ffs_vnodeop_p, ffs_vnodeop_entries };
vop_t **ffs_specop_p;
static struct vnodeopv_entry_desc ffs_specop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperatespec },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_strategy_desc, (vop_t *) ffsext_strategy },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
};
static struct vnodeopv_desc ffs_specop_opv_desc =
{ &ffs_specop_p, ffs_specop_entries };
vop_t **ffs_fifoop_p;
static struct vnodeopv_entry_desc ffs_fifoop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperatefifo },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_strategy_desc, (vop_t *) ffsext_strategy },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
};
static struct vnodeopv_desc ffs_fifoop_opv_desc =
{ &ffs_fifoop_p, ffs_fifoop_entries };
VNODEOP_SET(ffs_vnodeop_opv_desc);
VNODEOP_SET(ffs_specop_opv_desc);
VNODEOP_SET(ffs_fifoop_opv_desc);
/*
* Synch an open file.
*/
/* ARGSUSED */
static int
ffs_fsync(ap)
struct vop_fsync_args /* {
struct vnode *a_vp;
struct ucred *a_cred;
int a_waitfor;
struct thread *a_td;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct inode *ip = VTOI(vp);
struct buf *bp;
struct buf *nbp;
int s, error, wait, passes, skipmeta;
ufs_lbn_t lbn;
wait = (ap->a_waitfor == MNT_WAIT);
if (vn_isdisk(vp, NULL)) {
lbn = INT_MAX;
if (vp->v_rdev->si_mountpoint != NULL &&
(vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP))
softdep_fsync_mountdev(vp);
} else {
lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
}
/*
* Flush all dirty buffers associated with a vnode.
*/
passes = NIADDR + 1;
skipmeta = 0;
if (wait)
skipmeta = 1;
s = splbio();
VI_LOCK(vp);
loop:
TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
bp->b_vflags &= ~BV_SCANNED;
for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
/*
* Reasons to skip this buffer: it has already been considered
* on this pass, this pass is the first time through on a
* synchronous flush request and the buffer being considered
* is metadata, the buffer has dependencies that will cause
* it to be redirtied and it has not already been deferred,
* or it is already being written.
*/
if ((bp->b_vflags & BV_SCANNED) != 0)
continue;
bp->b_vflags |= BV_SCANNED;
if ((skipmeta == 1 && bp->b_lblkno < 0))
continue;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
if (!wait && LIST_FIRST(&bp->b_dep) != NULL &&
(bp->b_flags & B_DEFERRED) == 0 &&
buf_countdeps(bp, 0)) {
bp->b_flags |= B_DEFERRED;
BUF_UNLOCK(bp);
continue;
}
VI_UNLOCK(vp);
if ((bp->b_flags & B_DELWRI) == 0)
panic("ffs_fsync: not dirty");
if (vp != bp->b_vp)
panic("ffs_fsync: vp != vp->b_vp");
/*
* If this is a synchronous flush request, or it is not a
* file or device, start the write on this buffer immediatly.
*/
if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
/*
* On our final pass through, do all I/O synchronously
* so that we can find out if our flush is failing
* because of write errors.
*/
if (passes > 0 || !wait) {
if ((bp->b_flags & B_CLUSTEROK) && !wait) {
(void) vfs_bio_awrite(bp);
} else {
bremfree(bp);
splx(s);
(void) bawrite(bp);
s = splbio();
}
} else {
bremfree(bp);
splx(s);
if ((error = bwrite(bp)) != 0)
return (error);
s = splbio();
}
} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
/*
* If the buffer is for data that has been truncated
* off the file, then throw it away.
*/
bremfree(bp);
bp->b_flags |= B_INVAL | B_NOCACHE;
splx(s);
brelse(bp);
s = splbio();
} else
vfs_bio_awrite(bp);
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
VI_LOCK(vp);
nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
}
/*
* If we were asked to do this synchronously, then go back for
* another pass, this time doing the metadata.
*/
if (skipmeta) {
skipmeta = 0;
goto loop;
}
if (wait) {
while (vp->v_numoutput) {
vp->v_iflag |= VI_BWAIT;
msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp),
PRIBIO + 4, "ffsfsn", 0);
}
VI_UNLOCK(vp);
/*
* Ensure that any filesystem metatdata associated
* with the vnode has been written.
*/
splx(s);
if ((error = softdep_sync_metadata(ap)) != 0)
return (error);
s = splbio();
VI_LOCK(vp);
if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
/*
* Block devices associated with filesystems may
* have new I/O requests posted for them even if
* the vnode is locked, so no amount of trying will
* get them clean. Thus we give block devices a
* good effort, then just give up. For all other file
* types, go around and try again until it is clean.
*/
if (passes > 0) {
passes -= 1;
goto loop;
}
#ifdef DIAGNOSTIC
if (!vn_isdisk(vp, NULL))
vprint("ffs_fsync: dirty", vp);
#endif
}
}
VI_UNLOCK(vp);
splx(s);
return (UFS_UPDATE(vp, wait));
}
/*
* Vnode op for reading.
*/
/* ARGSUSED */
static int
ffs_read(ap)
struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct inode *ip;
struct uio *uio;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
int seqcount;
int ioflag;
vm_object_t object;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extread(vp, uio, ioflag));
#else
panic("ffs_read+IO_EXT");
#endif
#ifdef DIRECTIO
if ((ioflag & IO_DIRECT) != 0) {
int workdone;
error = ffs_rawread(vp, uio, &workdone);
if (error != 0 || workdone != 0)
return error;
}
#endif
GIANT_REQUIRED;
seqcount = ap->a_ioflag >> 16;
ip = VTOI(vp);
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_READ)
panic("ffs_read: mode");
if (vp->v_type == VLNK) {
if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
panic("ffs_read: short symlink");
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("ffs_read: type %d", vp->v_type);
#endif
fs = ip->i_fs;
if ((u_int64_t)uio->uio_offset > fs->fs_maxfilesize)
return (EFBIG);
orig_resid = uio->uio_resid;
if (orig_resid <= 0)
return (0);
object = vp->v_object;
bytesinfile = ip->i_size - uio->uio_offset;
if (bytesinfile <= 0) {
if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return 0;
}
if (object) {
vm_object_reference(object);
}
/*
* Ok so we couldn't do it all in one vm trick...
* so cycle around trying smaller bites..
*/
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = blksize(fs, ip, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= ip->i_size) {
/*
* Don't do readahead if this is the end of the file.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
/*
* Otherwise if we are allowed to cluster,
* grab as much as we can.
*
* XXX This may not be a win if we are not
* doing sequential access.
*/
error = cluster_read(vp, ip->i_size, lbn,
size, NOCRED, uio->uio_resid, seqcount, &bp);
} else if (seqcount > 1) {
/*
* If we are NOT allowed to cluster, then
* if we appear to be acting sequentially,
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = blksize(fs, ip, nextlbn);
error = breadn(vp, lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
} else {
/*
* Failing all of the above, just read what the
* user asked for. Interestingly, the same as
* the first option above.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
{
/*
* otherwise use the general form
*/
error =
uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
}
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if (object) {
VM_OBJECT_LOCK(object);
vm_object_vndeallocate(object);
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (error);
}
/*
* Vnode op for writing.
*/
static int
ffs_write(ap)
struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct uio *uio;
struct inode *ip;
struct fs *fs;
struct buf *bp;
struct thread *td;
ufs_lbn_t lbn;
off_t osize;
int seqcount;
int blkoffset, error, extended, flags, ioflag, resid, size, xfersize;
vm_object_t object;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
#else
panic("ffs_read+IO_EXT");
#endif
GIANT_REQUIRED;
extended = 0;
seqcount = ap->a_ioflag >> 16;
ip = VTOI(vp);
object = vp->v_object;
if (object) {
vm_object_reference(object);
}
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_WRITE)
panic("ffswrite: mode");
#endif
switch (vp->v_type) {
case VREG:
if (ioflag & IO_APPEND)
uio->uio_offset = ip->i_size;
if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) {
if (object) {
VM_OBJECT_LOCK(object);
vm_object_vndeallocate(object);
}
return (EPERM);
}
/* FALLTHROUGH */
case VLNK:
break;
case VDIR:
panic("ffswrite: dir write");
break;
default:
panic("ffswrite: type %p %d (%d,%d)", vp, (int)vp->v_type,
(int)uio->uio_offset,
(int)uio->uio_resid
);
}
fs = ip->i_fs;
if (uio->uio_offset < 0 ||
(u_int64_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) {
if (object) {
VM_OBJECT_LOCK(object);
vm_object_vndeallocate(object);
}
return (EFBIG);
}
/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don't think it matters.
*/
td = uio->uio_td;
if (vp->v_type == VREG && td &&
uio->uio_offset + uio->uio_resid >
td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
PROC_LOCK(td->td_proc);
psignal(td->td_proc, SIGXFSZ);
PROC_UNLOCK(td->td_proc);
if (object) {
VM_OBJECT_LOCK(object);
vm_object_vndeallocate(object);
}
return (EFBIG);
}
resid = uio->uio_resid;
osize = ip->i_size;
if (seqcount > BA_SEQMAX)
flags = BA_SEQMAX << BA_SEQSHIFT;
else
flags = seqcount << BA_SEQSHIFT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (uio->uio_offset + xfersize > ip->i_size)
vnode_pager_setsize(vp, uio->uio_offset + xfersize);
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
/* XXX is uio->uio_offset the right thing here? */
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ap->a_cred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > ip->i_size) {
ip->i_size = uio->uio_offset + xfersize;
DIP(ip, i_size) = ip->i_size;
extended = 1;
}
size = blksize(fs, ip, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
(ioflag & IO_ASYNC)) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else if (xfersize + blkoffset == fs->fs_bsize) {
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
bp->b_flags |= B_CLUSTEROK;
cluster_write(bp, ip->i_size, seqcount);
} else {
bawrite(bp);
}
} else if (ioflag & IO_DIRECT) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else {
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
}
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if (resid > uio->uio_resid && ap->a_cred &&
suser_cred(ap->a_cred, PRISON_ROOT)) {
ip->i_mode &= ~(ISUID | ISGID);
DIP(ip, i_mode) = ip->i_mode;
}
if (resid > uio->uio_resid)
VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
if (error) {
if (ioflag & IO_UNIT) {
(void)UFS_TRUNCATE(vp, osize,
IO_NORMAL | (ioflag & IO_SYNC),
ap->a_cred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = UFS_UPDATE(vp, 1);
if (object) {
VM_OBJECT_LOCK(object);
vm_object_vndeallocate(object);
}
return (error);
}
/*
* get page routine
*/
static int
ffs_getpages(ap)
struct vop_getpages_args *ap;
{
off_t foff, physoffset;
int i, size, bsize;
struct vnode *dp, *vp;
vm_object_t obj;
vm_pindex_t pindex;
vm_page_t mreq;
int bbackwards, bforwards;
int pbackwards, pforwards;
int firstpage;
ufs2_daddr_t reqblkno, reqlblkno;
int poff;
int pcount;
int rtval;
int pagesperblock;
GIANT_REQUIRED;
pcount = round_page(ap->a_count) / PAGE_SIZE;
mreq = ap->a_m[ap->a_reqpage];
/*
* if ANY DEV_BSIZE blocks are valid on a large filesystem block,
* then the entire page is valid. Since the page may be mapped,
* user programs might reference data beyond the actual end of file
* occuring within the page. We have to zero that data.
*/
if (mreq->valid) {
if (mreq->valid != VM_PAGE_BITS_ALL)
vm_page_zero_invalid(mreq, TRUE);
VM_OBJECT_LOCK(mreq->object);
vm_page_lock_queues();
for (i = 0; i < pcount; i++) {
if (i != ap->a_reqpage) {
vm_page_free(ap->a_m[i]);
}
}
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(mreq->object);
return VM_PAGER_OK;
}
vp = ap->a_vp;
obj = vp->v_object;
bsize = vp->v_mount->mnt_stat.f_iosize;
pindex = mreq->pindex;
foff = IDX_TO_OFF(pindex) /* + ap->a_offset should be zero */;
if (bsize < PAGE_SIZE)
return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
ap->a_count,
ap->a_reqpage);
/*
* foff is the file offset of the required page
* reqlblkno is the logical block that contains the page
* poff is the index of the page into the logical block
*/
reqlblkno = foff / bsize;
poff = (foff % bsize) / PAGE_SIZE;
dp = VTOI(vp)->i_devvp;
if (ufs_bmaparray(vp, reqlblkno, &reqblkno, 0, &bforwards, &bbackwards)
|| (reqblkno == -1)) {
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for(i = 0; i < pcount; i++) {
if (i != ap->a_reqpage)
vm_page_free(ap->a_m[i]);
}
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(obj);
if (reqblkno == -1) {
if ((mreq->flags & PG_ZERO) == 0)
pmap_zero_page(mreq);
vm_page_undirty(mreq);
mreq->valid = VM_PAGE_BITS_ALL;
return VM_PAGER_OK;
} else {
return VM_PAGER_ERROR;
}
}
physoffset = (off_t)reqblkno * DEV_BSIZE + poff * PAGE_SIZE;
pagesperblock = bsize / PAGE_SIZE;
/*
* find the first page that is contiguous...
* note that pbackwards is the number of pages that are contiguous
* backwards.
*/
firstpage = 0;
if (ap->a_count) {
pbackwards = poff + bbackwards * pagesperblock;
if (ap->a_reqpage > pbackwards) {
firstpage = ap->a_reqpage - pbackwards;
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for(i=0;i<firstpage;i++)
vm_page_free(ap->a_m[i]);
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(obj);
}
/*
* pforwards is the number of pages that are contiguous
* after the current page.
*/
pforwards = (pagesperblock - (poff + 1)) +
bforwards * pagesperblock;
if (pforwards < (pcount - (ap->a_reqpage + 1))) {
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for( i = ap->a_reqpage + pforwards + 1; i < pcount; i++)
vm_page_free(ap->a_m[i]);
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(obj);
pcount = ap->a_reqpage + pforwards + 1;
}
/*
* number of pages for I/O corrected for the non-contig pages at
* the beginning of the array.
*/
pcount -= firstpage;
}
/*
* calculate the size of the transfer
*/
size = pcount * PAGE_SIZE;
if ((IDX_TO_OFF(ap->a_m[firstpage]->pindex) + size) >
obj->un_pager.vnp.vnp_size)
size = obj->un_pager.vnp.vnp_size -
IDX_TO_OFF(ap->a_m[firstpage]->pindex);
physoffset -= foff;
rtval = VOP_GETPAGES(dp, &ap->a_m[firstpage], size,
(ap->a_reqpage - firstpage), physoffset);
return (rtval);
}
/*
* Extended attribute area reading.
*/
static int
ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
GIANT_REQUIRED;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extread: mode");
#endif
orig_resid = uio->uio_resid;
if (orig_resid <= 0)
return (0);
bytesinfile = dp->di_extsize - uio->uio_offset;
if (bytesinfile <= 0) {
if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return 0;
}
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = sblksize(fs, dp->di_extsize, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
/*
* Don't do readahead if this is the end of the info.
*/
error = bread(vp, -1 - lbn, size, NOCRED, &bp);
} else {
/*
* If we have a second block, then
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
nextlbn = -1 - nextlbn;
error = breadn(vp, -1 - lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (error);
}
/*
* Extended attribute area writing.
*/
static int
ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
int blkoffset, error, flags, resid, size, xfersize;
GIANT_REQUIRED;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
panic("ext_write: mode");
#endif
if (ioflag & IO_APPEND)
uio->uio_offset = dp->di_extsize;
if (uio->uio_offset < 0 ||
(u_int64_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
return (EFBIG);
resid = uio->uio_resid;
osize = dp->di_extsize;
flags = IO_EXT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ucred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > dp->di_extsize)
dp->di_extsize = uio->uio_offset + xfersize;
size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
xfersize + blkoffset == fs->fs_bsize ||
(ioflag & (IO_ASYNC | IO_DIRECT)))
bawrite(bp);
else
bdwrite(bp);
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if (resid > uio->uio_resid && ucred &&
suser_cred(ucred, PRISON_ROOT)) {
ip->i_mode &= ~(ISUID | ISGID);
dp->di_mode = ip->i_mode;
}
if (error) {
if (ioflag & IO_UNIT) {
(void)UFS_TRUNCATE(vp, osize,
IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = UFS_UPDATE(vp, 1);
return (error);
}
/*
* Vnode operating to retrieve a named extended attribute.
*
* Locate a particular EA (nspace:name) in the area (ptr:length), and return
* the length of the EA, and possibly the pointer to the entry and to the data.
*/
static int
ffs_findextattr(u_char *ptr, uint length, int nspace, const char *name, u_char **eap, u_char **eac)
{
u_char *p, *pe, *pn, *p0;
int eapad1, eapad2, ealength, ealen, nlen;
uint32_t ul;
pe = ptr + length;
nlen = strlen(name);
for (p = ptr; p < pe; p = pn) {
p0 = p;
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
/* make sure this entry is complete */
if (pn > pe)
break;
p += sizeof(uint32_t);
if (*p != nspace)
continue;
p++;
eapad2 = *p++;
if (*p != nlen)
continue;
p++;
if (bcmp(p, name, nlen))
continue;
ealength = sizeof(uint32_t) + 3 + nlen;
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
ealength += eapad1;
ealen = ul - ealength - eapad2;
p += nlen + eapad1;
if (eap != NULL)
*eap = p0;
if (eac != NULL)
*eac = p;
return (ealen);
}
return(-1);
}
static int
ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct uio luio;
struct iovec liovec;
int easize, error;
u_char *eae;
ip = VTOI(vp);
dp = ip->i_din2;
easize = dp->di_extsize;
eae = malloc(easize + extra, M_TEMP, M_WAITOK);
liovec.iov_base = eae;
liovec.iov_len = easize;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = easize;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_READ;
luio.uio_td = td;
error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
if (error) {
free(eae, M_TEMP);
return(error);
}
*p = eae;
return (0);
}
static int
ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct ufs2_dinode *dp;
int error;
ip = VTOI(vp);
if (ip->i_ea_area != NULL)
return (EBUSY);
dp = ip->i_din2;
error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
if (error)
return (error);
ip->i_ea_len = dp->di_extsize;
ip->i_ea_error = 0;
return (0);
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct uio luio;
struct iovec liovec;
int error;
struct ufs2_dinode *dp;
ip = VTOI(vp);
if (ip->i_ea_area == NULL)
return (EINVAL);
dp = ip->i_din2;
error = ip->i_ea_error;
if (commit && error == 0) {
if (cred == NOCRED)
cred = vp->v_mount->mnt_cred;
liovec.iov_base = ip->i_ea_area;
liovec.iov_len = ip->i_ea_len;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = ip->i_ea_len;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_WRITE;
luio.uio_td = td;
/* XXX: I'm not happy about truncating to zero size */
if (ip->i_ea_len < dp->di_extsize)
error = ffs_truncate(vp, 0, IO_EXT, cred, td);
error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
}
free(ip->i_ea_area, M_TEMP);
ip->i_ea_area = NULL;
ip->i_ea_len = 0;
ip->i_ea_error = 0;
return (error);
}
/*
* Vnode extattr strategy routine for special devices and fifos.
*
* We need to check for a read or write of the external attributes.
* Otherwise we just fall through and do the usual thing.
*/
static int
ffsext_strategy(struct vop_strategy_args *ap)
/*
struct vop_strategy_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct buf *a_bp;
};
*/
{
struct vnode *vp;
daddr_t lbn;
KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)",
__func__, ap->a_vp, ap->a_bp->b_vp));
vp = ap->a_vp;
lbn = ap->a_bp->b_lblkno;
if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
lbn < 0 && lbn >= -NXADDR)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (vp->v_type == VFIFO)
return (ufs_vnoperatefifo((struct vop_generic_args *)ap));
return (ufs_vnoperatespec((struct vop_generic_args *)ap));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_openextattr(struct vop_openextattr_args *ap)
/*
struct vop_openextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_closeextattr(struct vop_closeextattr_args *ap)
/*
struct vop_closeextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
int a_commit;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
ffs_getextattr(struct vop_getextattr_args *ap)
/*
vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p;
unsigned easize;
int error, ealen, stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IREAD);
if (error)
return (error);
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
eae = ip->i_ea_area;
easize = ip->i_ea_len;
ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
NULL, &p);
if (ealen >= 0) {
error = 0;
if (ap->a_size != NULL)
*ap->a_size = ealen;
else if (ap->a_uio != NULL)
error = uiomove(p, ealen, ap->a_uio);
} else
error = ENOATTR;
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
ffs_listextattr(struct vop_listextattr_args *ap)
/*
vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p, *pe, *pn;
unsigned easize;
uint32_t ul;
int error, ealen, stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IREAD);
if (error)
return (error);
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
eae = ip->i_ea_area;
easize = ip->i_ea_len;
error = 0;
if (ap->a_size != NULL)
*ap->a_size = 0;
pe = eae + easize;
for(p = eae; error == 0 && p < pe; p = pn) {
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
if (pn > pe)
break;
p += sizeof(ul);
if (*p++ != ap->a_attrnamespace)
continue;
p++; /* pad2 */
ealen = *p;
if (ap->a_size != NULL) {
*ap->a_size += ealen + 1;
} else if (ap->a_uio != NULL) {
error = uiomove(p, ealen + 1, ap->a_uio);
}
}
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
ffs_setextattr(struct vop_setextattr_args *ap)
/*
vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
int stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IWRITE);
if (error) {
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
/* Calculate the length of the EA entry */
if (ap->a_uio == NULL) {
/* delete */
ealength = eapad1 = ealen = eapad2 = 0;
} else {
ealen = ap->a_uio->uio_resid;
ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
eapad2 = 8 - (ealen % 8);
if (eapad2 == 8)
eapad2 = 0;
ealength += eapad1 + ealen + eapad2;
}
eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize,
ap->a_attrnamespace, ap->a_name, &p, NULL);
if (olen == -1 && ealength == 0) {
/* delete but nonexistent */
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(ENOATTR);
}
if (olen == -1) {
/* new, append at end */
p = eae + easize;
easize += ealength;
} else {
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
else if (ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
if (ealength != 0) {
bcopy(&ealength, p, sizeof(ealength));
p += sizeof(ealength);
*p++ = ap->a_attrnamespace;
*p++ = eapad2;
*p++ = strlen(ap->a_name);
strcpy(p, ap->a_name);
p += strlen(ap->a_name);
bzero(p, eapad1);
p += eapad1;
error = uiomove(p, ealen, ap->a_uio);
if (error) {
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
else if (ip->i_ea_error == 0)
ip->i_ea_error = error;
return(error);
}
p += ealen;
bzero(p, eapad2);
}
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
if (stand_alone)
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}