John Baldwin 192846463a Rework the witness code to work with sx locks as well as mutexes.
- Introduce lock classes and lock objects.  Each lock class specifies a
  name and set of flags (or properties) shared by all locks of a given
  type.  Currently there are three lock classes: spin mutexes, sleep
  mutexes, and sx locks.  A lock object specifies properties of an
  additional lock along with a lock name and all of the extra stuff needed
  to make witness work with a given lock.  This abstract lock stuff is
  defined in sys/lock.h.  The lockmgr constants, types, and prototypes have
  been moved to sys/lockmgr.h.  For temporary backwards compatability,
  sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
  locks held.  By making this per-cpu, we do not have to jump through
  magic hoops to deal with sched_lock changing ownership during context
  switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
  proc->p_sleeplocks, which is a list of held sleep locks including sleep
  mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
  level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
  - MTX_NOWITNESS - specifies that this lock should be ignored by witness.
    This is used for the mutex that blocks a sx lock for example.
  - MTX_QUIET - this is not new, but you can pass this to mtx_init() now
    and no events will be logged for this lock, so that one doesn't have
    to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag.  Use this flag to export
  a mtx_initialized() macro that can be safely called from drivers.  Also,
  we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
  performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
  more accurate file and line numbers.
2001-03-28 09:03:24 +00:00

81 lines
3.0 KiB
C

/*-
* Copyright (c) 1999 Luoqi Chen <luoqi@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _MACHINE_GLOBALDATA_H_
#define _MACHINE_GLOBALDATA_H_
#ifdef _KERNEL
#include <sys/queue.h>
/*
* This structure maps out the global data that needs to be kept on a
* per-cpu basis. genassym uses this to generate offsets for the assembler
* code, which also provides external symbols so that C can get at them as
* though they were really globals. This structure is pointed to by
* the per-cpu system value (see alpha_pal_rdval() and alpha_pal_wrval()).
* Inside the kernel, the globally reserved register t7 is used to
* point at the globaldata structure.
*/
struct globaldata {
struct alpha_pcb gd_idlepcb; /* pcb for idling */
struct proc *gd_curproc; /* current process */
struct proc *gd_idleproc; /* idle process */
struct proc *gd_fpcurproc; /* fp state owner */
struct pcb *gd_curpcb; /* current pcb */
struct timeval gd_switchtime;
int gd_switchticks;
u_int gd_cpuid; /* this cpu number */
u_int gd_other_cpus; /* all other cpus */
u_int64_t gd_idlepcbphys; /* pa of gd_idlepcb */
u_int64_t gd_pending_ipis; /* pending IPI events */
u_int32_t gd_next_asn; /* next ASN to allocate */
u_int32_t gd_current_asngen; /* ASN rollover check */
SLIST_ENTRY(globaldata) gd_allcpu;
struct lock_list_entry *gd_spinlocks;
#ifdef KTR_PERCPU
volatile int gd_ktr_idx; /* Index into trace table */
char *gd_ktr_buf;
char gd_ktr_buf_data[0];
#endif
};
SLIST_HEAD(cpuhead, globaldata);
extern struct cpuhead cpuhead;
void globaldata_init(struct globaldata *pcpu, int cpuid, size_t sz);
struct globaldata *globaldata_find(int cpuid);
#ifdef SMP
void globaldata_register(struct globaldata *pcpu);
#endif
#endif /* _KERNEL */
#endif /* !_MACHINE_GLOBALDATA_H_ */