freebsd-nq/lib/libthr/thread/thr_cond.c
Konstantin Belousov 4dafad49c6 Do not leak curthread->inact_mtx when cancelling in pthread_cond_wait(3).
Leave robust-protected region before checking for cancellation by
calling _thr_testcancel().  Otherwise, if cancelling request was
pending, the cancel handler is called with the dandling inact_mtx,
which triggers an assert if any mutex operation is performed by the
handler.

Reported and tested by:	Dimitri Staessens <dimitri.staessens@intec.ugent.be>
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2016-12-06 17:13:17 +00:00

542 lines
14 KiB
C

/*
* Copyright (c) 2005 David Xu <davidxu@freebsd.org>
* Copyright (c) 2015 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "namespace.h"
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
#include <limits.h>
#include "un-namespace.h"
#include "thr_private.h"
_Static_assert(sizeof(struct pthread_cond) <= PAGE_SIZE,
"pthread_cond too large");
/*
* Prototypes
*/
int __pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int __pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec * abstime);
static int cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
static int cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime, int cancel);
static int cond_signal_common(pthread_cond_t *cond);
static int cond_broadcast_common(pthread_cond_t *cond);
/*
* Double underscore versions are cancellation points. Single underscore
* versions are not and are provided for libc internal usage (which
* shouldn't introduce cancellation points).
*/
__weak_reference(__pthread_cond_wait, pthread_cond_wait);
__weak_reference(__pthread_cond_timedwait, pthread_cond_timedwait);
__weak_reference(_pthread_cond_init, pthread_cond_init);
__weak_reference(_pthread_cond_destroy, pthread_cond_destroy);
__weak_reference(_pthread_cond_signal, pthread_cond_signal);
__weak_reference(_pthread_cond_broadcast, pthread_cond_broadcast);
#define CV_PSHARED(cvp) (((cvp)->kcond.c_flags & USYNC_PROCESS_SHARED) != 0)
static void
cond_init_body(struct pthread_cond *cvp, const struct pthread_cond_attr *cattr)
{
if (cattr == NULL) {
cvp->kcond.c_clockid = CLOCK_REALTIME;
} else {
if (cattr->c_pshared)
cvp->kcond.c_flags |= USYNC_PROCESS_SHARED;
cvp->kcond.c_clockid = cattr->c_clockid;
}
}
static int
cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
{
struct pthread_cond *cvp;
const struct pthread_cond_attr *cattr;
int pshared;
cattr = cond_attr != NULL ? *cond_attr : NULL;
if (cattr == NULL || cattr->c_pshared == PTHREAD_PROCESS_PRIVATE) {
pshared = 0;
cvp = calloc(1, sizeof(struct pthread_cond));
if (cvp == NULL)
return (ENOMEM);
} else {
pshared = 1;
cvp = __thr_pshared_offpage(cond, 1);
if (cvp == NULL)
return (EFAULT);
}
/*
* Initialise the condition variable structure:
*/
cond_init_body(cvp, cattr);
*cond = pshared ? THR_PSHARED_PTR : cvp;
return (0);
}
static int
init_static(struct pthread *thread, pthread_cond_t *cond)
{
int ret;
THR_LOCK_ACQUIRE(thread, &_cond_static_lock);
if (*cond == NULL)
ret = cond_init(cond, NULL);
else
ret = 0;
THR_LOCK_RELEASE(thread, &_cond_static_lock);
return (ret);
}
#define CHECK_AND_INIT_COND \
if (*cond == THR_PSHARED_PTR) { \
cvp = __thr_pshared_offpage(cond, 0); \
if (cvp == NULL) \
return (EINVAL); \
} else if (__predict_false((cvp = (*cond)) <= THR_COND_DESTROYED)) { \
if (cvp == THR_COND_INITIALIZER) { \
int ret; \
ret = init_static(_get_curthread(), cond); \
if (ret) \
return (ret); \
} else if (cvp == THR_COND_DESTROYED) { \
return (EINVAL); \
} \
cvp = *cond; \
}
int
_pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
{
*cond = NULL;
return (cond_init(cond, cond_attr));
}
int
_pthread_cond_destroy(pthread_cond_t *cond)
{
struct pthread_cond *cvp;
int error;
error = 0;
if (*cond == THR_PSHARED_PTR) {
cvp = __thr_pshared_offpage(cond, 0);
if (cvp != NULL)
__thr_pshared_destroy(cond);
*cond = THR_COND_DESTROYED;
} else if ((cvp = *cond) == THR_COND_INITIALIZER) {
/* nothing */
} else if (cvp == THR_COND_DESTROYED) {
error = EINVAL;
} else {
cvp = *cond;
*cond = THR_COND_DESTROYED;
free(cvp);
}
return (error);
}
/*
* Cancellation behavior:
* Thread may be canceled at start, if thread is canceled, it means it
* did not get a wakeup from pthread_cond_signal(), otherwise, it is
* not canceled.
* Thread cancellation never cause wakeup from pthread_cond_signal()
* to be lost.
*/
static int
cond_wait_kernel(struct pthread_cond *cvp, struct pthread_mutex *mp,
const struct timespec *abstime, int cancel)
{
struct pthread *curthread;
int error, error2, recurse, robust;
curthread = _get_curthread();
robust = _mutex_enter_robust(curthread, mp);
error = _mutex_cv_detach(mp, &recurse);
if (error != 0) {
if (robust)
_mutex_leave_robust(curthread, mp);
return (error);
}
if (cancel)
_thr_cancel_enter2(curthread, 0);
error = _thr_ucond_wait(&cvp->kcond, &mp->m_lock, abstime,
CVWAIT_ABSTIME | CVWAIT_CLOCKID);
if (cancel)
_thr_cancel_leave(curthread, 0);
/*
* Note that PP mutex and ROBUST mutex may return
* interesting error codes.
*/
if (error == 0) {
error2 = _mutex_cv_lock(mp, recurse, true);
} else if (error == EINTR || error == ETIMEDOUT) {
error2 = _mutex_cv_lock(mp, recurse, true);
/*
* Do not do cancellation on EOWNERDEAD there. The
* cancellation cleanup handler will use the protected
* state and unlock the mutex without making the state
* consistent and the state will be unrecoverable.
*/
if (error2 == 0 && cancel) {
if (robust) {
_mutex_leave_robust(curthread, mp);
robust = false;
}
_thr_testcancel(curthread);
}
if (error == EINTR)
error = 0;
} else {
/* We know that it didn't unlock the mutex. */
_mutex_cv_attach(mp, recurse);
if (cancel) {
if (robust) {
_mutex_leave_robust(curthread, mp);
robust = false;
}
_thr_testcancel(curthread);
}
error2 = 0;
}
if (robust)
_mutex_leave_robust(curthread, mp);
return (error2 != 0 ? error2 : error);
}
/*
* Thread waits in userland queue whenever possible, when thread
* is signaled or broadcasted, it is removed from the queue, and
* is saved in curthread's defer_waiters[] buffer, but won't be
* woken up until mutex is unlocked.
*/
static int
cond_wait_user(struct pthread_cond *cvp, struct pthread_mutex *mp,
const struct timespec *abstime, int cancel)
{
struct pthread *curthread;
struct sleepqueue *sq;
int deferred, error, error2, recurse;
curthread = _get_curthread();
if (curthread->wchan != NULL)
PANIC("thread %p was already on queue.", curthread);
if (cancel)
_thr_testcancel(curthread);
_sleepq_lock(cvp);
/*
* set __has_user_waiters before unlocking mutex, this allows
* us to check it without locking in pthread_cond_signal().
*/
cvp->__has_user_waiters = 1;
deferred = 0;
(void)_mutex_cv_unlock(mp, &recurse, &deferred);
curthread->mutex_obj = mp;
_sleepq_add(cvp, curthread);
for(;;) {
_thr_clear_wake(curthread);
_sleepq_unlock(cvp);
if (deferred) {
deferred = 0;
if ((mp->m_lock.m_owner & UMUTEX_CONTESTED) == 0)
(void)_umtx_op_err(&mp->m_lock,
UMTX_OP_MUTEX_WAKE2, mp->m_lock.m_flags,
0, 0);
}
if (curthread->nwaiter_defer > 0) {
_thr_wake_all(curthread->defer_waiters,
curthread->nwaiter_defer);
curthread->nwaiter_defer = 0;
}
if (cancel)
_thr_cancel_enter2(curthread, 0);
error = _thr_sleep(curthread, cvp->kcond.c_clockid, abstime);
if (cancel)
_thr_cancel_leave(curthread, 0);
_sleepq_lock(cvp);
if (curthread->wchan == NULL) {
error = 0;
break;
} else if (cancel && SHOULD_CANCEL(curthread)) {
sq = _sleepq_lookup(cvp);
cvp->__has_user_waiters = _sleepq_remove(sq, curthread);
_sleepq_unlock(cvp);
curthread->mutex_obj = NULL;
error2 = _mutex_cv_lock(mp, recurse, false);
if (!THR_IN_CRITICAL(curthread))
_pthread_exit(PTHREAD_CANCELED);
else /* this should not happen */
return (error2);
} else if (error == ETIMEDOUT) {
sq = _sleepq_lookup(cvp);
cvp->__has_user_waiters =
_sleepq_remove(sq, curthread);
break;
}
}
_sleepq_unlock(cvp);
curthread->mutex_obj = NULL;
error2 = _mutex_cv_lock(mp, recurse, false);
if (error == 0)
error = error2;
return (error);
}
static int
cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime, int cancel)
{
struct pthread *curthread = _get_curthread();
struct pthread_cond *cvp;
struct pthread_mutex *mp;
int error;
CHECK_AND_INIT_COND
if (*mutex == THR_PSHARED_PTR) {
mp = __thr_pshared_offpage(mutex, 0);
if (mp == NULL)
return (EINVAL);
} else {
mp = *mutex;
}
if ((error = _mutex_owned(curthread, mp)) != 0)
return (error);
if (curthread->attr.sched_policy != SCHED_OTHER ||
(mp->m_lock.m_flags & (UMUTEX_PRIO_PROTECT | UMUTEX_PRIO_INHERIT |
USYNC_PROCESS_SHARED)) != 0 || CV_PSHARED(cvp))
return (cond_wait_kernel(cvp, mp, abstime, cancel));
else
return (cond_wait_user(cvp, mp, abstime, cancel));
}
int
_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return (cond_wait_common(cond, mutex, NULL, 0));
}
int
__pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return (cond_wait_common(cond, mutex, NULL, 1));
}
int
_pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec * abstime)
{
if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)
return (EINVAL);
return (cond_wait_common(cond, mutex, abstime, 0));
}
int
__pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime)
{
if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)
return (EINVAL);
return (cond_wait_common(cond, mutex, abstime, 1));
}
static int
cond_signal_common(pthread_cond_t *cond)
{
struct pthread *curthread = _get_curthread();
struct pthread *td;
struct pthread_cond *cvp;
struct pthread_mutex *mp;
struct sleepqueue *sq;
int *waddr;
int pshared;
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
CHECK_AND_INIT_COND
pshared = CV_PSHARED(cvp);
_thr_ucond_signal(&cvp->kcond);
if (pshared || cvp->__has_user_waiters == 0)
return (0);
curthread = _get_curthread();
waddr = NULL;
_sleepq_lock(cvp);
sq = _sleepq_lookup(cvp);
if (sq == NULL) {
_sleepq_unlock(cvp);
return (0);
}
td = _sleepq_first(sq);
mp = td->mutex_obj;
cvp->__has_user_waiters = _sleepq_remove(sq, td);
if (PMUTEX_OWNER_ID(mp) == TID(curthread)) {
if (curthread->nwaiter_defer >= MAX_DEFER_WAITERS) {
_thr_wake_all(curthread->defer_waiters,
curthread->nwaiter_defer);
curthread->nwaiter_defer = 0;
}
curthread->defer_waiters[curthread->nwaiter_defer++] =
&td->wake_addr->value;
mp->m_flags |= PMUTEX_FLAG_DEFERRED;
} else {
waddr = &td->wake_addr->value;
}
_sleepq_unlock(cvp);
if (waddr != NULL)
_thr_set_wake(waddr);
return (0);
}
struct broadcast_arg {
struct pthread *curthread;
unsigned int *waddrs[MAX_DEFER_WAITERS];
int count;
};
static void
drop_cb(struct pthread *td, void *arg)
{
struct broadcast_arg *ba = arg;
struct pthread_mutex *mp;
struct pthread *curthread = ba->curthread;
mp = td->mutex_obj;
if (PMUTEX_OWNER_ID(mp) == TID(curthread)) {
if (curthread->nwaiter_defer >= MAX_DEFER_WAITERS) {
_thr_wake_all(curthread->defer_waiters,
curthread->nwaiter_defer);
curthread->nwaiter_defer = 0;
}
curthread->defer_waiters[curthread->nwaiter_defer++] =
&td->wake_addr->value;
mp->m_flags |= PMUTEX_FLAG_DEFERRED;
} else {
if (ba->count >= MAX_DEFER_WAITERS) {
_thr_wake_all(ba->waddrs, ba->count);
ba->count = 0;
}
ba->waddrs[ba->count++] = &td->wake_addr->value;
}
}
static int
cond_broadcast_common(pthread_cond_t *cond)
{
int pshared;
struct pthread_cond *cvp;
struct sleepqueue *sq;
struct broadcast_arg ba;
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
CHECK_AND_INIT_COND
pshared = CV_PSHARED(cvp);
_thr_ucond_broadcast(&cvp->kcond);
if (pshared || cvp->__has_user_waiters == 0)
return (0);
ba.curthread = _get_curthread();
ba.count = 0;
_sleepq_lock(cvp);
sq = _sleepq_lookup(cvp);
if (sq == NULL) {
_sleepq_unlock(cvp);
return (0);
}
_sleepq_drop(sq, drop_cb, &ba);
cvp->__has_user_waiters = 0;
_sleepq_unlock(cvp);
if (ba.count > 0)
_thr_wake_all(ba.waddrs, ba.count);
return (0);
}
int
_pthread_cond_signal(pthread_cond_t * cond)
{
return (cond_signal_common(cond));
}
int
_pthread_cond_broadcast(pthread_cond_t * cond)
{
return (cond_broadcast_common(cond));
}