Peter Wemm 937a200089 Introduce svnlite so that we can check out our source code again.
This is actually a fully functional build except:
* All internal shared libraries are static linked to make sure there
  is no interference with ports (and to reduce build time).
* It does not have the python/perl/etc plugin or API support.
* By default, it installs as "svnlite" rather than "svn".
* If WITH_SVN added in make.conf, you get "svn".
* If WITHOUT_SVNLITE is in make.conf, this is completely disabled.

To be absolutely clear, this is not intended for any use other than
checking out freebsd source and committing, like we once did with cvs.

It should be usable for small scale local repositories that don't
need the python/perl plugin architecture.
2013-06-18 02:53:45 +00:00

458 lines
13 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_general.h"
#include "apr_rmm.h"
#include "apr_errno.h"
#include "apr_lib.h"
#include "apr_strings.h"
/* The RMM region is made up of two doubly-linked-list of blocks; the
* list of used blocks, and the list of free blocks (either list may
* be empty). The base pointer, rmm->base, points at the beginning of
* the shmem region in use. Each block is addressable by an
* apr_rmm_off_t value, which represents the offset from the base
* pointer. The term "address" is used here to mean such a value; an
* "offset from rmm->base".
*
* The RMM region contains exactly one "rmm_hdr_block_t" structure,
* the "header block", which is always stored at the base pointer.
* The firstused field in this structure is the address of the first
* block in the "used blocks" list; the firstfree field is the address
* of the first block in the "free blocks" list.
*
* Each block is prefixed by an "rmm_block_t" structure, followed by
* the caller-usable region represented by the block. The next and
* prev fields of the structure are zero if the block is at the end or
* beginning of the linked-list respectively, or otherwise hold the
* address of the next and previous blocks in the list. ("address 0",
* i.e. rmm->base is *not* a valid address for a block, since the
* header block is always stored at that address).
*
* At creation, the RMM region is initialized to hold a single block
* on the free list representing the entire available shm segment
* (minus header block); subsequent allocation and deallocation of
* blocks involves splitting blocks and coalescing adjacent blocks,
* and switching them between the free and used lists as
* appropriate. */
typedef struct rmm_block_t {
apr_size_t size;
apr_rmm_off_t prev;
apr_rmm_off_t next;
} rmm_block_t;
/* Always at our apr_rmm_off(0):
*/
typedef struct rmm_hdr_block_t {
apr_size_t abssize;
apr_rmm_off_t /* rmm_block_t */ firstused;
apr_rmm_off_t /* rmm_block_t */ firstfree;
} rmm_hdr_block_t;
#define RMM_HDR_BLOCK_SIZE (APR_ALIGN_DEFAULT(sizeof(rmm_hdr_block_t)))
#define RMM_BLOCK_SIZE (APR_ALIGN_DEFAULT(sizeof(rmm_block_t)))
struct apr_rmm_t {
apr_pool_t *p;
rmm_hdr_block_t *base;
apr_size_t size;
apr_anylock_t lock;
};
static apr_rmm_off_t find_block_by_offset(apr_rmm_t *rmm, apr_rmm_off_t next,
apr_rmm_off_t find, int includes)
{
apr_rmm_off_t prev = 0;
while (next) {
struct rmm_block_t *blk = (rmm_block_t*)((char*)rmm->base + next);
if (find == next)
return next;
/* Overshot? */
if (find < next)
return includes ? prev : 0;
prev = next;
next = blk->next;
}
return includes ? prev : 0;
}
static apr_rmm_off_t find_block_of_size(apr_rmm_t *rmm, apr_size_t size)
{
apr_rmm_off_t next = rmm->base->firstfree;
apr_rmm_off_t best = 0;
apr_rmm_off_t bestsize = 0;
while (next) {
struct rmm_block_t *blk = (rmm_block_t*)((char*)rmm->base + next);
if (blk->size == size)
return next;
if (blk->size >= size) {
/* XXX: sub optimal algorithm
* We need the most thorough best-fit logic, since we can
* never grow our rmm, we are SOL when we hit the wall.
*/
if (!bestsize || (blk->size < bestsize)) {
bestsize = blk->size;
best = next;
}
}
next = blk->next;
}
if (bestsize > RMM_BLOCK_SIZE + size) {
struct rmm_block_t *blk = (rmm_block_t*)((char*)rmm->base + best);
struct rmm_block_t *new = (rmm_block_t*)((char*)rmm->base + best + size);
new->size = blk->size - size;
new->next = blk->next;
new->prev = best;
blk->size = size;
blk->next = best + size;
if (new->next) {
blk = (rmm_block_t*)((char*)rmm->base + new->next);
blk->prev = best + size;
}
}
return best;
}
static void move_block(apr_rmm_t *rmm, apr_rmm_off_t this, int free)
{
struct rmm_block_t *blk = (rmm_block_t*)((char*)rmm->base + this);
/* close the gap */
if (blk->prev) {
struct rmm_block_t *prev = (rmm_block_t*)((char*)rmm->base + blk->prev);
prev->next = blk->next;
}
else {
if (free) {
rmm->base->firstused = blk->next;
}
else {
rmm->base->firstfree = blk->next;
}
}
if (blk->next) {
struct rmm_block_t *next = (rmm_block_t*)((char*)rmm->base + blk->next);
next->prev = blk->prev;
}
/* now find it in the other list, pushing it to the head if required */
if (free) {
blk->prev = find_block_by_offset(rmm, rmm->base->firstfree, this, 1);
if (!blk->prev) {
blk->next = rmm->base->firstfree;
rmm->base->firstfree = this;
}
}
else {
blk->prev = find_block_by_offset(rmm, rmm->base->firstused, this, 1);
if (!blk->prev) {
blk->next = rmm->base->firstused;
rmm->base->firstused = this;
}
}
/* and open it up */
if (blk->prev) {
struct rmm_block_t *prev = (rmm_block_t*)((char*)rmm->base + blk->prev);
if (free && (blk->prev + prev->size == this)) {
/* Collapse us into our predecessor */
prev->size += blk->size;
this = blk->prev;
blk = prev;
}
else {
blk->next = prev->next;
prev->next = this;
}
}
if (blk->next) {
struct rmm_block_t *next = (rmm_block_t*)((char*)rmm->base + blk->next);
if (free && (this + blk->size == blk->next)) {
/* Collapse us into our successor */
blk->size += next->size;
blk->next = next->next;
if (blk->next) {
next = (rmm_block_t*)((char*)rmm->base + blk->next);
next->prev = this;
}
}
else {
next->prev = this;
}
}
}
APU_DECLARE(apr_status_t) apr_rmm_init(apr_rmm_t **rmm, apr_anylock_t *lock,
void *base, apr_size_t size,
apr_pool_t *p)
{
apr_status_t rv;
rmm_block_t *blk;
apr_anylock_t nulllock;
if (!lock) {
nulllock.type = apr_anylock_none;
nulllock.lock.pm = NULL;
lock = &nulllock;
}
if ((rv = APR_ANYLOCK_LOCK(lock)) != APR_SUCCESS)
return rv;
(*rmm) = (apr_rmm_t *)apr_pcalloc(p, sizeof(apr_rmm_t));
(*rmm)->p = p;
(*rmm)->base = base;
(*rmm)->size = size;
(*rmm)->lock = *lock;
(*rmm)->base->abssize = size;
(*rmm)->base->firstused = 0;
(*rmm)->base->firstfree = RMM_HDR_BLOCK_SIZE;
blk = (rmm_block_t *)((char*)base + (*rmm)->base->firstfree);
blk->size = size - (*rmm)->base->firstfree;
blk->prev = 0;
blk->next = 0;
return APR_ANYLOCK_UNLOCK(lock);
}
APU_DECLARE(apr_status_t) apr_rmm_destroy(apr_rmm_t *rmm)
{
apr_status_t rv;
rmm_block_t *blk;
if ((rv = APR_ANYLOCK_LOCK(&rmm->lock)) != APR_SUCCESS) {
return rv;
}
/* Blast it all --- no going back :) */
if (rmm->base->firstused) {
apr_rmm_off_t this = rmm->base->firstused;
do {
blk = (rmm_block_t *)((char*)rmm->base + this);
this = blk->next;
blk->next = blk->prev = 0;
} while (this);
rmm->base->firstused = 0;
}
if (rmm->base->firstfree) {
apr_rmm_off_t this = rmm->base->firstfree;
do {
blk = (rmm_block_t *)((char*)rmm->base + this);
this = blk->next;
blk->next = blk->prev = 0;
} while (this);
rmm->base->firstfree = 0;
}
rmm->base->abssize = 0;
rmm->size = 0;
return APR_ANYLOCK_UNLOCK(&rmm->lock);
}
APU_DECLARE(apr_status_t) apr_rmm_attach(apr_rmm_t **rmm, apr_anylock_t *lock,
void *base, apr_pool_t *p)
{
apr_anylock_t nulllock;
if (!lock) {
nulllock.type = apr_anylock_none;
nulllock.lock.pm = NULL;
lock = &nulllock;
}
/* sanity would be good here */
(*rmm) = (apr_rmm_t *)apr_pcalloc(p, sizeof(apr_rmm_t));
(*rmm)->p = p;
(*rmm)->base = base;
(*rmm)->size = (*rmm)->base->abssize;
(*rmm)->lock = *lock;
return APR_SUCCESS;
}
APU_DECLARE(apr_status_t) apr_rmm_detach(apr_rmm_t *rmm)
{
/* A noop until we introduce locked/refcounts */
return APR_SUCCESS;
}
APU_DECLARE(apr_rmm_off_t) apr_rmm_malloc(apr_rmm_t *rmm, apr_size_t reqsize)
{
apr_size_t size;
apr_rmm_off_t this;
size = APR_ALIGN_DEFAULT(reqsize) + RMM_BLOCK_SIZE;
if (size < reqsize) {
return 0;
}
APR_ANYLOCK_LOCK(&rmm->lock);
this = find_block_of_size(rmm, size);
if (this) {
move_block(rmm, this, 0);
this += RMM_BLOCK_SIZE;
}
APR_ANYLOCK_UNLOCK(&rmm->lock);
return this;
}
APU_DECLARE(apr_rmm_off_t) apr_rmm_calloc(apr_rmm_t *rmm, apr_size_t reqsize)
{
apr_size_t size;
apr_rmm_off_t this;
size = APR_ALIGN_DEFAULT(reqsize) + RMM_BLOCK_SIZE;
if (size < reqsize) {
return 0;
}
APR_ANYLOCK_LOCK(&rmm->lock);
this = find_block_of_size(rmm, size);
if (this) {
move_block(rmm, this, 0);
this += RMM_BLOCK_SIZE;
memset((char*)rmm->base + this, 0, size - RMM_BLOCK_SIZE);
}
APR_ANYLOCK_UNLOCK(&rmm->lock);
return this;
}
APU_DECLARE(apr_rmm_off_t) apr_rmm_realloc(apr_rmm_t *rmm, void *entity,
apr_size_t reqsize)
{
apr_rmm_off_t this;
apr_rmm_off_t old;
struct rmm_block_t *blk;
apr_size_t size, oldsize;
if (!entity) {
return apr_rmm_malloc(rmm, reqsize);
}
size = APR_ALIGN_DEFAULT(reqsize);
if (size < reqsize) {
return 0;
}
old = apr_rmm_offset_get(rmm, entity);
if ((this = apr_rmm_malloc(rmm, size)) == 0) {
return 0;
}
blk = (rmm_block_t*)((char*)rmm->base + old - RMM_BLOCK_SIZE);
oldsize = blk->size;
memcpy(apr_rmm_addr_get(rmm, this),
apr_rmm_addr_get(rmm, old), oldsize < size ? oldsize : size);
apr_rmm_free(rmm, old);
return this;
}
APU_DECLARE(apr_status_t) apr_rmm_free(apr_rmm_t *rmm, apr_rmm_off_t this)
{
apr_status_t rv;
struct rmm_block_t *blk;
/* A little sanity check is always healthy, especially here.
* If we really cared, we could make this compile-time
*/
if (this < RMM_HDR_BLOCK_SIZE + RMM_BLOCK_SIZE) {
return APR_EINVAL;
}
this -= RMM_BLOCK_SIZE;
blk = (rmm_block_t*)((char*)rmm->base + this);
if ((rv = APR_ANYLOCK_LOCK(&rmm->lock)) != APR_SUCCESS) {
return rv;
}
if (blk->prev) {
struct rmm_block_t *prev = (rmm_block_t*)((char*)rmm->base + blk->prev);
if (prev->next != this) {
APR_ANYLOCK_UNLOCK(&rmm->lock);
return APR_EINVAL;
}
}
else {
if (rmm->base->firstused != this) {
APR_ANYLOCK_UNLOCK(&rmm->lock);
return APR_EINVAL;
}
}
if (blk->next) {
struct rmm_block_t *next = (rmm_block_t*)((char*)rmm->base + blk->next);
if (next->prev != this) {
APR_ANYLOCK_UNLOCK(&rmm->lock);
return APR_EINVAL;
}
}
/* Ok, it remained [apparently] sane, so unlink it
*/
move_block(rmm, this, 1);
return APR_ANYLOCK_UNLOCK(&rmm->lock);
}
APU_DECLARE(void *) apr_rmm_addr_get(apr_rmm_t *rmm, apr_rmm_off_t entity)
{
/* debug-sanity checking here would be good
*/
return (void*)((char*)rmm->base + entity);
}
APU_DECLARE(apr_rmm_off_t) apr_rmm_offset_get(apr_rmm_t *rmm, void* entity)
{
/* debug, or always, sanity checking here would be good
* since the primitive is apr_rmm_off_t, I don't mind penalizing
* inverse conversions for safety, unless someone can prove that
* there is no choice in some cases.
*/
return ((char*)entity - (char*)rmm->base);
}
APU_DECLARE(apr_size_t) apr_rmm_overhead_get(int n)
{
/* overhead per block is at most APR_ALIGN_DEFAULT(1) wasted bytes
* for alignment overhead, plus the size of the rmm_block_t
* structure. */
return RMM_HDR_BLOCK_SIZE + n * (RMM_BLOCK_SIZE + APR_ALIGN_DEFAULT(1));
}