Poul-Henning Kamp 7ac40f5f59 Gigacommit to improve device-driver source compatibility between
branches:

Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.

This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.

Approved by:    re(scottl)
2003-03-03 12:15:54 +00:00

1053 lines
24 KiB
C

/*
* Main midi driver for FreeBSD. This file provides the main
* entry points for probe/attach and all i/o demultiplexing, including
* default routines for generic devices.
*
* (C) 1999 Seigo Tanimura
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* For each card type a template "mididev_info" structure contains
* all the relevant parameters, both for configuration and runtime.
*
* In this file we build tables of pointers to the descriptors for
* the various supported cards. The generic probe routine scans
* the table(s) looking for a matching entry, then invokes the
* board-specific probe routine. If successful, a pointer to the
* correct mididev_info is stored in mididev_last_probed, for subsequent
* use in the attach routine. The generic attach routine copies
* the template to a permanent descriptor (midi_info and
* friends), initializes all generic parameters, and calls the
* board-specific attach routine.
*
* On device calls, the generic routines do the checks on unit and
* device parameters, then call the board-specific routines if
* available, or try to perform the task using the default code.
*
* $FreeBSD$
*
*/
#include <dev/sound/midi/midi.h>
static devclass_t midi_devclass;
static d_open_t midiopen;
static d_close_t midiclose;
static d_ioctl_t midiioctl;
static d_read_t midiread;
static d_write_t midiwrite;
static d_poll_t midipoll;
/* These functions are local. */
static d_open_t midistat_open;
static d_close_t midistat_close;
static d_read_t midistat_read;
static int midi_initstatus(char *buf, int size);
static int midi_readstatus(char *buf, int *ptr, struct uio *uio);
#define CDEV_MAJOR MIDI_CDEV_MAJOR
static struct cdevsw midi_cdevsw = {
.d_open = midiopen,
.d_close = midiclose,
.d_read = midiread,
.d_write = midiwrite,
.d_ioctl = midiioctl,
.d_poll = midipoll,
.d_name = "midi",
.d_maj = CDEV_MAJOR,
};
/*
* descriptors for active devices. also used as the public softc
* of a device.
*/
static TAILQ_HEAD(,_mididev_info) midi_info;
static int nmidi, nsynth;
/* Mutex to protect midi_info, nmidi and nsynth. */
static struct mtx midiinfo_mtx;
static int midiinfo_mtx_init;
/* These make the buffer for /dev/midistat */
static int midistatbusy;
static char midistatbuf[4096];
static int midistatptr;
SYSCTL_NODE(_hw, OID_AUTO, midi, CTLFLAG_RD, 0, "Midi driver");
int midi_debug;
SYSCTL_INT(_hw_midi, OID_AUTO, debug, CTLFLAG_RW, &midi_debug, 0, "");
midi_cmdtab cmdtab_midiioctl[] = {
{SNDCTL_MIDI_PRETIME, "SNDCTL_MIDI_PRETIME"},
{SNDCTL_MIDI_MPUMODE, "SNDCTL_MIDI_MPUMODE"},
{SNDCTL_MIDI_MPUCMD, "SNDCTL_MIDI_MPUCMD"},
{SNDCTL_SYNTH_INFO, "SNDCTL_SYNTH_INFO"},
{SNDCTL_MIDI_INFO, "SNDCTL_MIDI_INFO"},
{SNDCTL_SYNTH_MEMAVL, "SNDCTL_SYNTH_MEMAVL"},
{SNDCTL_FM_LOAD_INSTR, "SNDCTL_FM_LOAD_INSTR"},
{SNDCTL_FM_4OP_ENABLE, "SNDCTL_FM_4OP_ENABLE"},
{MIOSPASSTHRU, "MIOSPASSTHRU"},
{MIOGPASSTHRU, "MIOGPASSTHRU"},
{AIONWRITE, "AIONWRITE"},
{AIOGSIZE, "AIOGSIZE"},
{AIOSSIZE, "AIOSSIZE"},
{AIOGFMT, "AIOGFMT"},
{AIOSFMT, "AIOSFMT"},
{AIOGMIX, "AIOGMIX"},
{AIOSMIX, "AIOSMIX"},
{AIOSTOP, "AIOSTOP"},
{AIOSYNC, "AIOSYNC"},
{AIOGCAP, "AIOGCAP"},
{-1, NULL},
};
/*
* This is the generic init routine.
* Must be called after device-specific init.
*/
int
midiinit(mididev_info *d, device_t dev)
{
int unit;
/*
* initialize standard parameters for the device. This can be
* overridden by device-specific configurations but better do
* here the generic things.
*/
MIDI_DEBUG(printf("midiinit: unit %d.\n", d->unit));
unit = d->unit;
d->softc = device_get_softc(dev);
d->dev = dev;
d->magic = MAGIC(d->unit); /* debugging... */
d->flags = 0;
d->fflags = 0;
d->midi_dbuf_in.unit_size = 1;
d->midi_dbuf_out.unit_size = 1;
d->midi_dbuf_passthru.unit_size = 1;
mtx_unlock(&d->flagqueue_mtx);
if (midi_devclass == NULL) {
midi_devclass = device_get_devclass(dev);
make_dev(&midi_cdevsw, MIDIMKMINOR(0, MIDI_DEV_STATUS),
UID_ROOT, GID_WHEEL, 0444, "midistat");
}
make_dev(&midi_cdevsw, MIDIMKMINOR(unit, MIDI_DEV_MIDIN),
UID_ROOT, GID_WHEEL, 0666, "midi%d", unit);
return 0 ;
}
/*
* a small utility function which, given a device number, returns
* a pointer to the associated mididev_info struct, and sets the unit
* number.
*/
mididev_info *
get_mididev_info(dev_t i_dev, int *unit)
{
int u;
if (MIDIDEV(i_dev) != MIDI_DEV_MIDIN)
return NULL;
u = MIDIUNIT(i_dev);
if (unit)
*unit = u;
return get_mididev_info_unit(u);
}
/*
* a small utility function which, given a unit number, returns
* a pointer to the associated mididev_info struct.
*/
mididev_info *
get_mididev_info_unit(int unit)
{
mididev_info *md;
/* XXX */
if (!midiinfo_mtx_init) {
midiinfo_mtx_init = 1;
mtx_init(&midiinfo_mtx, "midinf", NULL, MTX_DEF);
TAILQ_INIT(&midi_info);
}
mtx_lock(&midiinfo_mtx);
TAILQ_FOREACH(md, &midi_info, md_link) {
if (md->unit == unit)
break;
}
mtx_unlock(&midiinfo_mtx);
return md;
}
/*
* a small utility function which, given a unit number, returns
* a pointer to the associated mididev_info struct with MDT_MIDI.
*/
mididev_info *
get_mididev_midi_unit(int unit)
{
mididev_info *md;
/* XXX */
if (!midiinfo_mtx_init) {
midiinfo_mtx_init = 1;
mtx_init(&midiinfo_mtx, "midinf", NULL, MTX_DEF);
TAILQ_INIT(&midi_info);
}
mtx_lock(&midiinfo_mtx);
TAILQ_FOREACH(md, &midi_info, md_link) {
if (md->midiunit == unit)
break;
}
mtx_unlock(&midiinfo_mtx);
return md;
}
/*
* a small utility function which, given a unit number, returns
* a pointer to the associated mididev_info struct with MDT_SYNTH.
*/
mididev_info *
get_mididev_synth_unit(int unit)
{
mididev_info *md;
/* XXX */
if (!midiinfo_mtx_init) {
midiinfo_mtx_init = 1;
mtx_init(&midiinfo_mtx, "midinf", NULL, MTX_DEF);
TAILQ_INIT(&midi_info);
}
mtx_lock(&midiinfo_mtx);
TAILQ_FOREACH(md, &midi_info, md_link) {
if (md->synthunit == unit)
break;
}
mtx_unlock(&midiinfo_mtx);
return md;
}
/* Create a new midi device info structure. */
/* TODO: lock md, then exit. */
mididev_info *
create_mididev_info_unit(int type, mididev_info *mdinf, synthdev_info *syninf)
{
int unit;
mididev_info *md, *mdnew;
/* XXX */
if (!midiinfo_mtx_init) {
midiinfo_mtx_init = 1;
mtx_init(&midiinfo_mtx, "midinf", NULL, MTX_DEF);
TAILQ_INIT(&midi_info);
}
/* As malloc(9) might block, allocate mididev_info now. */
mdnew = malloc(sizeof(mididev_info), M_DEVBUF, M_WAITOK | M_ZERO);
if (mdnew == NULL)
return NULL;
bcopy(mdinf, mdnew, sizeof(mididev_info));
bcopy(syninf, &mdnew->synth, sizeof(synthdev_info));
midibuf_init(&mdnew->midi_dbuf_in);
midibuf_init(&mdnew->midi_dbuf_out);
midibuf_init(&mdnew->midi_dbuf_passthru);
mtx_init(&mdnew->flagqueue_mtx, "midflq", NULL, MTX_DEF);
mtx_init(&mdnew->synth.vc_mtx, "synsvc", NULL, MTX_DEF);
mtx_init(&mdnew->synth.status_mtx, "synsst", NULL, MTX_DEF);
mtx_lock(&midiinfo_mtx);
switch (type) {
case MDT_MIDI:
mdnew->midiunit = nmidi;
mdnew->synthunit = nmidi;
nmidi++;
break;
case MDT_SYNTH:
mdnew->midiunit = -1;
mdnew->synthunit = nsynth;
nsynth++;
break;
default:
mtx_unlock(&midiinfo_mtx);
midibuf_destroy(&mdnew->midi_dbuf_in);
midibuf_destroy(&mdnew->midi_dbuf_out);
midibuf_destroy(&mdnew->midi_dbuf_passthru);
mtx_destroy(&mdnew->flagqueue_mtx);
mtx_destroy(&mdnew->synth.vc_mtx);
mtx_destroy(&mdnew->synth.status_mtx);
free(mdnew, M_DEVBUF);
panic("unsupported device type");
return NULL;
}
mdnew->mdtype = type;
for (unit = 0 ; ; unit++) {
TAILQ_FOREACH(md, &midi_info, md_link) {
if (md->unit == unit)
break;
}
if (md == NULL)
break;
}
mdnew->unit = unit;
mtx_lock(&mdnew->flagqueue_mtx);
TAILQ_INSERT_TAIL(&midi_info, mdnew, md_link);
mtx_unlock(&midiinfo_mtx);
return mdnew;
}
/* Return the number of configured devices. */
int
mididev_info_number(void)
{
return nmidi + nsynth;
}
/* Return the number of configured midi devices. */
int
mididev_midi_number(void)
{
return nmidi;
}
/* Return the number of configured synth devices. */
int
mididev_synth_number(void)
{
return nsynth;
}
/*
* here are the switches for the main functions. The switches do
* all necessary checks on the device number to make sure
* that the device is configured. They also provide some default
* functionalities so that device-specific drivers have to deal
* only with special cases.
*/
static int
midiopen(dev_t i_dev, int flags, int mode, struct thread *td)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_open(i_dev, flags, mode, td);
break;
case MIDI_DEV_STATUS:
ret = midistat_open(i_dev, flags, mode, td);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
static int
midiclose(dev_t i_dev, int flags, int mode, struct thread *td)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_close(i_dev, flags, mode, td);
break;
case MIDI_DEV_STATUS:
ret = midistat_close(i_dev, flags, mode, td);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
static int
midiread(dev_t i_dev, struct uio * buf, int flag)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_read(i_dev, buf, flag);
break;
case MIDI_DEV_STATUS:
ret = midistat_read(i_dev, buf, flag);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
static int
midiwrite(dev_t i_dev, struct uio * buf, int flag)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_write(i_dev, buf, flag);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
static int
midiioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct thread *td)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_ioctl(i_dev, cmd, arg, mode, td);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
static int
midipoll(dev_t i_dev, int events, struct thread *td)
{
int ret;
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
ret = midi_poll(i_dev, events, td);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
/*
* Followings are the generic methods in midi drivers.
*/
int
midi_open(dev_t i_dev, int flags, int mode, struct thread *td)
{
int dev, unit, ret;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
MIDI_DEBUG(printf("midi_open: unit %d, flags 0x%x.\n", unit, flags));
if (d == NULL)
return (ENXIO);
/* Mark this device busy. */
mtx_lock(&d->flagqueue_mtx);
device_busy(d->dev);
if ((d->flags & MIDI_F_BUSY) != 0) {
mtx_unlock(&d->flagqueue_mtx);
printf("midi_open: unit %d is busy.\n", unit);
return (EBUSY);
}
d->fflags = flags;
d->flags |= MIDI_F_BUSY;
d->flags &= ~(MIDI_F_READING | MIDI_F_WRITING);
if ((d->fflags & O_NONBLOCK) != 0)
d->flags |= MIDI_F_NBIO;
/* Init the queue. */
if ((flags & FREAD) != 0)
midibuf_clear(&d->midi_dbuf_in);
if ((flags & FWRITE) != 0) {
midibuf_clear(&d->midi_dbuf_out);
midibuf_clear(&d->midi_dbuf_passthru);
}
mtx_unlock(&d->flagqueue_mtx);
if (d->open == NULL)
ret = 0;
else
ret = d->open(i_dev, flags, mode, td);
mtx_lock(&d->flagqueue_mtx);
/* Begin recording if nonblocking. */
if ((d->flags & (MIDI_F_READING | MIDI_F_NBIO)) == MIDI_F_NBIO && (d->fflags & FREAD) != 0)
d->callback(d, MIDI_CB_START | MIDI_CB_RD);
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_open: opened.\n"));
return (ret);
}
int
midi_close(dev_t i_dev, int flags, int mode, struct thread *td)
{
int dev, unit, ret;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
MIDI_DEBUG(printf("midi_close: unit %d.\n", unit));
if (d == NULL)
return (ENXIO);
mtx_lock(&d->flagqueue_mtx);
/* Stop recording and playing. */
if ((d->flags & MIDI_F_READING) != 0)
d->callback(d, MIDI_CB_ABORT | MIDI_CB_RD);
if ((d->flags & MIDI_F_WRITING) != 0)
d->callback(d, MIDI_CB_ABORT | MIDI_CB_WR);
/* Clear the queues. */
if ((d->fflags & FREAD) != 0)
midibuf_clear(&d->midi_dbuf_in);
if ((d->fflags & FWRITE) != 0) {
midibuf_clear(&d->midi_dbuf_out);
midibuf_clear(&d->midi_dbuf_passthru);
}
/* Stop playing and unmark this device busy. */
d->flags &= ~MIDI_F_BUSY;
d->fflags = 0;
device_unbusy(d->dev);
mtx_unlock(&d->flagqueue_mtx);
if (d->close == NULL)
ret = 0;
else
ret = d->close(i_dev, flags, mode, td);
MIDI_DEBUG(printf("midi_close: closed.\n"));
return (ret);
}
int
midi_read(dev_t i_dev, struct uio * buf, int flag)
{
int dev, unit, len, lenr, ret;
mididev_info *d ;
u_char *uiobuf;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
MIDI_DEBUG(printf("midi_read: unit %d, resid %d.\n", unit, buf->uio_resid));
if (d == NULL)
return (ENXIO);
ret = 0;
len = buf->uio_resid;
lenr = 0;
uiobuf = (u_char *)malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
if (uiobuf == NULL)
return (ENOMEM);
mtx_lock(&d->flagqueue_mtx);
/* Begin recording. */
d->callback(d, MIDI_CB_START | MIDI_CB_RD);
/* Have we got the data to read? */
if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_in.rl == 0)
ret = EAGAIN;
else {
if ((d->flags & MIDI_F_NBIO) != 0 && len > d->midi_dbuf_in.rl)
len = d->midi_dbuf_in.rl;
ret = midibuf_seqread(&d->midi_dbuf_in, uiobuf, len, &lenr,
d->callback, d, MIDI_CB_START | MIDI_CB_RD,
&d->flagqueue_mtx);
}
mtx_unlock(&d->flagqueue_mtx);
if (lenr > 0)
ret = uiomove(uiobuf, lenr, buf);
free(uiobuf, M_DEVBUF);
MIDI_DEBUG(printf("midi_read: ret %d, resid %d.\n", ret, buf->uio_resid));
return (ret);
}
int
midi_write(dev_t i_dev, struct uio * buf, int flag)
{
int dev, unit, len, len2, lenw, ret;
mididev_info *d;
u_char *uiobuf;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
MIDI_DEBUG(printf("midi_write: unit %d.\n", unit));
if (d == NULL)
return (ENXIO);
ret = 0;
len = buf->uio_resid;
lenw = 0;
uiobuf = (u_char *)malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
if (uiobuf == NULL)
return (ENOMEM);
ret = uiomove(uiobuf, len, buf);
if (ret != 0) {
free(uiobuf, M_DEVBUF);
return (ret);
}
mtx_lock(&d->flagqueue_mtx);
/* Have we got the data to write? */
if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_out.fl == 0) {
/* Begin playing. */
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
ret = EAGAIN;
} else {
len2 = len;
if ((d->flags & MIDI_F_NBIO) != 0 && len2 > d->midi_dbuf_out.fl)
len2 = d->midi_dbuf_out.fl;
ret = midibuf_seqwrite(&d->midi_dbuf_out, uiobuf, len2, &lenw,
d->callback, d, MIDI_CB_START | MIDI_CB_WR,
&d->flagqueue_mtx);
}
mtx_unlock(&d->flagqueue_mtx);
free(uiobuf, M_DEVBUF);
buf->uio_resid = len - lenw;
return (ret);
}
/*
* generic midi ioctl. Functions of the default driver can be
* overridden by the device-specific ioctl call.
* If a device-specific call returns ENOSYS (Function not implemented),
* the default driver is called. Otherwise, the returned value
* is passed up.
*
* The default handler, for many parameters, sets the value in the
* descriptor, sets MIDI_F_INIT, and calls the callback function with
* reason INIT. If successful, the callback returns 1 and the caller
* can update the parameter.
*/
int
midi_ioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct thread *td)
{
int ret = ENOSYS, dev, unit;
mididev_info *d;
struct snd_size *sndsize;
snd_sync_parm *sp;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
if (d == NULL)
return (ENXIO);
if (d->ioctl)
ret = d->ioctl(i_dev, cmd, arg, mode, td);
if (ret != ENOSYS)
return ret;
/*
* pass control to the default ioctl handler. Set ret to 0 now.
*/
ret = 0;
MIDI_DEBUG(printf("midi_ioctl: unit %d, cmd %s.\n", unit, midi_cmdname(cmd, cmdtab_midiioctl)));
/*
* all routines are called with int. blocked. Make sure that
* ints are re-enabled when calling slow or blocking functions!
*/
switch(cmd) {
/*
* we start with the new ioctl interface.
*/
case AIONWRITE: /* how many bytes can write ? */
mtx_lock(&d->flagqueue_mtx);
*(int *)arg = d->midi_dbuf_out.fl;
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: fl %d.\n", *(int *)arg));
break;
case AIOSSIZE: /* set the current blocksize */
sndsize = (struct snd_size *)arg;
MIDI_DEBUG(printf("midi_ioctl: play %d, rec %d.\n", sndsize->play_size, sndsize->rec_size));
mtx_lock(&d->flagqueue_mtx);
if (sndsize->play_size <= d->midi_dbuf_out.unit_size && sndsize->rec_size <= d->midi_dbuf_in.unit_size) {
d->midi_dbuf_out.blocksize = d->midi_dbuf_out.unit_size;
d->midi_dbuf_in.blocksize = d->midi_dbuf_in.unit_size;
sndsize->play_size = d->midi_dbuf_out.blocksize;
sndsize->rec_size = d->midi_dbuf_in.blocksize;
d->flags &= ~MIDI_F_HAS_SIZE;
mtx_unlock(&d->flagqueue_mtx);
}
else {
if (sndsize->play_size > d->midi_dbuf_out.bufsize / 4)
sndsize->play_size = d->midi_dbuf_out.bufsize / 4;
if (sndsize->rec_size > d->midi_dbuf_in.bufsize / 4)
sndsize->rec_size = d->midi_dbuf_in.bufsize / 4;
/* Round up the size to the multiple of EV_SZ. */
d->midi_dbuf_out.blocksize =
((sndsize->play_size + d->midi_dbuf_out.unit_size - 1)
/ d->midi_dbuf_out.unit_size) * d->midi_dbuf_out.unit_size;
d->midi_dbuf_in.blocksize =
((sndsize->rec_size + d->midi_dbuf_in.unit_size - 1)
/ d->midi_dbuf_in.unit_size) * d->midi_dbuf_in.unit_size;
sndsize->play_size = d->midi_dbuf_out.blocksize;
sndsize->rec_size = d->midi_dbuf_in.blocksize;
d->flags |= MIDI_F_HAS_SIZE;
mtx_unlock(&d->flagqueue_mtx);
}
ret = 0;
break;
case AIOGSIZE: /* get the current blocksize */
sndsize = (struct snd_size *)arg;
mtx_lock(&d->flagqueue_mtx);
sndsize->play_size = d->midi_dbuf_out.blocksize;
sndsize->rec_size = d->midi_dbuf_in.blocksize;
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: play %d, rec %d.\n", sndsize->play_size, sndsize->rec_size));
ret = 0;
break;
case AIOSTOP:
mtx_lock(&d->flagqueue_mtx);
if (*(int *)arg == AIOSYNC_PLAY) /* play */
*(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_WR);
else if (*(int *)arg == AIOSYNC_CAPTURE)
*(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_RD);
else {
MIDI_DEBUG(printf("midi_ioctl: bad channel 0x%x.\n", *(int *)arg));
*(int *)arg = 0 ;
}
mtx_unlock(&d->flagqueue_mtx);
break ;
case AIOSYNC:
sp = (snd_sync_parm *)arg;
MIDI_DEBUG(printf("midi_ioctl: unimplemented, chan 0x%03lx pos %lu.\n",
sp->chan,
sp->pos));
break;
/*
* here follow the standard ioctls (filio.h etc.)
*/
case FIONREAD: /* get # bytes to read */
mtx_lock(&d->flagqueue_mtx);
*(int *)arg = d->midi_dbuf_in.rl;
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: rl %d.\n", *(int *)arg));
break;
case FIOASYNC: /*set/clear async i/o */
MIDI_DEBUG(printf("FIOASYNC\n"));
break;
case FIONBIO: /* set/clear non-blocking i/o */
mtx_lock(&d->flagqueue_mtx);
if (*(int *)arg == 0)
d->flags &= ~MIDI_F_NBIO ;
else
d->flags |= MIDI_F_NBIO ;
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: arg %d.\n", *(int *)arg));
break ;
case MIOSPASSTHRU: /* set/clear passthru */
mtx_lock(&d->flagqueue_mtx);
if (*(int *)arg == 0)
d->flags &= ~MIDI_F_PASSTHRU ;
else
d->flags |= MIDI_F_PASSTHRU ;
/* Init the queue. */
midibuf_clear(&d->midi_dbuf_passthru);
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: passthru %d.\n", *(int *)arg));
/* FALLTHROUGH */
case MIOGPASSTHRU: /* get passthru */
mtx_lock(&d->flagqueue_mtx);
if ((d->flags & MIDI_F_PASSTHRU) != 0)
*(int *)arg = 1;
else
*(int *)arg = 0;
mtx_unlock(&d->flagqueue_mtx);
MIDI_DEBUG(printf("midi_ioctl: passthru %d.\n", *(int *)arg));
break;
default:
MIDI_DEBUG(printf("midi_ioctl: default ioctl midi%d subdev %d fn 0x%08lx fail\n",
unit, dev & 0xf, cmd));
ret = EINVAL;
break ;
}
return ret ;
}
int
midi_poll(dev_t i_dev, int events, struct thread *td)
{
int unit, dev, ret, lim;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
MIDI_DEBUG(printf("midi_poll: unit %d.\n", unit));
if (d == NULL)
return (ENXIO);
ret = 0;
mtx_lock(&d->flagqueue_mtx);
/* Look up the apropriate queue and select it. */
if ((events & (POLLOUT | POLLWRNORM)) != 0) {
/* Start playing. */
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
/* Find out the boundary. */
if ((d->flags & MIDI_F_HAS_SIZE) != 0)
lim = d->midi_dbuf_out.blocksize;
else
lim = d->midi_dbuf_out.unit_size;
if (d->midi_dbuf_out.fl < lim)
/* No enough space, record select. */
selrecord(td, &d->midi_dbuf_out.sel);
else
/* We can write now. */
ret |= events & (POLLOUT | POLLWRNORM);
}
if ((events & (POLLIN | POLLRDNORM)) != 0) {
/* Start recording. */
d->callback(d, MIDI_CB_START | MIDI_CB_RD);
/* Find out the boundary. */
if ((d->flags & MIDI_F_HAS_SIZE) != 0)
lim = d->midi_dbuf_in.blocksize;
else
lim = d->midi_dbuf_in.unit_size;
if (d->midi_dbuf_in.rl < lim)
/* No data ready, record select. */
selrecord(td, &d->midi_dbuf_in.sel);
else
/* We can write now. */
ret |= events & (POLLIN | POLLRDNORM);
}
mtx_unlock(&d->flagqueue_mtx);
return (ret);
}
void
midi_intr(mididev_info *d)
{
if (d->intr != NULL)
d->intr(d->intrarg, d);
}
/* Flush the output queue. */
#define MIDI_SYNC_TIMEOUT 1
int
midi_sync(mididev_info *d)
{
int i, rl;
mtx_assert(&d->flagqueue_mtx, MA_OWNED);
MIDI_DEBUG(printf("midi_sync: unit %d.\n", d->unit));
while (d->midi_dbuf_out.rl > 0) {
if ((d->flags & MIDI_F_WRITING) == 0)
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
rl = d->midi_dbuf_out.rl;
i = cv_timedwait_sig(&d->midi_dbuf_out.cv_out,
&d->flagqueue_mtx,
(d->midi_dbuf_out.bufsize * 10 * hz / 38400)
+ MIDI_SYNC_TIMEOUT * hz);
if (i == EINTR || i == ERESTART) {
if (i == EINTR)
d->callback(d, MIDI_CB_STOP | MIDI_CB_WR);
return (i);
}
if (i == EWOULDBLOCK && rl == d->midi_dbuf_out.rl) {
/* A queue seems to be stuck up. Give up and clear the queue. */
d->callback(d, MIDI_CB_STOP | MIDI_CB_WR);
midibuf_clear(&d->midi_dbuf_out);
return (0);
}
}
return 0;
}
/*
* These handle the status message of the midi drivers.
*/
int
midistat_open(dev_t i_dev, int flags, int mode, struct thread *td)
{
if (midistatbusy)
return (EBUSY);
bzero(midistatbuf, sizeof(midistatbuf));
midistatptr = 0;
if (midi_initstatus(midistatbuf, sizeof(midistatbuf) - 1))
return (ENOMEM);
midistatbusy = 1;
return (0);
}
int
midistat_close(dev_t i_dev, int flags, int mode, struct thread *td)
{
midistatbusy = 0;
return (0);
}
int
midistat_read(dev_t i_dev, struct uio * buf, int flag)
{
return midi_readstatus(midistatbuf, &midistatptr, buf);
}
/*
* finally, some "libraries"
*/
/* Inits the buffer for /dev/midistat. */
static int
midi_initstatus(char *buf, int size)
{
int i, p;
device_t dev;
mididev_info *md;
p = 0;
p += snprintf(buf, size, "FreeBSD Midi Driver (newmidi) %s %s\nInstalled devices:\n", __DATE__, __TIME__);
for (i = 0 ; i < mididev_info_number() ; i++) {
md = get_mididev_info_unit(i);
if (!MIDICONFED(md))
continue;
dev = devclass_get_device(midi_devclass, i);
if (p < size)
p += snprintf(&buf[p], size - p, "midi%d: <%s> %s\n", i, device_get_desc(dev), md->midistat);
else
return (1);
}
return (0);
}
/* Reads the status message. */
static int
midi_readstatus(char *buf, int *ptr, struct uio *uio)
{
int len;
len = min(uio->uio_resid, strlen(&buf[*ptr]));
if (len > 0) {
uiomove(&buf[*ptr], len, uio);
*ptr += len;
}
return (0);
}
char
*midi_cmdname(int cmd, midi_cmdtab *tab)
{
while (tab->name != NULL) {
if (cmd == tab->cmd)
return (tab->name);
tab++;
}
return ("unknown");
}