Reviewed by: kib Sponsored by: DARPA Differential Revision: https://reviews.freebsd.org/D26458
1197 lines
32 KiB
C
1197 lines
32 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (C) 1994, David Greenman
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the University of Utah, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* AMD64 Trap and System call handling
|
|
*/
|
|
|
|
#include "opt_clock.h"
|
|
#include "opt_compat.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_isa.h"
|
|
#include "opt_kdb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
PMC_SOFT_DEFINE( , , page_fault, all);
|
|
PMC_SOFT_DEFINE( , , page_fault, read);
|
|
PMC_SOFT_DEFINE( , , page_fault, write);
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <x86/mca.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
#include <machine/stack.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/tss.h>
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
#endif
|
|
|
|
extern inthand_t IDTVEC(bpt), IDTVEC(bpt_pti), IDTVEC(dbg),
|
|
IDTVEC(fast_syscall), IDTVEC(fast_syscall_pti), IDTVEC(fast_syscall32),
|
|
IDTVEC(int0x80_syscall_pti), IDTVEC(int0x80_syscall);
|
|
|
|
void __noinline trap(struct trapframe *frame);
|
|
void trap_check(struct trapframe *frame);
|
|
void dblfault_handler(struct trapframe *frame);
|
|
|
|
static int trap_pfault(struct trapframe *, bool, int *, int *);
|
|
static void trap_fatal(struct trapframe *, vm_offset_t);
|
|
#ifdef KDTRACE_HOOKS
|
|
static bool trap_user_dtrace(struct trapframe *,
|
|
int (**hook)(struct trapframe *));
|
|
#endif
|
|
|
|
static const char UNKNOWN[] = "unknown";
|
|
static const char *const trap_msg[] = {
|
|
[0] = UNKNOWN, /* unused */
|
|
[T_PRIVINFLT] = "privileged instruction fault",
|
|
[2] = UNKNOWN, /* unused */
|
|
[T_BPTFLT] = "breakpoint instruction fault",
|
|
[4] = UNKNOWN, /* unused */
|
|
[5] = UNKNOWN, /* unused */
|
|
[T_ARITHTRAP] = "arithmetic trap",
|
|
[7] = UNKNOWN, /* unused */
|
|
[8] = UNKNOWN, /* unused */
|
|
[T_PROTFLT] = "general protection fault",
|
|
[T_TRCTRAP] = "debug exception",
|
|
[11] = UNKNOWN, /* unused */
|
|
[T_PAGEFLT] = "page fault",
|
|
[13] = UNKNOWN, /* unused */
|
|
[T_ALIGNFLT] = "alignment fault",
|
|
[15] = UNKNOWN, /* unused */
|
|
[16] = UNKNOWN, /* unused */
|
|
[17] = UNKNOWN, /* unused */
|
|
[T_DIVIDE] = "integer divide fault",
|
|
[T_NMI] = "non-maskable interrupt trap",
|
|
[T_OFLOW] = "overflow trap",
|
|
[T_BOUND] = "FPU bounds check fault",
|
|
[T_DNA] = "FPU device not available",
|
|
[T_DOUBLEFLT] = "double fault",
|
|
[T_FPOPFLT] = "FPU operand fetch fault",
|
|
[T_TSSFLT] = "invalid TSS fault",
|
|
[T_SEGNPFLT] = "segment not present fault",
|
|
[T_STKFLT] = "stack fault",
|
|
[T_MCHK] = "machine check trap",
|
|
[T_XMMFLT] = "SIMD floating-point exception",
|
|
[T_RESERVED] = "reserved (unknown) fault",
|
|
[31] = UNKNOWN, /* reserved */
|
|
[T_DTRACE_RET] = "DTrace pid return trap",
|
|
};
|
|
|
|
static int uprintf_signal;
|
|
SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RWTUN,
|
|
&uprintf_signal, 0,
|
|
"Print debugging information on trap signal to ctty");
|
|
|
|
/*
|
|
* Control L1D flush on return from NMI.
|
|
*
|
|
* Tunable can be set to the following values:
|
|
* 0 - only enable flush on return from NMI if required by vmm.ko (default)
|
|
* >1 - always flush on return from NMI.
|
|
*
|
|
* Post-boot, the sysctl indicates if flushing is currently enabled.
|
|
*/
|
|
int nmi_flush_l1d_sw;
|
|
SYSCTL_INT(_machdep, OID_AUTO, nmi_flush_l1d_sw, CTLFLAG_RWTUN,
|
|
&nmi_flush_l1d_sw, 0,
|
|
"Flush L1 Data Cache on NMI exit, software bhyve L1TF mitigation assist");
|
|
|
|
/*
|
|
* Exception, fault, and trap interface to the FreeBSD kernel.
|
|
* This common code is called from assembly language IDT gate entry
|
|
* routines that prepare a suitable stack frame, and restore this
|
|
* frame after the exception has been processed.
|
|
*/
|
|
|
|
void
|
|
trap(struct trapframe *frame)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
register_t addr, dr6;
|
|
int pf, signo, ucode;
|
|
u_int type;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
dr6 = 0;
|
|
|
|
VM_CNT_INC(v_trap);
|
|
type = frame->tf_trapno;
|
|
|
|
#ifdef SMP
|
|
/* Handler for NMI IPIs used for stopping CPUs. */
|
|
if (type == T_NMI && ipi_nmi_handler() == 0)
|
|
return;
|
|
#endif
|
|
|
|
#ifdef KDB
|
|
if (kdb_active) {
|
|
kdb_reenter();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (type == T_RESERVED) {
|
|
trap_fatal(frame, 0);
|
|
return;
|
|
}
|
|
|
|
if (type == T_NMI) {
|
|
#ifdef HWPMC_HOOKS
|
|
/*
|
|
* CPU PMCs interrupt using an NMI. If the PMC module is
|
|
* active, pass the 'rip' value to the PMC module's interrupt
|
|
* handler. A non-zero return value from the handler means that
|
|
* the NMI was consumed by it and we can return immediately.
|
|
*/
|
|
if (pmc_intr != NULL &&
|
|
(*pmc_intr)(frame) != 0)
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
if ((frame->tf_rflags & PSL_I) == 0) {
|
|
/*
|
|
* Buggy application or kernel code has disabled
|
|
* interrupts and then trapped. Enabling interrupts
|
|
* now is wrong, but it is better than running with
|
|
* interrupts disabled until they are accidentally
|
|
* enabled later.
|
|
*/
|
|
if (TRAPF_USERMODE(frame))
|
|
uprintf(
|
|
"pid %ld (%s): trap %d with interrupts disabled\n",
|
|
(long)curproc->p_pid, curthread->td_name, type);
|
|
else if (type != T_NMI && type != T_BPTFLT &&
|
|
type != T_TRCTRAP) {
|
|
/*
|
|
* XXX not quite right, since this may be for a
|
|
* multiple fault in user mode.
|
|
*/
|
|
printf("kernel trap %d with interrupts disabled\n",
|
|
type);
|
|
|
|
/*
|
|
* We shouldn't enable interrupts while holding a
|
|
* spin lock.
|
|
*/
|
|
if (td->td_md.md_spinlock_count == 0)
|
|
enable_intr();
|
|
}
|
|
}
|
|
|
|
if (TRAPF_USERMODE(frame)) {
|
|
/* user trap */
|
|
|
|
td->td_pticks = 0;
|
|
td->td_frame = frame;
|
|
addr = frame->tf_rip;
|
|
if (td->td_cowgen != p->p_cowgen)
|
|
thread_cow_update(td);
|
|
|
|
switch (type) {
|
|
case T_PRIVINFLT: /* privileged instruction fault */
|
|
signo = SIGILL;
|
|
ucode = ILL_PRVOPC;
|
|
break;
|
|
|
|
case T_BPTFLT: /* bpt instruction fault */
|
|
#ifdef KDTRACE_HOOKS
|
|
if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
|
|
return;
|
|
#else
|
|
enable_intr();
|
|
#endif
|
|
signo = SIGTRAP;
|
|
ucode = TRAP_BRKPT;
|
|
break;
|
|
|
|
case T_TRCTRAP: /* debug exception */
|
|
enable_intr();
|
|
signo = SIGTRAP;
|
|
ucode = TRAP_TRACE;
|
|
dr6 = rdr6();
|
|
if ((dr6 & DBREG_DR6_BS) != 0) {
|
|
PROC_LOCK(td->td_proc);
|
|
if ((td->td_dbgflags & TDB_STEP) != 0) {
|
|
td->td_frame->tf_rflags &= ~PSL_T;
|
|
td->td_dbgflags &= ~TDB_STEP;
|
|
}
|
|
PROC_UNLOCK(td->td_proc);
|
|
}
|
|
break;
|
|
|
|
case T_ARITHTRAP: /* arithmetic trap */
|
|
ucode = fputrap_x87();
|
|
if (ucode == -1)
|
|
return;
|
|
signo = SIGFPE;
|
|
break;
|
|
|
|
case T_PROTFLT: /* general protection fault */
|
|
signo = SIGBUS;
|
|
ucode = BUS_OBJERR;
|
|
break;
|
|
case T_STKFLT: /* stack fault */
|
|
case T_SEGNPFLT: /* segment not present fault */
|
|
signo = SIGBUS;
|
|
ucode = BUS_ADRERR;
|
|
break;
|
|
case T_TSSFLT: /* invalid TSS fault */
|
|
signo = SIGBUS;
|
|
ucode = BUS_OBJERR;
|
|
break;
|
|
case T_ALIGNFLT:
|
|
signo = SIGBUS;
|
|
ucode = BUS_ADRALN;
|
|
break;
|
|
case T_DOUBLEFLT: /* double fault */
|
|
default:
|
|
signo = SIGBUS;
|
|
ucode = BUS_OBJERR;
|
|
break;
|
|
|
|
case T_PAGEFLT: /* page fault */
|
|
/*
|
|
* Can emulator handle this trap?
|
|
*/
|
|
if (*p->p_sysent->sv_trap != NULL &&
|
|
(*p->p_sysent->sv_trap)(td) == 0)
|
|
return;
|
|
|
|
pf = trap_pfault(frame, true, &signo, &ucode);
|
|
if (pf == -1)
|
|
return;
|
|
if (pf == 0)
|
|
goto userret;
|
|
addr = frame->tf_addr;
|
|
break;
|
|
|
|
case T_DIVIDE: /* integer divide fault */
|
|
ucode = FPE_INTDIV;
|
|
signo = SIGFPE;
|
|
break;
|
|
|
|
case T_NMI:
|
|
nmi_handle_intr(type, frame);
|
|
return;
|
|
|
|
case T_OFLOW: /* integer overflow fault */
|
|
ucode = FPE_INTOVF;
|
|
signo = SIGFPE;
|
|
break;
|
|
|
|
case T_BOUND: /* bounds check fault */
|
|
ucode = FPE_FLTSUB;
|
|
signo = SIGFPE;
|
|
break;
|
|
|
|
case T_DNA:
|
|
/* transparent fault (due to context switch "late") */
|
|
KASSERT(PCB_USER_FPU(td->td_pcb),
|
|
("kernel FPU ctx has leaked"));
|
|
fpudna();
|
|
return;
|
|
|
|
case T_FPOPFLT: /* FPU operand fetch fault */
|
|
ucode = ILL_COPROC;
|
|
signo = SIGILL;
|
|
break;
|
|
|
|
case T_XMMFLT: /* SIMD floating-point exception */
|
|
ucode = fputrap_sse();
|
|
if (ucode == -1)
|
|
return;
|
|
signo = SIGFPE;
|
|
break;
|
|
#ifdef KDTRACE_HOOKS
|
|
case T_DTRACE_RET:
|
|
(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
|
|
return;
|
|
#endif
|
|
}
|
|
} else {
|
|
/* kernel trap */
|
|
|
|
KASSERT(cold || td->td_ucred != NULL,
|
|
("kernel trap doesn't have ucred"));
|
|
switch (type) {
|
|
case T_PAGEFLT: /* page fault */
|
|
(void)trap_pfault(frame, false, NULL, NULL);
|
|
return;
|
|
|
|
case T_DNA:
|
|
if (PCB_USER_FPU(td->td_pcb))
|
|
panic("Unregistered use of FPU in kernel");
|
|
fpudna();
|
|
return;
|
|
|
|
case T_ARITHTRAP: /* arithmetic trap */
|
|
case T_XMMFLT: /* SIMD floating-point exception */
|
|
case T_FPOPFLT: /* FPU operand fetch fault */
|
|
/*
|
|
* For now, supporting kernel handler
|
|
* registration for FPU traps is overkill.
|
|
*/
|
|
trap_fatal(frame, 0);
|
|
return;
|
|
|
|
case T_STKFLT: /* stack fault */
|
|
case T_PROTFLT: /* general protection fault */
|
|
case T_SEGNPFLT: /* segment not present fault */
|
|
if (td->td_intr_nesting_level != 0)
|
|
break;
|
|
|
|
/*
|
|
* Invalid segment selectors and out of bounds
|
|
* %rip's and %rsp's can be set up in user mode.
|
|
* This causes a fault in kernel mode when the
|
|
* kernel tries to return to user mode. We want
|
|
* to get this fault so that we can fix the
|
|
* problem here and not have to check all the
|
|
* selectors and pointers when the user changes
|
|
* them.
|
|
*
|
|
* In case of PTI, the IRETQ faulted while the
|
|
* kernel used the pti stack, and exception
|
|
* frame records %rsp value pointing to that
|
|
* stack. If we return normally to
|
|
* doreti_iret_fault, the trapframe is
|
|
* reconstructed on pti stack, and calltrap()
|
|
* called on it as well. Due to the very
|
|
* limited pti stack size, kernel does not
|
|
* survive for too long. Switch to the normal
|
|
* thread stack for the trap handling.
|
|
*
|
|
* Magic '5' is the number of qwords occupied by
|
|
* the hardware trap frame.
|
|
*/
|
|
if (frame->tf_rip == (long)doreti_iret) {
|
|
frame->tf_rip = (long)doreti_iret_fault;
|
|
if ((PCPU_GET(curpmap)->pm_ucr3 !=
|
|
PMAP_NO_CR3) &&
|
|
(frame->tf_rsp == (uintptr_t)PCPU_GET(
|
|
pti_rsp0) - 5 * sizeof(register_t))) {
|
|
frame->tf_rsp = PCPU_GET(rsp0) - 5 *
|
|
sizeof(register_t);
|
|
}
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_ds) {
|
|
frame->tf_rip = (long)ds_load_fault;
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_es) {
|
|
frame->tf_rip = (long)es_load_fault;
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_fs) {
|
|
frame->tf_rip = (long)fs_load_fault;
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_gs) {
|
|
frame->tf_rip = (long)gs_load_fault;
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_gsbase) {
|
|
frame->tf_rip = (long)gsbase_load_fault;
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (long)ld_fsbase) {
|
|
frame->tf_rip = (long)fsbase_load_fault;
|
|
return;
|
|
}
|
|
if (curpcb->pcb_onfault != NULL) {
|
|
frame->tf_rip = (long)curpcb->pcb_onfault;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case T_TSSFLT:
|
|
/*
|
|
* PSL_NT can be set in user mode and isn't cleared
|
|
* automatically when the kernel is entered. This
|
|
* causes a TSS fault when the kernel attempts to
|
|
* `iret' because the TSS link is uninitialized. We
|
|
* want to get this fault so that we can fix the
|
|
* problem here and not every time the kernel is
|
|
* entered.
|
|
*/
|
|
if (frame->tf_rflags & PSL_NT) {
|
|
frame->tf_rflags &= ~PSL_NT;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case T_TRCTRAP: /* debug exception */
|
|
/* Clear any pending debug events. */
|
|
dr6 = rdr6();
|
|
load_dr6(0);
|
|
|
|
/*
|
|
* Ignore debug register exceptions due to
|
|
* accesses in the user's address space, which
|
|
* can happen under several conditions such as
|
|
* if a user sets a watchpoint on a buffer and
|
|
* then passes that buffer to a system call.
|
|
* We still want to get TRCTRAPS for addresses
|
|
* in kernel space because that is useful when
|
|
* debugging the kernel.
|
|
*/
|
|
if (user_dbreg_trap(dr6))
|
|
return;
|
|
|
|
/*
|
|
* Malicious user code can configure a debug
|
|
* register watchpoint to trap on data access
|
|
* to the top of stack and then execute 'pop
|
|
* %ss; int 3'. Due to exception deferral for
|
|
* 'pop %ss', the CPU will not interrupt 'int
|
|
* 3' to raise the DB# exception for the debug
|
|
* register but will postpone the DB# until
|
|
* execution of the first instruction of the
|
|
* BP# handler (in kernel mode). Normally the
|
|
* previous check would ignore DB# exceptions
|
|
* for watchpoints on user addresses raised in
|
|
* kernel mode. However, some CPU errata
|
|
* include cases where DB# exceptions do not
|
|
* properly set bits in %dr6, e.g. Haswell
|
|
* HSD23 and Skylake-X SKZ24.
|
|
*
|
|
* A deferred DB# can also be raised on the
|
|
* first instructions of system call entry
|
|
* points or single-step traps via similar use
|
|
* of 'pop %ss' or 'mov xxx, %ss'.
|
|
*/
|
|
if (pti) {
|
|
if (frame->tf_rip ==
|
|
(uintptr_t)IDTVEC(fast_syscall_pti) ||
|
|
#ifdef COMPAT_FREEBSD32
|
|
frame->tf_rip ==
|
|
(uintptr_t)IDTVEC(int0x80_syscall_pti) ||
|
|
#endif
|
|
frame->tf_rip == (uintptr_t)IDTVEC(bpt_pti))
|
|
return;
|
|
} else {
|
|
if (frame->tf_rip ==
|
|
(uintptr_t)IDTVEC(fast_syscall) ||
|
|
#ifdef COMPAT_FREEBSD32
|
|
frame->tf_rip ==
|
|
(uintptr_t)IDTVEC(int0x80_syscall) ||
|
|
#endif
|
|
frame->tf_rip == (uintptr_t)IDTVEC(bpt))
|
|
return;
|
|
}
|
|
if (frame->tf_rip == (uintptr_t)IDTVEC(dbg) ||
|
|
/* Needed for AMD. */
|
|
frame->tf_rip == (uintptr_t)IDTVEC(fast_syscall32))
|
|
return;
|
|
/*
|
|
* FALLTHROUGH (TRCTRAP kernel mode, kernel address)
|
|
*/
|
|
case T_BPTFLT:
|
|
/*
|
|
* If KDB is enabled, let it handle the debugger trap.
|
|
* Otherwise, debugger traps "can't happen".
|
|
*/
|
|
#ifdef KDB
|
|
if (kdb_trap(type, dr6, frame))
|
|
return;
|
|
#endif
|
|
break;
|
|
|
|
case T_NMI:
|
|
nmi_handle_intr(type, frame);
|
|
return;
|
|
}
|
|
|
|
trap_fatal(frame, 0);
|
|
return;
|
|
}
|
|
|
|
/* Translate fault for emulators (e.g. Linux) */
|
|
if (*p->p_sysent->sv_transtrap != NULL)
|
|
signo = (*p->p_sysent->sv_transtrap)(signo, type);
|
|
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = signo;
|
|
ksi.ksi_code = ucode;
|
|
ksi.ksi_trapno = type;
|
|
ksi.ksi_addr = (void *)addr;
|
|
if (uprintf_signal) {
|
|
uprintf("pid %d comm %s: signal %d err %lx code %d type %d "
|
|
"addr 0x%lx rsp 0x%lx rip 0x%lx "
|
|
"<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
|
|
p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
|
|
addr, frame->tf_rsp, frame->tf_rip,
|
|
fubyte((void *)(frame->tf_rip + 0)),
|
|
fubyte((void *)(frame->tf_rip + 1)),
|
|
fubyte((void *)(frame->tf_rip + 2)),
|
|
fubyte((void *)(frame->tf_rip + 3)),
|
|
fubyte((void *)(frame->tf_rip + 4)),
|
|
fubyte((void *)(frame->tf_rip + 5)),
|
|
fubyte((void *)(frame->tf_rip + 6)),
|
|
fubyte((void *)(frame->tf_rip + 7)));
|
|
}
|
|
KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
|
|
trapsignal(td, &ksi);
|
|
|
|
userret:
|
|
userret(td, frame);
|
|
KASSERT(PCB_USER_FPU(td->td_pcb),
|
|
("Return from trap with kernel FPU ctx leaked"));
|
|
}
|
|
|
|
/*
|
|
* Ensure that we ignore any DTrace-induced faults. This function cannot
|
|
* be instrumented, so it cannot generate such faults itself.
|
|
*/
|
|
void
|
|
trap_check(struct trapframe *frame)
|
|
{
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (dtrace_trap_func != NULL &&
|
|
(*dtrace_trap_func)(frame, frame->tf_trapno) != 0)
|
|
return;
|
|
#endif
|
|
trap(frame);
|
|
}
|
|
|
|
static bool
|
|
trap_is_smap(struct trapframe *frame)
|
|
{
|
|
|
|
/*
|
|
* A page fault on a userspace address is classified as
|
|
* SMAP-induced if:
|
|
* - SMAP is supported;
|
|
* - kernel mode accessed present data page;
|
|
* - rflags.AC was cleared.
|
|
* Kernel must never access user space with rflags.AC cleared
|
|
* if SMAP is enabled.
|
|
*/
|
|
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
|
|
(frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) ==
|
|
PGEX_P && (frame->tf_rflags & PSL_AC) == 0);
|
|
}
|
|
|
|
static bool
|
|
trap_is_pti(struct trapframe *frame)
|
|
{
|
|
|
|
return (PCPU_GET(curpmap)->pm_ucr3 != PMAP_NO_CR3 &&
|
|
pg_nx != 0 && (frame->tf_err & (PGEX_P | PGEX_W |
|
|
PGEX_U | PGEX_I)) == (PGEX_P | PGEX_U | PGEX_I) &&
|
|
(curpcb->pcb_saved_ucr3 & ~CR3_PCID_MASK) ==
|
|
(PCPU_GET(curpmap)->pm_cr3 & ~CR3_PCID_MASK));
|
|
}
|
|
|
|
/*
|
|
* Handle all details of a page fault.
|
|
* Returns:
|
|
* -1 if this fault was fatal, typically from kernel mode
|
|
* (cannot happen, but we need to return something).
|
|
* 0 if this fault was handled by updating either the user or kernel
|
|
* page table, execution can continue.
|
|
* 1 if this fault was from usermode and it was not handled, a synchronous
|
|
* signal should be delivered to the thread. *signo returns the signal
|
|
* number, *ucode gives si_code.
|
|
*/
|
|
static int
|
|
trap_pfault(struct trapframe *frame, bool usermode, int *signo, int *ucode)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
vm_map_t map;
|
|
vm_offset_t eva;
|
|
int rv;
|
|
vm_prot_t ftype;
|
|
|
|
MPASS(!usermode || (signo != NULL && ucode != NULL));
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
eva = frame->tf_addr;
|
|
|
|
if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
|
|
/*
|
|
* Due to both processor errata and lazy TLB invalidation when
|
|
* access restrictions are removed from virtual pages, memory
|
|
* accesses that are allowed by the physical mapping layer may
|
|
* nonetheless cause one spurious page fault per virtual page.
|
|
* When the thread is executing a "no faulting" section that
|
|
* is bracketed by vm_fault_{disable,enable}_pagefaults(),
|
|
* every page fault is treated as a spurious page fault,
|
|
* unless it accesses the same virtual address as the most
|
|
* recent page fault within the same "no faulting" section.
|
|
*/
|
|
if (td->td_md.md_spurflt_addr != eva ||
|
|
(td->td_pflags & TDP_RESETSPUR) != 0) {
|
|
/*
|
|
* Do nothing to the TLB. A stale TLB entry is
|
|
* flushed automatically by a page fault.
|
|
*/
|
|
td->td_md.md_spurflt_addr = eva;
|
|
td->td_pflags &= ~TDP_RESETSPUR;
|
|
return (0);
|
|
}
|
|
} else {
|
|
/*
|
|
* If we get a page fault while in a critical section, then
|
|
* it is most likely a fatal kernel page fault. The kernel
|
|
* is already going to panic trying to get a sleep lock to
|
|
* do the VM lookup, so just consider it a fatal trap so the
|
|
* kernel can print out a useful trap message and even get
|
|
* to the debugger.
|
|
*
|
|
* If we get a page fault while holding a non-sleepable
|
|
* lock, then it is most likely a fatal kernel page fault.
|
|
* If WITNESS is enabled, then it's going to whine about
|
|
* bogus LORs with various VM locks, so just skip to the
|
|
* fatal trap handling directly.
|
|
*/
|
|
if (td->td_critnest != 0 ||
|
|
WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
|
|
"Kernel page fault") != 0) {
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
}
|
|
if (eva >= VM_MIN_KERNEL_ADDRESS) {
|
|
/*
|
|
* Don't allow user-mode faults in kernel address space.
|
|
*/
|
|
if (usermode) {
|
|
*signo = SIGSEGV;
|
|
*ucode = SEGV_MAPERR;
|
|
return (1);
|
|
}
|
|
|
|
map = kernel_map;
|
|
} else {
|
|
map = &p->p_vmspace->vm_map;
|
|
|
|
/*
|
|
* When accessing a usermode address, kernel must be
|
|
* ready to accept the page fault, and provide a
|
|
* handling routine. Since accessing the address
|
|
* without the handler is a bug, do not try to handle
|
|
* it normally, and panic immediately.
|
|
*
|
|
* If SMAP is enabled, filter SMAP faults also,
|
|
* because illegal access might occur to the mapped
|
|
* user address, causing infinite loop.
|
|
*/
|
|
if (!usermode && (td->td_intr_nesting_level != 0 ||
|
|
trap_is_smap(frame) || curpcb->pcb_onfault == NULL)) {
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the trap was caused by errant bits in the PTE then panic.
|
|
*/
|
|
if (frame->tf_err & PGEX_RSV) {
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* User-mode protection key violation (PKU). May happen
|
|
* either from usermode or from kernel if copyin accessed
|
|
* key-protected mapping.
|
|
*/
|
|
if ((frame->tf_err & PGEX_PK) != 0) {
|
|
if (eva > VM_MAXUSER_ADDRESS) {
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
if (usermode) {
|
|
*signo = SIGSEGV;
|
|
*ucode = SEGV_PKUERR;
|
|
return (1);
|
|
}
|
|
goto after_vmfault;
|
|
}
|
|
|
|
/*
|
|
* If nx protection of the usermode portion of kernel page
|
|
* tables caused trap, panic.
|
|
*/
|
|
if (usermode && trap_is_pti(frame))
|
|
panic("PTI: pid %d comm %s tf_err %#lx", p->p_pid,
|
|
p->p_comm, frame->tf_err);
|
|
|
|
/*
|
|
* PGEX_I is defined only if the execute disable bit capability is
|
|
* supported and enabled.
|
|
*/
|
|
if (frame->tf_err & PGEX_W)
|
|
ftype = VM_PROT_WRITE;
|
|
else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
|
|
ftype = VM_PROT_EXECUTE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
|
|
/* Fault in the page. */
|
|
rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
|
|
if (rv == KERN_SUCCESS) {
|
|
#ifdef HWPMC_HOOKS
|
|
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
|
|
PMC_SOFT_CALL_TF( , , page_fault, all, frame);
|
|
if (ftype == VM_PROT_READ)
|
|
PMC_SOFT_CALL_TF( , , page_fault, read,
|
|
frame);
|
|
else
|
|
PMC_SOFT_CALL_TF( , , page_fault, write,
|
|
frame);
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
if (usermode)
|
|
return (1);
|
|
after_vmfault:
|
|
if (td->td_intr_nesting_level == 0 &&
|
|
curpcb->pcb_onfault != NULL) {
|
|
frame->tf_rip = (long)curpcb->pcb_onfault;
|
|
return (0);
|
|
}
|
|
trap_fatal(frame, eva);
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
trap_fatal(frame, eva)
|
|
struct trapframe *frame;
|
|
vm_offset_t eva;
|
|
{
|
|
int code, ss;
|
|
u_int type;
|
|
struct soft_segment_descriptor softseg;
|
|
struct user_segment_descriptor *gdt;
|
|
#ifdef KDB
|
|
bool handled;
|
|
#endif
|
|
|
|
code = frame->tf_err;
|
|
type = frame->tf_trapno;
|
|
gdt = *PCPU_PTR(gdt);
|
|
sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
|
|
|
|
printf("\n\nFatal trap %d: %s while in %s mode\n", type,
|
|
type < nitems(trap_msg) ? trap_msg[type] : UNKNOWN,
|
|
TRAPF_USERMODE(frame) ? "user" : "kernel");
|
|
#ifdef SMP
|
|
/* two separate prints in case of a trap on an unmapped page */
|
|
printf("cpuid = %d; ", PCPU_GET(cpuid));
|
|
printf("apic id = %02x\n", PCPU_GET(apic_id));
|
|
#endif
|
|
if (type == T_PAGEFLT) {
|
|
printf("fault virtual address = 0x%lx\n", eva);
|
|
printf("fault code = %s %s %s%s%s, %s\n",
|
|
code & PGEX_U ? "user" : "supervisor",
|
|
code & PGEX_W ? "write" : "read",
|
|
code & PGEX_I ? "instruction" : "data",
|
|
code & PGEX_PK ? " prot key" : "",
|
|
code & PGEX_SGX ? " SGX" : "",
|
|
code & PGEX_RSV ? "reserved bits in PTE" :
|
|
code & PGEX_P ? "protection violation" : "page not present");
|
|
}
|
|
printf("instruction pointer = 0x%lx:0x%lx\n",
|
|
frame->tf_cs & 0xffff, frame->tf_rip);
|
|
ss = frame->tf_ss & 0xffff;
|
|
printf("stack pointer = 0x%x:0x%lx\n", ss, frame->tf_rsp);
|
|
printf("frame pointer = 0x%x:0x%lx\n", ss, frame->tf_rbp);
|
|
printf("code segment = base 0x%lx, limit 0x%lx, type 0x%x\n",
|
|
softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
|
|
printf(" = DPL %d, pres %d, long %d, def32 %d, gran %d\n",
|
|
softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
|
|
softseg.ssd_gran);
|
|
printf("processor eflags = ");
|
|
if (frame->tf_rflags & PSL_T)
|
|
printf("trace trap, ");
|
|
if (frame->tf_rflags & PSL_I)
|
|
printf("interrupt enabled, ");
|
|
if (frame->tf_rflags & PSL_NT)
|
|
printf("nested task, ");
|
|
if (frame->tf_rflags & PSL_RF)
|
|
printf("resume, ");
|
|
printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
|
|
printf("current process = %d (%s)\n",
|
|
curproc->p_pid, curthread->td_name);
|
|
|
|
#ifdef KDB
|
|
if (debugger_on_trap) {
|
|
kdb_why = KDB_WHY_TRAP;
|
|
handled = kdb_trap(type, 0, frame);
|
|
kdb_why = KDB_WHY_UNSET;
|
|
if (handled)
|
|
return;
|
|
}
|
|
#endif
|
|
printf("trap number = %d\n", type);
|
|
panic("%s", type < nitems(trap_msg) ? trap_msg[type] :
|
|
"unknown/reserved trap");
|
|
}
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
/*
|
|
* Invoke a userspace DTrace hook. The hook pointer is cleared when no
|
|
* userspace probes are enabled, so we must synchronize with DTrace to ensure
|
|
* that a trapping thread is able to call the hook before it is cleared.
|
|
*/
|
|
static bool
|
|
trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
|
|
{
|
|
int (*hook)(struct trapframe *);
|
|
|
|
hook = atomic_load_ptr(hookp);
|
|
enable_intr();
|
|
if (hook != NULL)
|
|
return ((hook)(frame) == 0);
|
|
return (false);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Double fault handler. Called when a fault occurs while writing
|
|
* a frame for a trap/exception onto the stack. This usually occurs
|
|
* when the stack overflows (such is the case with infinite recursion,
|
|
* for example).
|
|
*/
|
|
void
|
|
dblfault_handler(struct trapframe *frame)
|
|
{
|
|
#ifdef KDTRACE_HOOKS
|
|
if (dtrace_doubletrap_func != NULL)
|
|
(*dtrace_doubletrap_func)();
|
|
#endif
|
|
printf("\nFatal double fault\n"
|
|
"rip %#lx rsp %#lx rbp %#lx\n"
|
|
"rax %#lx rdx %#lx rbx %#lx\n"
|
|
"rcx %#lx rsi %#lx rdi %#lx\n"
|
|
"r8 %#lx r9 %#lx r10 %#lx\n"
|
|
"r11 %#lx r12 %#lx r13 %#lx\n"
|
|
"r14 %#lx r15 %#lx rflags %#lx\n"
|
|
"cs %#lx ss %#lx ds %#hx es %#hx fs %#hx gs %#hx\n"
|
|
"fsbase %#lx gsbase %#lx kgsbase %#lx\n",
|
|
frame->tf_rip, frame->tf_rsp, frame->tf_rbp,
|
|
frame->tf_rax, frame->tf_rdx, frame->tf_rbx,
|
|
frame->tf_rcx, frame->tf_rdi, frame->tf_rsi,
|
|
frame->tf_r8, frame->tf_r9, frame->tf_r10,
|
|
frame->tf_r11, frame->tf_r12, frame->tf_r13,
|
|
frame->tf_r14, frame->tf_r15, frame->tf_rflags,
|
|
frame->tf_cs, frame->tf_ss, frame->tf_ds, frame->tf_es,
|
|
frame->tf_fs, frame->tf_gs,
|
|
rdmsr(MSR_FSBASE), rdmsr(MSR_GSBASE), rdmsr(MSR_KGSBASE));
|
|
#ifdef SMP
|
|
/* two separate prints in case of a trap on an unmapped page */
|
|
printf("cpuid = %d; ", PCPU_GET(cpuid));
|
|
printf("apic id = %02x\n", PCPU_GET(apic_id));
|
|
#endif
|
|
panic("double fault");
|
|
}
|
|
|
|
static int __noinline
|
|
cpu_fetch_syscall_args_fallback(struct thread *td, struct syscall_args *sa)
|
|
{
|
|
struct proc *p;
|
|
struct trapframe *frame;
|
|
register_t *argp;
|
|
caddr_t params;
|
|
int reg, regcnt, error;
|
|
|
|
p = td->td_proc;
|
|
frame = td->td_frame;
|
|
reg = 0;
|
|
regcnt = NARGREGS;
|
|
|
|
if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
|
|
sa->code = frame->tf_rdi;
|
|
reg++;
|
|
regcnt--;
|
|
}
|
|
|
|
if (sa->code >= p->p_sysent->sv_size)
|
|
sa->callp = &p->p_sysent->sv_table[0];
|
|
else
|
|
sa->callp = &p->p_sysent->sv_table[sa->code];
|
|
|
|
KASSERT(sa->callp->sy_narg <= nitems(sa->args),
|
|
("Too many syscall arguments!"));
|
|
argp = &frame->tf_rdi;
|
|
argp += reg;
|
|
memcpy(sa->args, argp, sizeof(sa->args[0]) * NARGREGS);
|
|
if (sa->callp->sy_narg > regcnt) {
|
|
params = (caddr_t)frame->tf_rsp + sizeof(register_t);
|
|
error = copyin(params, &sa->args[regcnt],
|
|
(sa->callp->sy_narg - regcnt) * sizeof(sa->args[0]));
|
|
if (__predict_false(error != 0))
|
|
return (error);
|
|
}
|
|
|
|
td->td_retval[0] = 0;
|
|
td->td_retval[1] = frame->tf_rdx;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
cpu_fetch_syscall_args(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct trapframe *frame;
|
|
struct syscall_args *sa;
|
|
|
|
p = td->td_proc;
|
|
frame = td->td_frame;
|
|
sa = &td->td_sa;
|
|
|
|
sa->code = frame->tf_rax;
|
|
|
|
if (__predict_false(sa->code == SYS_syscall ||
|
|
sa->code == SYS___syscall ||
|
|
sa->code >= p->p_sysent->sv_size))
|
|
return (cpu_fetch_syscall_args_fallback(td, sa));
|
|
|
|
sa->callp = &p->p_sysent->sv_table[sa->code];
|
|
KASSERT(sa->callp->sy_narg <= nitems(sa->args),
|
|
("Too many syscall arguments!"));
|
|
|
|
if (__predict_false(sa->callp->sy_narg > NARGREGS))
|
|
return (cpu_fetch_syscall_args_fallback(td, sa));
|
|
|
|
memcpy(sa->args, &frame->tf_rdi, sizeof(sa->args[0]) * NARGREGS);
|
|
|
|
td->td_retval[0] = 0;
|
|
td->td_retval[1] = frame->tf_rdx;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#include "../../kern/subr_syscall.c"
|
|
|
|
static void (*syscall_ret_l1d_flush)(void);
|
|
int syscall_ret_l1d_flush_mode;
|
|
|
|
static void
|
|
flush_l1d_hw(void)
|
|
{
|
|
|
|
wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
|
|
}
|
|
|
|
static void __noinline
|
|
amd64_syscall_ret_flush_l1d_check(int error)
|
|
{
|
|
void (*p)(void);
|
|
|
|
if (error != EEXIST && error != EAGAIN && error != EXDEV &&
|
|
error != ENOENT && error != ENOTCONN && error != EINPROGRESS) {
|
|
p = atomic_load_ptr(&syscall_ret_l1d_flush);
|
|
if (p != NULL)
|
|
p();
|
|
}
|
|
}
|
|
|
|
static void __inline
|
|
amd64_syscall_ret_flush_l1d_check_inline(int error)
|
|
{
|
|
|
|
if (__predict_false(error != 0))
|
|
amd64_syscall_ret_flush_l1d_check(error);
|
|
}
|
|
|
|
void
|
|
amd64_syscall_ret_flush_l1d(int error)
|
|
{
|
|
|
|
amd64_syscall_ret_flush_l1d_check_inline(error);
|
|
}
|
|
|
|
void
|
|
amd64_syscall_ret_flush_l1d_recalc(void)
|
|
{
|
|
bool l1d_hw;
|
|
|
|
l1d_hw = (cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) != 0;
|
|
again:
|
|
switch (syscall_ret_l1d_flush_mode) {
|
|
case 0:
|
|
syscall_ret_l1d_flush = NULL;
|
|
break;
|
|
case 1:
|
|
syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw :
|
|
flush_l1d_sw_abi;
|
|
break;
|
|
case 2:
|
|
syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw : NULL;
|
|
break;
|
|
case 3:
|
|
syscall_ret_l1d_flush = flush_l1d_sw_abi;
|
|
break;
|
|
default:
|
|
syscall_ret_l1d_flush_mode = 1;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static int
|
|
machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, val;
|
|
|
|
val = syscall_ret_l1d_flush_mode;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
syscall_ret_l1d_flush_mode = val;
|
|
amd64_syscall_ret_flush_l1d_recalc();
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_machdep, OID_AUTO, syscall_ret_flush_l1d, CTLTYPE_INT |
|
|
CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
|
|
machdep_syscall_ret_flush_l1d, "I",
|
|
"Flush L1D on syscall return with error (0 - off, 1 - on, "
|
|
"2 - use hw only, 3 - use sw only");
|
|
|
|
/*
|
|
* System call handler for native binaries. The trap frame is already
|
|
* set up by the assembler trampoline and a pointer to it is saved in
|
|
* td_frame.
|
|
*/
|
|
void
|
|
amd64_syscall(struct thread *td, int traced)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (!TRAPF_USERMODE(td->td_frame)) {
|
|
panic("syscall");
|
|
/* NOT REACHED */
|
|
}
|
|
#endif
|
|
syscallenter(td);
|
|
|
|
/*
|
|
* Traced syscall.
|
|
*/
|
|
if (__predict_false(traced)) {
|
|
td->td_frame->tf_rflags &= ~PSL_T;
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGTRAP;
|
|
ksi.ksi_code = TRAP_TRACE;
|
|
ksi.ksi_addr = (void *)td->td_frame->tf_rip;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
|
|
KASSERT(PCB_USER_FPU(td->td_pcb),
|
|
("System call %s returning with kernel FPU ctx leaked",
|
|
syscallname(td->td_proc, td->td_sa.code)));
|
|
KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
|
|
("System call %s returning with mangled pcb_save",
|
|
syscallname(td->td_proc, td->td_sa.code)));
|
|
KASSERT(pmap_not_in_di(),
|
|
("System call %s returning with leaked invl_gen %lu",
|
|
syscallname(td->td_proc, td->td_sa.code),
|
|
td->td_md.md_invl_gen.gen));
|
|
|
|
syscallret(td);
|
|
|
|
/*
|
|
* If the user-supplied value of %rip is not a canonical
|
|
* address, then some CPUs will trigger a ring 0 #GP during
|
|
* the sysret instruction. However, the fault handler would
|
|
* execute in ring 0 with the user's %gs and %rsp which would
|
|
* not be safe. Instead, use the full return path which
|
|
* catches the problem safely.
|
|
*/
|
|
if (__predict_false(td->td_frame->tf_rip >= (la57 ?
|
|
VM_MAXUSER_ADDRESS_LA57 : VM_MAXUSER_ADDRESS_LA48)))
|
|
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
|
|
|
|
amd64_syscall_ret_flush_l1d_check_inline(td->td_errno);
|
|
}
|