freebsd-nq/module/zfs/zpl_super.c
Brian Behlendorf e897a23eb1
Fix statfs(2) for 32-bit user space
When handling a 32-bit statfs() system call the returned fields,
although 64-bit in the kernel, must be limited to 32-bits or an
EOVERFLOW error will be returned.

This is less of an issue for block counts since the default
reported block size in 128KiB. But since it is possible to
set a smaller block size, these values will be scaled as
needed to fit in a 32-bit unsigned long.

Unlike most other filesystems the total possible file counts
are more likely to overflow because they are calculated based
on the available free space in the pool. In order to prevent
this the reported value must be capped at 2^32-1. This is
only for statfs(2) reporting, there are no changes to the
internal ZFS limits.

Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #7927 
Closes #7122 
Closes #7937
2018-09-24 17:11:25 -07:00

427 lines
10 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
inode_set_iversion(ip, 1);
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, flags);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, 0);
spl_fstrans_unmark(cookie);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* Prior to 2.6.36 this eviction was accomplished by the vfs calling
* ->delete_inode(). It was ->delete_inode()'s responsibility to
* truncate the inode pages and call clear_inode(). The call to
* clear_inode() synchronously invalidates all the buffers and
* calls ->clear_inode(). It was ->clear_inode()'s responsibility
* to cleanup and filesystem specific data before freeing the inode.
*
* This elaborate mechanism was replaced by ->evict_inode() which
* does the job of both ->delete_inode() and ->clear_inode(). It
* will be called exactly once, and when it returns the inode must
* be in a state where it can simply be freed.i
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_drop_inode(struct inode *ip)
{
generic_delete_inode(ip);
}
static void
zpl_clear_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
static void
zpl_inode_delete(struct inode *ip)
{
truncate_setsize(ip, 0);
clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */
static void
zpl_put_super(struct super_block *sb)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_umount(sb);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
fstrans_cookie_t cookie;
cred_t *cr = CRED();
int error;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_sync(sb, wait, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_statvfs(dentry, statp);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
/*
* If required by a 32-bit system call, dynamically scale the
* block size up to 16MiB and decrease the block counts. This
* allows for a maximum size of 64EiB to be reported. The file
* counts must be artificially capped at 2^32-1.
*/
if (unlikely(zpl_is_32bit_api())) {
while (statp->f_blocks > UINT32_MAX &&
statp->f_bsize < SPA_MAXBLOCKSIZE) {
statp->f_frsize <<= 1;
statp->f_bsize <<= 1;
statp->f_blocks >>= 1;
statp->f_bfree >>= 1;
statp->f_bavail >>= 1;
}
uint64_t usedobjs = statp->f_files - statp->f_ffree;
statp->f_ffree = MIN(statp->f_ffree, UINT32_MAX - usedobjs);
statp->f_files = statp->f_ffree + usedobjs;
}
return (error);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
zfs_mnt_t zm = { .mnt_osname = NULL, .mnt_data = data };
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_remount(sb, flags, &zm);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
__zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs)
{
seq_printf(seq, ",%s",
zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
#ifdef CONFIG_FS_POSIX_ACL
switch (zfsvfs->z_acl_type) {
case ZFS_ACLTYPE_POSIXACL:
seq_puts(seq, ",posixacl");
break;
default:
seq_puts(seq, ",noacl");
break;
}
#endif /* CONFIG_FS_POSIX_ACL */
return (0);
}
#ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
#else
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info));
}
#endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
zfs_mnt_t *zm = (zfs_mnt_t *)data;
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_domount(sb, zm, silent);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_test_super(struct super_block *s, void *data)
{
zfsvfs_t *zfsvfs = s->s_fs_info;
objset_t *os = data;
if (zfsvfs == NULL)
return (0);
return (os == zfsvfs->z_os);
}
static struct super_block *
zpl_mount_impl(struct file_system_type *fs_type, int flags, zfs_mnt_t *zm)
{
struct super_block *s;
objset_t *os;
int err;
err = dmu_objset_hold(zm->mnt_osname, FTAG, &os);
if (err)
return (ERR_PTR(-err));
/*
* The dsl pool lock must be released prior to calling sget().
* It is possible sget() may block on the lock in grab_super()
* while deactivate_super() holds that same lock and waits for
* a txg sync. If the dsl_pool lock is held over over sget()
* this can prevent the pool sync and cause a deadlock.
*/
dsl_pool_rele(dmu_objset_pool(os), FTAG);
s = zpl_sget(fs_type, zpl_test_super, set_anon_super, flags, os);
dsl_dataset_rele(dmu_objset_ds(os), FTAG);
if (IS_ERR(s))
return (ERR_CAST(s));
if (s->s_root == NULL) {
err = zpl_fill_super(s, zm, flags & SB_SILENT ? 1 : 0);
if (err) {
deactivate_locked_super(s);
return (ERR_PTR(err));
}
s->s_flags |= SB_ACTIVE;
} else if ((flags ^ s->s_flags) & SB_RDONLY) {
deactivate_locked_super(s);
return (ERR_PTR(-EBUSY));
}
return (s);
}
#ifdef HAVE_FST_MOUNT
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
if (IS_ERR(sb))
return (ERR_CAST(sb));
return (dget(sb->s_root));
}
#else
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
const char *osname, void *data, struct vfsmount *mnt)
{
zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
if (IS_ERR(sb))
return (PTR_ERR(sb));
(void) simple_set_mnt(mnt, sb);
return (0);
}
#endif /* HAVE_FST_MOUNT */
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
#ifdef HAVE_S_INSTANCES_LIST_HEAD
sb->s_instances.next = &(zpl_fs_type.fs_supers);
#endif /* HAVE_S_INSTANCES_LIST_HEAD */
}
void
zpl_prune_sb(int64_t nr_to_scan, void *arg)
{
struct super_block *sb = (struct super_block *)arg;
int objects = 0;
(void) -zfs_prune(sb, nr_to_scan, &objects);
}
#ifdef HAVE_NR_CACHED_OBJECTS
static int
zpl_nr_cached_objects(struct super_block *sb)
{
return (0);
}
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
static void
zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
{
/* noop */
}
#endif /* HAVE_FREE_CACHED_OBJECTS */
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
.write_inode = NULL,
#ifdef HAVE_EVICT_INODE
.evict_inode = zpl_evict_inode,
#else
.drop_inode = zpl_drop_inode,
.clear_inode = zpl_clear_inode,
.delete_inode = zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_options = zpl_show_options,
.show_stats = NULL,
#ifdef HAVE_NR_CACHED_OBJECTS
.nr_cached_objects = zpl_nr_cached_objects,
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
.free_cached_objects = zpl_free_cached_objects,
#endif /* HAVE_FREE_CACHED_OBJECTS */
};
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
#ifdef HAVE_FST_MOUNT
.mount = zpl_mount,
#else
.get_sb = zpl_get_sb,
#endif /* HAVE_FST_MOUNT */
.kill_sb = zpl_kill_sb,
};