freebsd-nq/sys/pci/if_rl.c
Bill Paul 589e38a609 Add driver support for PCI fast ethernet adapters based on the
RealTek 8129/8139 chipset like I've been threatening. Update kernel
configs, userconfig.c, relnotes and sysinstall. No man page yet;
comming soon.

I consider this driver stable enough that I want to give it some
exposure in -current.
1998-10-18 16:24:34 +00:00

1990 lines
47 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_rl.c,v 1.13 1998/10/07 22:51:30 wpaul Exp $
*/
/*
* RealTek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the RealTek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a doubleword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*
* Note: beware of trying to use the Linux RealTek driver as a reference
* for information about the RealTek chip. It contains several bogosities.
* It contains definitions for several undocumented registers which it
* claims are 'required for proper operation' yet it does not use these
* registers anywhere in the code. It also refers to some undocumented
* 'Twister tuning codes' which it doesn't use anywhere. It also contains
* bit definitions for several registers which are totally ignored: magic
* numbers are used instead, making the code hard to read.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/*
* Default to using PIO access for this driver. On SMP systems,
* there appear to be problems with memory mapped mode: it looks like
* doing too many memory mapped access back to back in rapid succession
* can hang the bus. I'm inclined to blame this on crummy design/construction
* on the part of RealTek. Memory mapped mode does appear to work on
* uniprocessor systems though.
*/
#define RL_USEIOSPACE
#include <pci/if_rlreg.h>
#ifndef lint
static char rcsid[] =
"$Id: if_rl.c,v 1.13 1998/10/07 22:51:30 wpaul Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct rl_type rl_devs[] = {
{ RT_VENDORID, RT_DEVICEID_8129,
"RealTek 8129 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8139,
"RealTek 8139 10/100BaseTX" },
{ RT_VENDORID_ALT, RT_DEVICEID_8139_ALT,
"RealTek 8139 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct rl_type rl_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long rl_count = 0;
static char *rl_probe __P((pcici_t, pcidi_t));
static void rl_attach __P((pcici_t, int));
static int rl_encap __P((struct rl_softc *, struct rl_chain *,
struct mbuf * ));
static void rl_rxeof __P((struct rl_softc *));
static void rl_txeof __P((struct rl_softc *));
static void rl_txeoc __P((struct rl_softc *));
static void rl_intr __P((void *));
static void rl_start __P((struct ifnet *));
static int rl_ioctl __P((struct ifnet *, u_long, caddr_t));
static void rl_init __P((void *));
static void rl_stop __P((struct rl_softc *));
static void rl_watchdog __P((struct ifnet *));
static void rl_shutdown __P((int, void *));
static int rl_ifmedia_upd __P((struct ifnet *));
static void rl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void rl_eeprom_putbyte __P((struct rl_softc *, u_int8_t));
static void rl_eeprom_getword __P((struct rl_softc *, u_int8_t, u_int16_t *));
static void rl_read_eeprom __P((struct rl_softc *, caddr_t,
int, int, int));
static void rl_mii_sync __P((struct rl_softc *));
static void rl_mii_send __P((struct rl_softc *, u_int32_t, int));
static int rl_mii_readreg __P((struct rl_softc *, struct rl_mii_frame *));
static int rl_mii_writereg __P((struct rl_softc *, struct rl_mii_frame *));
static u_int16_t rl_phy_readreg __P((struct rl_softc *, int));
static void rl_phy_writereg __P((struct rl_softc *, u_int16_t, u_int16_t));
static void rl_autoneg_xmit __P((struct rl_softc *));
static void rl_autoneg_mii __P((struct rl_softc *, int, int));
static void rl_setmode_mii __P((struct rl_softc *, int));
static void rl_getmode_mii __P((struct rl_softc *));
static u_int8_t rl_calchash __P((u_int8_t *));
static void rl_setmulti __P((struct rl_softc *));
static void rl_reset __P((struct rl_softc *));
static int rl_list_tx_init __P((struct rl_softc *));
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void rl_eeprom_putbyte(sc, addr)
struct rl_softc *sc;
u_int8_t addr;
{
register int d, i;
d = addr | RL_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void rl_eeprom_getword(sc, addr, dest)
struct rl_softc *sc;
u_int8_t addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
rl_eeprom_putbyte(sc, addr);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void rl_read_eeprom(sc, dest, off, cnt, swap)
struct rl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
rl_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* MII access routines are provided for the 8129, which
* doesn't have a built-in PHY. For the 8139, we fake things
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
* direct access PHY registers.
*/
#define MII_SET(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) | x)
#define MII_CLR(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void rl_mii_sync(sc)
struct rl_softc *sc;
{
register int i;
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
for (i = 0; i < 32; i++) {
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void rl_mii_send(sc, bits, cnt)
struct rl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
MII_CLR(RL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(RL_MII_DATAOUT);
} else {
MII_CLR(RL_MII_DATAOUT);
}
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int rl_mii_readreg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, RL_MII, 0);
/*
* Turn on data xmit.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
/*
* Send command/address info.
*/
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(RL_MII_DIR);
/* Check for ack */
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(RL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(RL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int rl_mii_writereg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_WRITEOP;
frame->mii_turnaround = RL_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
rl_mii_send(sc, frame->mii_turnaround, 2);
rl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(RL_MII_DIR);
splx(s);
return(0);
}
static u_int16_t rl_phy_readreg(sc, reg)
struct rl_softc *sc;
int reg;
{
struct rl_mii_frame frame;
u_int16_t rval = 0;
u_int16_t rl8139_reg = 0;
if (sc->rl_type == RL_8139) {
switch(reg) {
case PHY_BMCR:
rl8139_reg = RL_BMCR;
break;
case PHY_BMSR:
rl8139_reg = RL_BMSR;
break;
case PHY_ANAR:
rl8139_reg = RL_ANAR;
break;
case PHY_LPAR:
rl8139_reg = RL_LPAR;
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
return(0);
}
rval = CSR_READ_2(sc, rl8139_reg);
return(rval);
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->rl_phy_addr;
frame.mii_regaddr = reg;
rl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void rl_phy_writereg(sc, reg, data)
struct rl_softc *sc;
u_int16_t reg;
u_int16_t data;
{
struct rl_mii_frame frame;
u_int16_t rl8139_reg = 0;
if (sc->rl_type == RL_8139) {
switch(reg) {
case PHY_BMCR:
rl8139_reg = RL_BMCR;
break;
case PHY_BMSR:
rl8139_reg = RL_BMSR;
break;
case PHY_ANAR:
rl8139_reg = RL_ANAR;
break;
case PHY_LPAR:
rl8139_reg = RL_LPAR;
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
return;
}
CSR_WRITE_2(sc, rl8139_reg, data);
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->rl_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
rl_mii_writereg(sc, &frame);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int8_t rl_calchash(addr)
u_int8_t *addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc & 0x0000003F);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void rl_setmulti(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, RL_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, RL_MAR0, 0);
CSR_WRITE_4(sc, RL_MAR4, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = rl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= RL_RXCFG_RX_MULTI;
else
rxfilt &= ~RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void rl_autoneg_xmit(sc)
struct rl_softc *sc;
{
u_int16_t phy_sts;
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(rl_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = rl_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
rl_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY. Also used with the 8139 internal
* transceiver.
*/
static void rl_autoneg_mii(sc, flag, verbose)
struct rl_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
/*
* The 100baseT4 PHY sometimes has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("rl%d: autonegotiation not supported\n",
sc->rl_unit);
return;
}
#endif
switch (flag) {
case RL_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
rl_autoneg_xmit(sc);
DELAY(5000000);
break;
case RL_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise rl_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->rl_cdata.rl_tx_cnt) {
sc->rl_want_auto = 1;
return;
}
rl_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->rl_autoneg = 1;
sc->rl_want_auto = 0;
return;
break;
case RL_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->rl_autoneg = 0;
break;
default:
printf("rl%d: invalid autoneg flag: %d\n", sc->rl_unit, flag);
return;
}
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("rl%d: autoneg complete, ", sc->rl_unit);
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("rl%d: autoneg not complete, ", sc->rl_unit);
}
media = rl_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = rl_phy_readreg(sc, PHY_ANAR);
ability = rl_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
} else {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(unknown mode! forcing half-duplex, 10Mbps)\n");
}
/* Set ASIC's duplex mode to match the PHY. */
rl_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
rl_init(sc);
if (sc->rl_tx_pend) {
sc->rl_autoneg = 0;
sc->rl_tx_pend = 0;
rl_start(ifp);
}
return;
}
static void rl_getmode_mii(sc)
struct rl_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = rl_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("rl%d: PHY status word: %x\n", sc->rl_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("rl%d: 10Mbps half-duplex mode supported\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("rl%d: 10Mbps full-duplex mode supported\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("rl%d: 100Mbps half-duplex mode supported\n",
sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("rl%d: 100Mbps full-duplex mode supported\n",
sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("rl%d: 100baseT4 mode supported\n", sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("rl%d: forcing on autoneg support for BT4\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("rl%d: autoneg supported\n", sc->rl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void rl_setmode_mii(sc, media)
struct rl_softc *sc;
int media;
{
u_int16_t bmcr;
printf("rl%d: selecting MII, ", sc->rl_unit);
bmcr = rl_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
rl_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
static void rl_reset(sc)
struct rl_softc *sc;
{
register int i;
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
printf("rl%d: reset never completed!\n", sc->rl_unit);
return;
}
/*
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static char *
rl_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct rl_type *t;
t = rl_devs;
while(t->rl_name != NULL) {
if ((device_id & 0xFFFF) == t->rl_vid &&
((device_id >> 16) & 0xFFFF) == t->rl_did) {
return(t->rl_name);
}
t++;
}
return(NULL);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
rl_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef RL_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct rl_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
struct rl_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
u_int16_t rl_did = 0;
s = splimp();
sc = malloc(sizeof(struct rl_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("rl%d: no memory for softc struct!\n", unit);
return;
}
bzero(sc, sizeof(struct rl_softc));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(config_id, RL_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, RL_PCI_PWRMGMTCTRL);
if (command & RL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, RL_PCI_LOIO);
membase = pci_conf_read(config_id, RL_PCI_LOMEM);
irq = pci_conf_read(config_id, RL_PCI_INTLINE);
/* Reset the power state. */
printf("rl%d: chip is is in D%d power mode "
"-- setting to D0\n", unit, command & RL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, RL_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, RL_PCI_LOIO, iobase);
pci_conf_write(config_id, RL_PCI_LOMEM, membase);
pci_conf_write(config_id, RL_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef RL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("rl%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
sc->iobase = pci_conf_read(config_id, RL_PCI_LOIO) & 0xFFFFFFFC;
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("rl%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, RL_PCI_LOMEM, &vbase, &pbase)) {
printf ("rl%d: couldn't map memory\n", unit);
goto fail;
}
sc->csr = (volatile caddr_t)vbase;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, rl_intr, sc, &net_imask)) {
printf("rl%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
rl_reset(sc);
/*
* Get station address from the EEPROM.
*/
rl_read_eeprom(sc, (caddr_t)&eaddr, RL_EE_EADDR, 3, 0);
/*
* A RealTek chip was detected. Inform the world.
*/
printf("rl%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->rl_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
/*
* Now read the exact device type from the EEPROM to find
* out if it's an 8129 or 8139.
*/
rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
if (rl_did == RT_DEVICEID_8139)
sc->rl_type = RL_8139;
else if (rl_did == RT_DEVICEID_8129)
sc->rl_type = RL_8129;
else {
printf("rl%d: unknown device ID: %x\n", unit, rl_did);
free(sc, M_DEVBUF);
goto fail;
}
sc->rl_cdata.rl_rx_buf = contigmalloc(RL_RXBUFLEN + 16, M_DEVBUF,
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
if (sc->rl_cdata.rl_rx_buf == NULL) {
free(sc, M_DEVBUF);
printf("rl%d: no memory for list buffers!\n", unit);
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "rl";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rl_ioctl;
ifp->if_output = ether_output;
ifp->if_start = rl_start;
ifp->if_watchdog = rl_watchdog;
ifp->if_init = rl_init;
ifp->if_baudrate = 10000000;
if (sc->rl_type == RL_8129) {
if (bootverbose)
printf("rl%d: probing for a PHY\n", sc->rl_unit);
for (i = RL_PHYADDR_MIN; i < RL_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("rl%d: checking address: %d\n",
sc->rl_unit, i);
sc->rl_phy_addr = i;
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(rl_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = rl_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = rl_phy_readreg(sc, PHY_VENID);
phy_did = rl_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("rl%d: found PHY at address %d, ",
sc->rl_unit, sc->rl_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = rl_phys;
while(p->rl_vid) {
if (phy_vid == p->rl_vid &&
(phy_did | 0x000F) == p->rl_did) {
sc->rl_pinfo = p;
break;
}
p++;
}
if (sc->rl_pinfo == NULL)
sc->rl_pinfo = &rl_phys[PHY_UNKNOWN];
if (bootverbose)
printf("rl%d: PHY type: %s\n",
sc->rl_unit, sc->rl_pinfo->rl_name);
} else {
printf("rl%d: MII without any phy!\n", sc->rl_unit);
}
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, rl_ifmedia_upd, rl_ifmedia_sts);
rl_getmode_mii(sc);
/* Choose a default media. */
media = IFM_ETHER|IFM_AUTO;
ifmedia_set(&sc->ifmedia, media);
rl_autoneg_mii(sc, RL_FLAG_FORCEDELAY, 1);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
at_shutdown(rl_shutdown, sc, SHUTDOWN_POST_SYNC);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int rl_list_tx_init(sc)
struct rl_softc *sc;
{
struct rl_chain_data *cd;
int i;
cd = &sc->rl_cdata;
for (i = 0; i < RL_TX_LIST_CNT; i++) {
cd->rl_tx_chain[i].rl_desc = i * 4;
CSR_WRITE_4(sc, RL_TXADDR0 + cd->rl_tx_chain[i].rl_desc, 0);
CSR_WRITE_4(sc, RL_TXSTAT0 + cd->rl_tx_chain[i].rl_desc, 0);
if (i == (RL_TX_LIST_CNT - 1))
cd->rl_tx_chain[i].rl_next = &cd->rl_tx_chain[0];
else
cd->rl_tx_chain[i].rl_next = &cd->rl_tx_chain[i + 1];
}
sc->rl_cdata.rl_tx_cnt = 0;
cd->rl_tx_cur = cd->rl_tx_free = &cd->rl_tx_chain[0];
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design
* when you have to use m_devget().
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceeded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*/
static void rl_rxeof(sc)
struct rl_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int32_t rxstat;
caddr_t rxbufpos;
int wrap = 0;
u_int16_t cur_rx;
u_int16_t limit;
u_int16_t rx_bytes = 0, max_bytes;
ifp = &sc->arpcom.ac_if;
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
while((CSR_READ_1(sc, RL_COMMAND) & 1) == 0) {
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
rxstat = *(u_int32_t *)rxbufpos;
/*
* Here's a totally undocumented fact for you. When the
* RealTek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* RealTek should be shot for this.
*/
if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
break;
if (!(rxstat & RL_RXSTAT_RXOK)) {
ifp->if_ierrors++;
if (rxstat & (RL_RXSTAT_BADSYM|RL_RXSTAT_RUNT|
RL_RXSTAT_GIANT|RL_RXSTAT_CRCERR|
RL_RXSTAT_ALIGNERR)) {
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB);
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB|
RL_CMD_RX_ENB);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXADDR,
vtophys(sc->rl_cdata.rl_rx_buf));
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
cur_rx = 0;
}
break;
}
/* No errors; receive the packet. */
total_len = rxstat >> 16;
rx_bytes += total_len + 4;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes)
break;
rxbufpos = sc->rl_cdata.rl_rx_buf +
((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
rxbufpos = sc->rl_cdata.rl_rx_buf;
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
if (total_len > wrap) {
m = m_devget(rxbufpos, wrap, 0, ifp, NULL);
if (m == NULL) {
ifp->if_ierrors++;
printf("rl%d: out of mbufs, tried to "
"copy %d bytes\n", sc->rl_unit, wrap);
}
else
m_copyback(m, wrap, total_len - wrap,
sc->rl_cdata.rl_rx_buf);
cur_rx = (total_len - wrap);
} else {
m = m_devget(rxbufpos, total_len, 0, ifp, NULL);
if (m == NULL) {
ifp->if_ierrors++;
printf("rl%d: out of mbufs, tried to "
"copy %d bytes\n", sc->rl_unit, total_len);
}
cur_rx += total_len + 4;
}
/*
* Round up to 32-bit boundary.
*/
cur_rx = (cur_rx + 3) & ~3;
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
if (m == NULL)
continue;
eh = mtod(m, struct ether_header *);
ifp->if_ipackets++;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void rl_txeof(sc)
struct rl_softc *sc;
{
struct rl_chain *cur_tx;
struct ifnet *ifp;
u_int32_t txstat;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
if (sc->rl_cdata.rl_tx_free == NULL)
return;
while(sc->rl_cdata.rl_tx_free->rl_mbuf != NULL) {
cur_tx = sc->rl_cdata.rl_tx_free;
txstat = CSR_READ_4(sc, RL_TXSTAT0 + cur_tx->rl_desc);
if (!(txstat & RL_TXSTAT_TX_OK))
break;
if (txstat & RL_TXSTAT_COLLCNT)
ifp->if_collisions +=
(txstat & RL_TXSTAT_COLLCNT) >> 24;
sc->rl_cdata.rl_tx_free = cur_tx->rl_next;
sc->rl_cdata.rl_tx_cnt--;
m_freem(cur_tx->rl_mbuf);
cur_tx->rl_mbuf = NULL;
ifp->if_opackets++;
}
if (!sc->rl_cdata.rl_tx_cnt) {
ifp->if_flags &= ~IFF_OACTIVE;
if (sc->rl_want_auto)
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
} else {
if (ifp->if_snd.ifq_head != NULL)
rl_start(ifp);
}
return;
}
/*
* TX error handler.
*/
static void rl_txeoc(sc)
struct rl_softc *sc;
{
u_int32_t txstat;
struct rl_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
if (sc->rl_cdata.rl_tx_free == NULL)
return;
while(sc->rl_cdata.rl_tx_free->rl_mbuf != NULL) {
cur_tx = sc->rl_cdata.rl_tx_free;
txstat = CSR_READ_4(sc, RL_TXSTAT0 + cur_tx->rl_desc);
if (!(txstat & RL_TXSTAT_OWN))
break;
if (!(txstat & RL_TXSTAT_TX_OK)) {
ifp->if_oerrors++;
if (txstat & RL_TXSTAT_COLLCNT)
ifp->if_collisions +=
(txstat & RL_TXSTAT_COLLCNT) >> 24;
CSR_WRITE_4(sc, RL_TXADDR0 + cur_tx->rl_desc,
vtophys(mtod(cur_tx->rl_mbuf, caddr_t)));
CSR_WRITE_4(sc, RL_TXSTAT0 + cur_tx->rl_desc,
RL_TX_EARLYTHRESH |
cur_tx->rl_mbuf->m_pkthdr.len);
break;
} else {
if (txstat & RL_TXSTAT_COLLCNT)
ifp->if_collisions +=
(txstat & RL_TXSTAT_COLLCNT) >> 24;
sc->rl_cdata.rl_tx_free = cur_tx->rl_next;
sc->rl_cdata.rl_tx_cnt--;
m_freem(cur_tx->rl_mbuf);
cur_tx->rl_mbuf = NULL;
ifp->if_opackets++;
}
}
return;
}
static void rl_intr(arg)
void *arg;
{
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Disable interrupts. */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, RL_ISR);
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & RL_INTRS) == 0)
break;
if (status & RL_ISR_RX_OK)
rl_rxeof(sc);
if (status & RL_ISR_RX_ERR)
rl_rxeof(sc);
if (status & RL_ISR_TX_OK)
rl_txeof(sc);
if (status & RL_ISR_TX_ERR)
rl_txeoc(sc);
if (status & RL_ISR_SYSTEM_ERR) {
rl_reset(sc);
rl_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
rl_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int rl_encap(sc, c, m_head)
struct rl_softc *sc;
struct rl_chain *c;
struct mbuf *m_head;
{
struct mbuf *m;
/*
* There are two possible encapsulation mechanisms
* that we can use: an efficient one, and a very lossy
* one. The efficient one only happens very rarely,
* whereas the lossy one can and most likely will happen
* all the time.
* The efficient case happens if:
* - the packet fits in a single mbuf
* - the packet is 32-bit aligned within the mbuf data area
* In this case, we can DMA from the mbuf directly.
* The lossy case covers everything else. Bah.
*/
m = m_head;
if (m->m_pkthdr.len > MHLEN || (mtod(m, u_int32_t) & 0x00000003)) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("rl%d: no memory for tx list", sc->rl_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("rl%d: no memory for tx list",
sc->rl_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
}
/* Pad frames to at least 60 bytes. */
if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN)
m_head->m_pkthdr.len +=
(RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
c->rl_mbuf = m_head;
return(0);
}
/*
* Main transmit routine.
*/
static void rl_start(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mbuf *m_head = NULL;
struct rl_chain *cur_tx = NULL;
sc = ifp->if_softc;
if (sc->rl_autoneg) {
sc->rl_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->rl_cdata.rl_tx_cur->rl_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
while(sc->rl_cdata.rl_tx_cur->rl_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->rl_cdata.rl_tx_cur;
sc->rl_cdata.rl_tx_cur = cur_tx->rl_next;
sc->rl_cdata.rl_tx_cnt++;
/* Pack the data into the descriptor. */
rl_encap(sc, cur_tx, m_head);
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->rl_mbuf);
#endif
/*
* Transmit the frame.
*/
CSR_WRITE_4(sc, RL_TXADDR0 + cur_tx->rl_desc,
vtophys(mtod(cur_tx->rl_mbuf, caddr_t)));
CSR_WRITE_4(sc, RL_TXSTAT0 + cur_tx->rl_desc,
RL_TX_EARLYTHRESH | cur_tx->rl_mbuf->m_pkthdr.len);
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void rl_init(xsc)
void *xsc;
{
struct rl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
u_int32_t rxcfg = 0;
u_int16_t phy_bmcr = 0;
if (sc->rl_autoneg)
return;
s = splimp();
/*
* XXX Hack for the 8139: the built-in autoneg logic's state
* gets reset by rl_init() when we don't want it to. Try
* to preserve it. (For 8129 cards with real external PHYs,
* the BMCR register doesn't change, but this doesn't hurt.)
*/
if (sc->rl_type == RL_8139)
phy_bmcr = rl_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
rl_stop(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, RL_IDR0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init the RX buffer pointer register. */
CSR_WRITE_4(sc, RL_RXADDR, vtophys(sc->rl_cdata.rl_rx_buf));
/* Init TX descriptors. */
rl_list_tx_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the buffer size values.
*/
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RL_RXCFG);
rxcfg |= RL_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxcfg |= RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Program the multicast filter, if necessary.
*/
rl_setmulti(sc);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/* Restore state of BMCR */
if (sc->rl_pinfo != NULL)
rl_phy_writereg(sc, PHY_BMCR, phy_bmcr);
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int rl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
else
rl_setmode_mii(sc, ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void rl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct rl_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
if (!(rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = rl_phy_readreg(sc, PHY_LPAR);
advert = rl_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int rl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
rl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
rl_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
rl_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void rl_watchdog(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
sc = ifp->if_softc;
if (sc->rl_autoneg) {
rl_autoneg_mii(sc, RL_FLAG_DELAYTIMEO, 1);
return;
}
printf("rl%d: watchdog timeout\n", sc->rl_unit);
ifp->if_oerrors++;
if (!(rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("rl%d: no carrier - transceiver cable problem?\n",
sc->rl_unit);
rl_txeoc(sc);
rl_txeof(sc);
rl_rxeof(sc);
rl_init(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void rl_stop(sc)
struct rl_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
/*
* Free the TX list buffers.
*/
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_chain[i].rl_mbuf != NULL) {
m_freem(sc->rl_cdata.rl_tx_chain[i].rl_mbuf);
sc->rl_cdata.rl_tx_chain[i].rl_mbuf = NULL;
CSR_WRITE_4(sc, RL_TXADDR0 +
sc->rl_cdata.rl_tx_chain[i].rl_desc, 0x00000000);
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void rl_shutdown(howto, arg)
int howto;
void *arg;
{
struct rl_softc *sc = (struct rl_softc *)arg;
rl_stop(sc);
return;
}
static struct pci_device rl_device = {
"rl",
rl_probe,
rl_attach,
&rl_count,
NULL
};
DATA_SET(pcidevice_set, rl_device);