Edward Tomasz Napierala 1e2521ffae Get rid of sa->narg. It serves no purpose; use sa->callp->sy_narg instead.
Reviewed by:	kib
Sponsored by:	DARPA
Differential Revision:	https://reviews.freebsd.org/D26458
2020-09-27 18:47:06 +00:00

1197 lines
32 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (C) 1994, David Greenman
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the University of Utah, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* AMD64 Trap and System call handling
*/
#include "opt_clock.h"
#include "opt_compat.h"
#include "opt_cpu.h"
#include "opt_hwpmc_hooks.h"
#include "opt_isa.h"
#include "opt_kdb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
PMC_SOFT_DEFINE( , , page_fault, all);
PMC_SOFT_DEFINE( , , page_fault, read);
PMC_SOFT_DEFINE( , , page_fault, write);
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_extern.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <machine/stack.h>
#include <machine/trap.h>
#include <machine/tss.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
#endif
extern inthand_t IDTVEC(bpt), IDTVEC(bpt_pti), IDTVEC(dbg),
IDTVEC(fast_syscall), IDTVEC(fast_syscall_pti), IDTVEC(fast_syscall32),
IDTVEC(int0x80_syscall_pti), IDTVEC(int0x80_syscall);
void __noinline trap(struct trapframe *frame);
void trap_check(struct trapframe *frame);
void dblfault_handler(struct trapframe *frame);
static int trap_pfault(struct trapframe *, bool, int *, int *);
static void trap_fatal(struct trapframe *, vm_offset_t);
#ifdef KDTRACE_HOOKS
static bool trap_user_dtrace(struct trapframe *,
int (**hook)(struct trapframe *));
#endif
static const char UNKNOWN[] = "unknown";
static const char *const trap_msg[] = {
[0] = UNKNOWN, /* unused */
[T_PRIVINFLT] = "privileged instruction fault",
[2] = UNKNOWN, /* unused */
[T_BPTFLT] = "breakpoint instruction fault",
[4] = UNKNOWN, /* unused */
[5] = UNKNOWN, /* unused */
[T_ARITHTRAP] = "arithmetic trap",
[7] = UNKNOWN, /* unused */
[8] = UNKNOWN, /* unused */
[T_PROTFLT] = "general protection fault",
[T_TRCTRAP] = "debug exception",
[11] = UNKNOWN, /* unused */
[T_PAGEFLT] = "page fault",
[13] = UNKNOWN, /* unused */
[T_ALIGNFLT] = "alignment fault",
[15] = UNKNOWN, /* unused */
[16] = UNKNOWN, /* unused */
[17] = UNKNOWN, /* unused */
[T_DIVIDE] = "integer divide fault",
[T_NMI] = "non-maskable interrupt trap",
[T_OFLOW] = "overflow trap",
[T_BOUND] = "FPU bounds check fault",
[T_DNA] = "FPU device not available",
[T_DOUBLEFLT] = "double fault",
[T_FPOPFLT] = "FPU operand fetch fault",
[T_TSSFLT] = "invalid TSS fault",
[T_SEGNPFLT] = "segment not present fault",
[T_STKFLT] = "stack fault",
[T_MCHK] = "machine check trap",
[T_XMMFLT] = "SIMD floating-point exception",
[T_RESERVED] = "reserved (unknown) fault",
[31] = UNKNOWN, /* reserved */
[T_DTRACE_RET] = "DTrace pid return trap",
};
static int uprintf_signal;
SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RWTUN,
&uprintf_signal, 0,
"Print debugging information on trap signal to ctty");
/*
* Control L1D flush on return from NMI.
*
* Tunable can be set to the following values:
* 0 - only enable flush on return from NMI if required by vmm.ko (default)
* >1 - always flush on return from NMI.
*
* Post-boot, the sysctl indicates if flushing is currently enabled.
*/
int nmi_flush_l1d_sw;
SYSCTL_INT(_machdep, OID_AUTO, nmi_flush_l1d_sw, CTLFLAG_RWTUN,
&nmi_flush_l1d_sw, 0,
"Flush L1 Data Cache on NMI exit, software bhyve L1TF mitigation assist");
/*
* Exception, fault, and trap interface to the FreeBSD kernel.
* This common code is called from assembly language IDT gate entry
* routines that prepare a suitable stack frame, and restore this
* frame after the exception has been processed.
*/
void
trap(struct trapframe *frame)
{
ksiginfo_t ksi;
struct thread *td;
struct proc *p;
register_t addr, dr6;
int pf, signo, ucode;
u_int type;
td = curthread;
p = td->td_proc;
dr6 = 0;
VM_CNT_INC(v_trap);
type = frame->tf_trapno;
#ifdef SMP
/* Handler for NMI IPIs used for stopping CPUs. */
if (type == T_NMI && ipi_nmi_handler() == 0)
return;
#endif
#ifdef KDB
if (kdb_active) {
kdb_reenter();
return;
}
#endif
if (type == T_RESERVED) {
trap_fatal(frame, 0);
return;
}
if (type == T_NMI) {
#ifdef HWPMC_HOOKS
/*
* CPU PMCs interrupt using an NMI. If the PMC module is
* active, pass the 'rip' value to the PMC module's interrupt
* handler. A non-zero return value from the handler means that
* the NMI was consumed by it and we can return immediately.
*/
if (pmc_intr != NULL &&
(*pmc_intr)(frame) != 0)
return;
#endif
}
if ((frame->tf_rflags & PSL_I) == 0) {
/*
* Buggy application or kernel code has disabled
* interrupts and then trapped. Enabling interrupts
* now is wrong, but it is better than running with
* interrupts disabled until they are accidentally
* enabled later.
*/
if (TRAPF_USERMODE(frame))
uprintf(
"pid %ld (%s): trap %d with interrupts disabled\n",
(long)curproc->p_pid, curthread->td_name, type);
else if (type != T_NMI && type != T_BPTFLT &&
type != T_TRCTRAP) {
/*
* XXX not quite right, since this may be for a
* multiple fault in user mode.
*/
printf("kernel trap %d with interrupts disabled\n",
type);
/*
* We shouldn't enable interrupts while holding a
* spin lock.
*/
if (td->td_md.md_spinlock_count == 0)
enable_intr();
}
}
if (TRAPF_USERMODE(frame)) {
/* user trap */
td->td_pticks = 0;
td->td_frame = frame;
addr = frame->tf_rip;
if (td->td_cowgen != p->p_cowgen)
thread_cow_update(td);
switch (type) {
case T_PRIVINFLT: /* privileged instruction fault */
signo = SIGILL;
ucode = ILL_PRVOPC;
break;
case T_BPTFLT: /* bpt instruction fault */
#ifdef KDTRACE_HOOKS
if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
return;
#else
enable_intr();
#endif
signo = SIGTRAP;
ucode = TRAP_BRKPT;
break;
case T_TRCTRAP: /* debug exception */
enable_intr();
signo = SIGTRAP;
ucode = TRAP_TRACE;
dr6 = rdr6();
if ((dr6 & DBREG_DR6_BS) != 0) {
PROC_LOCK(td->td_proc);
if ((td->td_dbgflags & TDB_STEP) != 0) {
td->td_frame->tf_rflags &= ~PSL_T;
td->td_dbgflags &= ~TDB_STEP;
}
PROC_UNLOCK(td->td_proc);
}
break;
case T_ARITHTRAP: /* arithmetic trap */
ucode = fputrap_x87();
if (ucode == -1)
return;
signo = SIGFPE;
break;
case T_PROTFLT: /* general protection fault */
signo = SIGBUS;
ucode = BUS_OBJERR;
break;
case T_STKFLT: /* stack fault */
case T_SEGNPFLT: /* segment not present fault */
signo = SIGBUS;
ucode = BUS_ADRERR;
break;
case T_TSSFLT: /* invalid TSS fault */
signo = SIGBUS;
ucode = BUS_OBJERR;
break;
case T_ALIGNFLT:
signo = SIGBUS;
ucode = BUS_ADRALN;
break;
case T_DOUBLEFLT: /* double fault */
default:
signo = SIGBUS;
ucode = BUS_OBJERR;
break;
case T_PAGEFLT: /* page fault */
/*
* Can emulator handle this trap?
*/
if (*p->p_sysent->sv_trap != NULL &&
(*p->p_sysent->sv_trap)(td) == 0)
return;
pf = trap_pfault(frame, true, &signo, &ucode);
if (pf == -1)
return;
if (pf == 0)
goto userret;
addr = frame->tf_addr;
break;
case T_DIVIDE: /* integer divide fault */
ucode = FPE_INTDIV;
signo = SIGFPE;
break;
case T_NMI:
nmi_handle_intr(type, frame);
return;
case T_OFLOW: /* integer overflow fault */
ucode = FPE_INTOVF;
signo = SIGFPE;
break;
case T_BOUND: /* bounds check fault */
ucode = FPE_FLTSUB;
signo = SIGFPE;
break;
case T_DNA:
/* transparent fault (due to context switch "late") */
KASSERT(PCB_USER_FPU(td->td_pcb),
("kernel FPU ctx has leaked"));
fpudna();
return;
case T_FPOPFLT: /* FPU operand fetch fault */
ucode = ILL_COPROC;
signo = SIGILL;
break;
case T_XMMFLT: /* SIMD floating-point exception */
ucode = fputrap_sse();
if (ucode == -1)
return;
signo = SIGFPE;
break;
#ifdef KDTRACE_HOOKS
case T_DTRACE_RET:
(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
return;
#endif
}
} else {
/* kernel trap */
KASSERT(cold || td->td_ucred != NULL,
("kernel trap doesn't have ucred"));
switch (type) {
case T_PAGEFLT: /* page fault */
(void)trap_pfault(frame, false, NULL, NULL);
return;
case T_DNA:
if (PCB_USER_FPU(td->td_pcb))
panic("Unregistered use of FPU in kernel");
fpudna();
return;
case T_ARITHTRAP: /* arithmetic trap */
case T_XMMFLT: /* SIMD floating-point exception */
case T_FPOPFLT: /* FPU operand fetch fault */
/*
* For now, supporting kernel handler
* registration for FPU traps is overkill.
*/
trap_fatal(frame, 0);
return;
case T_STKFLT: /* stack fault */
case T_PROTFLT: /* general protection fault */
case T_SEGNPFLT: /* segment not present fault */
if (td->td_intr_nesting_level != 0)
break;
/*
* Invalid segment selectors and out of bounds
* %rip's and %rsp's can be set up in user mode.
* This causes a fault in kernel mode when the
* kernel tries to return to user mode. We want
* to get this fault so that we can fix the
* problem here and not have to check all the
* selectors and pointers when the user changes
* them.
*
* In case of PTI, the IRETQ faulted while the
* kernel used the pti stack, and exception
* frame records %rsp value pointing to that
* stack. If we return normally to
* doreti_iret_fault, the trapframe is
* reconstructed on pti stack, and calltrap()
* called on it as well. Due to the very
* limited pti stack size, kernel does not
* survive for too long. Switch to the normal
* thread stack for the trap handling.
*
* Magic '5' is the number of qwords occupied by
* the hardware trap frame.
*/
if (frame->tf_rip == (long)doreti_iret) {
frame->tf_rip = (long)doreti_iret_fault;
if ((PCPU_GET(curpmap)->pm_ucr3 !=
PMAP_NO_CR3) &&
(frame->tf_rsp == (uintptr_t)PCPU_GET(
pti_rsp0) - 5 * sizeof(register_t))) {
frame->tf_rsp = PCPU_GET(rsp0) - 5 *
sizeof(register_t);
}
return;
}
if (frame->tf_rip == (long)ld_ds) {
frame->tf_rip = (long)ds_load_fault;
return;
}
if (frame->tf_rip == (long)ld_es) {
frame->tf_rip = (long)es_load_fault;
return;
}
if (frame->tf_rip == (long)ld_fs) {
frame->tf_rip = (long)fs_load_fault;
return;
}
if (frame->tf_rip == (long)ld_gs) {
frame->tf_rip = (long)gs_load_fault;
return;
}
if (frame->tf_rip == (long)ld_gsbase) {
frame->tf_rip = (long)gsbase_load_fault;
return;
}
if (frame->tf_rip == (long)ld_fsbase) {
frame->tf_rip = (long)fsbase_load_fault;
return;
}
if (curpcb->pcb_onfault != NULL) {
frame->tf_rip = (long)curpcb->pcb_onfault;
return;
}
break;
case T_TSSFLT:
/*
* PSL_NT can be set in user mode and isn't cleared
* automatically when the kernel is entered. This
* causes a TSS fault when the kernel attempts to
* `iret' because the TSS link is uninitialized. We
* want to get this fault so that we can fix the
* problem here and not every time the kernel is
* entered.
*/
if (frame->tf_rflags & PSL_NT) {
frame->tf_rflags &= ~PSL_NT;
return;
}
break;
case T_TRCTRAP: /* debug exception */
/* Clear any pending debug events. */
dr6 = rdr6();
load_dr6(0);
/*
* Ignore debug register exceptions due to
* accesses in the user's address space, which
* can happen under several conditions such as
* if a user sets a watchpoint on a buffer and
* then passes that buffer to a system call.
* We still want to get TRCTRAPS for addresses
* in kernel space because that is useful when
* debugging the kernel.
*/
if (user_dbreg_trap(dr6))
return;
/*
* Malicious user code can configure a debug
* register watchpoint to trap on data access
* to the top of stack and then execute 'pop
* %ss; int 3'. Due to exception deferral for
* 'pop %ss', the CPU will not interrupt 'int
* 3' to raise the DB# exception for the debug
* register but will postpone the DB# until
* execution of the first instruction of the
* BP# handler (in kernel mode). Normally the
* previous check would ignore DB# exceptions
* for watchpoints on user addresses raised in
* kernel mode. However, some CPU errata
* include cases where DB# exceptions do not
* properly set bits in %dr6, e.g. Haswell
* HSD23 and Skylake-X SKZ24.
*
* A deferred DB# can also be raised on the
* first instructions of system call entry
* points or single-step traps via similar use
* of 'pop %ss' or 'mov xxx, %ss'.
*/
if (pti) {
if (frame->tf_rip ==
(uintptr_t)IDTVEC(fast_syscall_pti) ||
#ifdef COMPAT_FREEBSD32
frame->tf_rip ==
(uintptr_t)IDTVEC(int0x80_syscall_pti) ||
#endif
frame->tf_rip == (uintptr_t)IDTVEC(bpt_pti))
return;
} else {
if (frame->tf_rip ==
(uintptr_t)IDTVEC(fast_syscall) ||
#ifdef COMPAT_FREEBSD32
frame->tf_rip ==
(uintptr_t)IDTVEC(int0x80_syscall) ||
#endif
frame->tf_rip == (uintptr_t)IDTVEC(bpt))
return;
}
if (frame->tf_rip == (uintptr_t)IDTVEC(dbg) ||
/* Needed for AMD. */
frame->tf_rip == (uintptr_t)IDTVEC(fast_syscall32))
return;
/*
* FALLTHROUGH (TRCTRAP kernel mode, kernel address)
*/
case T_BPTFLT:
/*
* If KDB is enabled, let it handle the debugger trap.
* Otherwise, debugger traps "can't happen".
*/
#ifdef KDB
if (kdb_trap(type, dr6, frame))
return;
#endif
break;
case T_NMI:
nmi_handle_intr(type, frame);
return;
}
trap_fatal(frame, 0);
return;
}
/* Translate fault for emulators (e.g. Linux) */
if (*p->p_sysent->sv_transtrap != NULL)
signo = (*p->p_sysent->sv_transtrap)(signo, type);
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = signo;
ksi.ksi_code = ucode;
ksi.ksi_trapno = type;
ksi.ksi_addr = (void *)addr;
if (uprintf_signal) {
uprintf("pid %d comm %s: signal %d err %lx code %d type %d "
"addr 0x%lx rsp 0x%lx rip 0x%lx "
"<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
addr, frame->tf_rsp, frame->tf_rip,
fubyte((void *)(frame->tf_rip + 0)),
fubyte((void *)(frame->tf_rip + 1)),
fubyte((void *)(frame->tf_rip + 2)),
fubyte((void *)(frame->tf_rip + 3)),
fubyte((void *)(frame->tf_rip + 4)),
fubyte((void *)(frame->tf_rip + 5)),
fubyte((void *)(frame->tf_rip + 6)),
fubyte((void *)(frame->tf_rip + 7)));
}
KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
trapsignal(td, &ksi);
userret:
userret(td, frame);
KASSERT(PCB_USER_FPU(td->td_pcb),
("Return from trap with kernel FPU ctx leaked"));
}
/*
* Ensure that we ignore any DTrace-induced faults. This function cannot
* be instrumented, so it cannot generate such faults itself.
*/
void
trap_check(struct trapframe *frame)
{
#ifdef KDTRACE_HOOKS
if (dtrace_trap_func != NULL &&
(*dtrace_trap_func)(frame, frame->tf_trapno) != 0)
return;
#endif
trap(frame);
}
static bool
trap_is_smap(struct trapframe *frame)
{
/*
* A page fault on a userspace address is classified as
* SMAP-induced if:
* - SMAP is supported;
* - kernel mode accessed present data page;
* - rflags.AC was cleared.
* Kernel must never access user space with rflags.AC cleared
* if SMAP is enabled.
*/
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
(frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) ==
PGEX_P && (frame->tf_rflags & PSL_AC) == 0);
}
static bool
trap_is_pti(struct trapframe *frame)
{
return (PCPU_GET(curpmap)->pm_ucr3 != PMAP_NO_CR3 &&
pg_nx != 0 && (frame->tf_err & (PGEX_P | PGEX_W |
PGEX_U | PGEX_I)) == (PGEX_P | PGEX_U | PGEX_I) &&
(curpcb->pcb_saved_ucr3 & ~CR3_PCID_MASK) ==
(PCPU_GET(curpmap)->pm_cr3 & ~CR3_PCID_MASK));
}
/*
* Handle all details of a page fault.
* Returns:
* -1 if this fault was fatal, typically from kernel mode
* (cannot happen, but we need to return something).
* 0 if this fault was handled by updating either the user or kernel
* page table, execution can continue.
* 1 if this fault was from usermode and it was not handled, a synchronous
* signal should be delivered to the thread. *signo returns the signal
* number, *ucode gives si_code.
*/
static int
trap_pfault(struct trapframe *frame, bool usermode, int *signo, int *ucode)
{
struct thread *td;
struct proc *p;
vm_map_t map;
vm_offset_t eva;
int rv;
vm_prot_t ftype;
MPASS(!usermode || (signo != NULL && ucode != NULL));
td = curthread;
p = td->td_proc;
eva = frame->tf_addr;
if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
/*
* Due to both processor errata and lazy TLB invalidation when
* access restrictions are removed from virtual pages, memory
* accesses that are allowed by the physical mapping layer may
* nonetheless cause one spurious page fault per virtual page.
* When the thread is executing a "no faulting" section that
* is bracketed by vm_fault_{disable,enable}_pagefaults(),
* every page fault is treated as a spurious page fault,
* unless it accesses the same virtual address as the most
* recent page fault within the same "no faulting" section.
*/
if (td->td_md.md_spurflt_addr != eva ||
(td->td_pflags & TDP_RESETSPUR) != 0) {
/*
* Do nothing to the TLB. A stale TLB entry is
* flushed automatically by a page fault.
*/
td->td_md.md_spurflt_addr = eva;
td->td_pflags &= ~TDP_RESETSPUR;
return (0);
}
} else {
/*
* If we get a page fault while in a critical section, then
* it is most likely a fatal kernel page fault. The kernel
* is already going to panic trying to get a sleep lock to
* do the VM lookup, so just consider it a fatal trap so the
* kernel can print out a useful trap message and even get
* to the debugger.
*
* If we get a page fault while holding a non-sleepable
* lock, then it is most likely a fatal kernel page fault.
* If WITNESS is enabled, then it's going to whine about
* bogus LORs with various VM locks, so just skip to the
* fatal trap handling directly.
*/
if (td->td_critnest != 0 ||
WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
"Kernel page fault") != 0) {
trap_fatal(frame, eva);
return (-1);
}
}
if (eva >= VM_MIN_KERNEL_ADDRESS) {
/*
* Don't allow user-mode faults in kernel address space.
*/
if (usermode) {
*signo = SIGSEGV;
*ucode = SEGV_MAPERR;
return (1);
}
map = kernel_map;
} else {
map = &p->p_vmspace->vm_map;
/*
* When accessing a usermode address, kernel must be
* ready to accept the page fault, and provide a
* handling routine. Since accessing the address
* without the handler is a bug, do not try to handle
* it normally, and panic immediately.
*
* If SMAP is enabled, filter SMAP faults also,
* because illegal access might occur to the mapped
* user address, causing infinite loop.
*/
if (!usermode && (td->td_intr_nesting_level != 0 ||
trap_is_smap(frame) || curpcb->pcb_onfault == NULL)) {
trap_fatal(frame, eva);
return (-1);
}
}
/*
* If the trap was caused by errant bits in the PTE then panic.
*/
if (frame->tf_err & PGEX_RSV) {
trap_fatal(frame, eva);
return (-1);
}
/*
* User-mode protection key violation (PKU). May happen
* either from usermode or from kernel if copyin accessed
* key-protected mapping.
*/
if ((frame->tf_err & PGEX_PK) != 0) {
if (eva > VM_MAXUSER_ADDRESS) {
trap_fatal(frame, eva);
return (-1);
}
if (usermode) {
*signo = SIGSEGV;
*ucode = SEGV_PKUERR;
return (1);
}
goto after_vmfault;
}
/*
* If nx protection of the usermode portion of kernel page
* tables caused trap, panic.
*/
if (usermode && trap_is_pti(frame))
panic("PTI: pid %d comm %s tf_err %#lx", p->p_pid,
p->p_comm, frame->tf_err);
/*
* PGEX_I is defined only if the execute disable bit capability is
* supported and enabled.
*/
if (frame->tf_err & PGEX_W)
ftype = VM_PROT_WRITE;
else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
ftype = VM_PROT_EXECUTE;
else
ftype = VM_PROT_READ;
/* Fault in the page. */
rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
if (rv == KERN_SUCCESS) {
#ifdef HWPMC_HOOKS
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
PMC_SOFT_CALL_TF( , , page_fault, all, frame);
if (ftype == VM_PROT_READ)
PMC_SOFT_CALL_TF( , , page_fault, read,
frame);
else
PMC_SOFT_CALL_TF( , , page_fault, write,
frame);
}
#endif
return (0);
}
if (usermode)
return (1);
after_vmfault:
if (td->td_intr_nesting_level == 0 &&
curpcb->pcb_onfault != NULL) {
frame->tf_rip = (long)curpcb->pcb_onfault;
return (0);
}
trap_fatal(frame, eva);
return (-1);
}
static void
trap_fatal(frame, eva)
struct trapframe *frame;
vm_offset_t eva;
{
int code, ss;
u_int type;
struct soft_segment_descriptor softseg;
struct user_segment_descriptor *gdt;
#ifdef KDB
bool handled;
#endif
code = frame->tf_err;
type = frame->tf_trapno;
gdt = *PCPU_PTR(gdt);
sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
printf("\n\nFatal trap %d: %s while in %s mode\n", type,
type < nitems(trap_msg) ? trap_msg[type] : UNKNOWN,
TRAPF_USERMODE(frame) ? "user" : "kernel");
#ifdef SMP
/* two separate prints in case of a trap on an unmapped page */
printf("cpuid = %d; ", PCPU_GET(cpuid));
printf("apic id = %02x\n", PCPU_GET(apic_id));
#endif
if (type == T_PAGEFLT) {
printf("fault virtual address = 0x%lx\n", eva);
printf("fault code = %s %s %s%s%s, %s\n",
code & PGEX_U ? "user" : "supervisor",
code & PGEX_W ? "write" : "read",
code & PGEX_I ? "instruction" : "data",
code & PGEX_PK ? " prot key" : "",
code & PGEX_SGX ? " SGX" : "",
code & PGEX_RSV ? "reserved bits in PTE" :
code & PGEX_P ? "protection violation" : "page not present");
}
printf("instruction pointer = 0x%lx:0x%lx\n",
frame->tf_cs & 0xffff, frame->tf_rip);
ss = frame->tf_ss & 0xffff;
printf("stack pointer = 0x%x:0x%lx\n", ss, frame->tf_rsp);
printf("frame pointer = 0x%x:0x%lx\n", ss, frame->tf_rbp);
printf("code segment = base 0x%lx, limit 0x%lx, type 0x%x\n",
softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
printf(" = DPL %d, pres %d, long %d, def32 %d, gran %d\n",
softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
softseg.ssd_gran);
printf("processor eflags = ");
if (frame->tf_rflags & PSL_T)
printf("trace trap, ");
if (frame->tf_rflags & PSL_I)
printf("interrupt enabled, ");
if (frame->tf_rflags & PSL_NT)
printf("nested task, ");
if (frame->tf_rflags & PSL_RF)
printf("resume, ");
printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
printf("current process = %d (%s)\n",
curproc->p_pid, curthread->td_name);
#ifdef KDB
if (debugger_on_trap) {
kdb_why = KDB_WHY_TRAP;
handled = kdb_trap(type, 0, frame);
kdb_why = KDB_WHY_UNSET;
if (handled)
return;
}
#endif
printf("trap number = %d\n", type);
panic("%s", type < nitems(trap_msg) ? trap_msg[type] :
"unknown/reserved trap");
}
#ifdef KDTRACE_HOOKS
/*
* Invoke a userspace DTrace hook. The hook pointer is cleared when no
* userspace probes are enabled, so we must synchronize with DTrace to ensure
* that a trapping thread is able to call the hook before it is cleared.
*/
static bool
trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
{
int (*hook)(struct trapframe *);
hook = atomic_load_ptr(hookp);
enable_intr();
if (hook != NULL)
return ((hook)(frame) == 0);
return (false);
}
#endif
/*
* Double fault handler. Called when a fault occurs while writing
* a frame for a trap/exception onto the stack. This usually occurs
* when the stack overflows (such is the case with infinite recursion,
* for example).
*/
void
dblfault_handler(struct trapframe *frame)
{
#ifdef KDTRACE_HOOKS
if (dtrace_doubletrap_func != NULL)
(*dtrace_doubletrap_func)();
#endif
printf("\nFatal double fault\n"
"rip %#lx rsp %#lx rbp %#lx\n"
"rax %#lx rdx %#lx rbx %#lx\n"
"rcx %#lx rsi %#lx rdi %#lx\n"
"r8 %#lx r9 %#lx r10 %#lx\n"
"r11 %#lx r12 %#lx r13 %#lx\n"
"r14 %#lx r15 %#lx rflags %#lx\n"
"cs %#lx ss %#lx ds %#hx es %#hx fs %#hx gs %#hx\n"
"fsbase %#lx gsbase %#lx kgsbase %#lx\n",
frame->tf_rip, frame->tf_rsp, frame->tf_rbp,
frame->tf_rax, frame->tf_rdx, frame->tf_rbx,
frame->tf_rcx, frame->tf_rdi, frame->tf_rsi,
frame->tf_r8, frame->tf_r9, frame->tf_r10,
frame->tf_r11, frame->tf_r12, frame->tf_r13,
frame->tf_r14, frame->tf_r15, frame->tf_rflags,
frame->tf_cs, frame->tf_ss, frame->tf_ds, frame->tf_es,
frame->tf_fs, frame->tf_gs,
rdmsr(MSR_FSBASE), rdmsr(MSR_GSBASE), rdmsr(MSR_KGSBASE));
#ifdef SMP
/* two separate prints in case of a trap on an unmapped page */
printf("cpuid = %d; ", PCPU_GET(cpuid));
printf("apic id = %02x\n", PCPU_GET(apic_id));
#endif
panic("double fault");
}
static int __noinline
cpu_fetch_syscall_args_fallback(struct thread *td, struct syscall_args *sa)
{
struct proc *p;
struct trapframe *frame;
register_t *argp;
caddr_t params;
int reg, regcnt, error;
p = td->td_proc;
frame = td->td_frame;
reg = 0;
regcnt = NARGREGS;
if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
sa->code = frame->tf_rdi;
reg++;
regcnt--;
}
if (sa->code >= p->p_sysent->sv_size)
sa->callp = &p->p_sysent->sv_table[0];
else
sa->callp = &p->p_sysent->sv_table[sa->code];
KASSERT(sa->callp->sy_narg <= nitems(sa->args),
("Too many syscall arguments!"));
argp = &frame->tf_rdi;
argp += reg;
memcpy(sa->args, argp, sizeof(sa->args[0]) * NARGREGS);
if (sa->callp->sy_narg > regcnt) {
params = (caddr_t)frame->tf_rsp + sizeof(register_t);
error = copyin(params, &sa->args[regcnt],
(sa->callp->sy_narg - regcnt) * sizeof(sa->args[0]));
if (__predict_false(error != 0))
return (error);
}
td->td_retval[0] = 0;
td->td_retval[1] = frame->tf_rdx;
return (0);
}
int
cpu_fetch_syscall_args(struct thread *td)
{
struct proc *p;
struct trapframe *frame;
struct syscall_args *sa;
p = td->td_proc;
frame = td->td_frame;
sa = &td->td_sa;
sa->code = frame->tf_rax;
if (__predict_false(sa->code == SYS_syscall ||
sa->code == SYS___syscall ||
sa->code >= p->p_sysent->sv_size))
return (cpu_fetch_syscall_args_fallback(td, sa));
sa->callp = &p->p_sysent->sv_table[sa->code];
KASSERT(sa->callp->sy_narg <= nitems(sa->args),
("Too many syscall arguments!"));
if (__predict_false(sa->callp->sy_narg > NARGREGS))
return (cpu_fetch_syscall_args_fallback(td, sa));
memcpy(sa->args, &frame->tf_rdi, sizeof(sa->args[0]) * NARGREGS);
td->td_retval[0] = 0;
td->td_retval[1] = frame->tf_rdx;
return (0);
}
#include "../../kern/subr_syscall.c"
static void (*syscall_ret_l1d_flush)(void);
int syscall_ret_l1d_flush_mode;
static void
flush_l1d_hw(void)
{
wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
}
static void __noinline
amd64_syscall_ret_flush_l1d_check(int error)
{
void (*p)(void);
if (error != EEXIST && error != EAGAIN && error != EXDEV &&
error != ENOENT && error != ENOTCONN && error != EINPROGRESS) {
p = atomic_load_ptr(&syscall_ret_l1d_flush);
if (p != NULL)
p();
}
}
static void __inline
amd64_syscall_ret_flush_l1d_check_inline(int error)
{
if (__predict_false(error != 0))
amd64_syscall_ret_flush_l1d_check(error);
}
void
amd64_syscall_ret_flush_l1d(int error)
{
amd64_syscall_ret_flush_l1d_check_inline(error);
}
void
amd64_syscall_ret_flush_l1d_recalc(void)
{
bool l1d_hw;
l1d_hw = (cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) != 0;
again:
switch (syscall_ret_l1d_flush_mode) {
case 0:
syscall_ret_l1d_flush = NULL;
break;
case 1:
syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw :
flush_l1d_sw_abi;
break;
case 2:
syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw : NULL;
break;
case 3:
syscall_ret_l1d_flush = flush_l1d_sw_abi;
break;
default:
syscall_ret_l1d_flush_mode = 1;
goto again;
}
}
static int
machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)
{
int error, val;
val = syscall_ret_l1d_flush_mode;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
syscall_ret_l1d_flush_mode = val;
amd64_syscall_ret_flush_l1d_recalc();
return (0);
}
SYSCTL_PROC(_machdep, OID_AUTO, syscall_ret_flush_l1d, CTLTYPE_INT |
CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
machdep_syscall_ret_flush_l1d, "I",
"Flush L1D on syscall return with error (0 - off, 1 - on, "
"2 - use hw only, 3 - use sw only");
/*
* System call handler for native binaries. The trap frame is already
* set up by the assembler trampoline and a pointer to it is saved in
* td_frame.
*/
void
amd64_syscall(struct thread *td, int traced)
{
ksiginfo_t ksi;
#ifdef DIAGNOSTIC
if (!TRAPF_USERMODE(td->td_frame)) {
panic("syscall");
/* NOT REACHED */
}
#endif
syscallenter(td);
/*
* Traced syscall.
*/
if (__predict_false(traced)) {
td->td_frame->tf_rflags &= ~PSL_T;
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGTRAP;
ksi.ksi_code = TRAP_TRACE;
ksi.ksi_addr = (void *)td->td_frame->tf_rip;
trapsignal(td, &ksi);
}
KASSERT(PCB_USER_FPU(td->td_pcb),
("System call %s returning with kernel FPU ctx leaked",
syscallname(td->td_proc, td->td_sa.code)));
KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
("System call %s returning with mangled pcb_save",
syscallname(td->td_proc, td->td_sa.code)));
KASSERT(pmap_not_in_di(),
("System call %s returning with leaked invl_gen %lu",
syscallname(td->td_proc, td->td_sa.code),
td->td_md.md_invl_gen.gen));
syscallret(td);
/*
* If the user-supplied value of %rip is not a canonical
* address, then some CPUs will trigger a ring 0 #GP during
* the sysret instruction. However, the fault handler would
* execute in ring 0 with the user's %gs and %rsp which would
* not be safe. Instead, use the full return path which
* catches the problem safely.
*/
if (__predict_false(td->td_frame->tf_rip >= (la57 ?
VM_MAXUSER_ADDRESS_LA57 : VM_MAXUSER_ADDRESS_LA48)))
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
amd64_syscall_ret_flush_l1d_check_inline(td->td_errno);
}