2cec876a59
The C11 standard introduced a set of macros (CMPLX, CMPLXF, CMPLXL) that can be used to construct complex numbers from a pair of real and imaginary numbers. Unfortunately, they require some compiler support, which is why we only define them for Clang and GCC>=4.7. The cpack() function in libm performs the same task as CMPLX(), but cannot be used to generate compile-time constants. This means that all invocations of cpack() can safely be replaced by C11's CMPLX(). To keep the code building with GCC 4.2, provide copies of CMPLX() that can at least be used to generate run-time complex numbers. This makes it easier to build some of the functions outside of libm.
394 lines
9.2 KiB
C
394 lines
9.2 KiB
C
/*-
|
|
* Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The algorithm is very close to that in "Implementing the complex arcsine
|
|
* and arccosine functions using exception handling" by T. E. Hull, Thomas F.
|
|
* Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
|
|
* Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
|
|
* http://dl.acm.org/citation.cfm?id=275324.
|
|
*
|
|
* See catrig.c for complete comments.
|
|
*
|
|
* XXX comments were removed automatically, and even short ones on the right
|
|
* of statements were removed (all of them), contrary to normal style. Only
|
|
* a few comments on the right of declarations remain.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <complex.h>
|
|
#include <float.h>
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
#undef isinf
|
|
#define isinf(x) (fabsf(x) == INFINITY)
|
|
#undef isnan
|
|
#define isnan(x) ((x) != (x))
|
|
#define raise_inexact() do { volatile float junk = 1 + tiny; } while(0)
|
|
#undef signbit
|
|
#define signbit(x) (__builtin_signbitf(x))
|
|
|
|
static const float
|
|
A_crossover = 10,
|
|
B_crossover = 0.6417,
|
|
FOUR_SQRT_MIN = 0x1p-61,
|
|
QUARTER_SQRT_MAX = 0x1p61,
|
|
m_e = 2.7182818285e0, /* 0xadf854.0p-22 */
|
|
m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */
|
|
pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */
|
|
RECIP_EPSILON = 1 / FLT_EPSILON,
|
|
SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */
|
|
SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */
|
|
SQRT_MIN = 0x1p-63;
|
|
|
|
static const volatile float
|
|
pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */
|
|
tiny = 0x1p-100;
|
|
|
|
static float complex clog_for_large_values(float complex z);
|
|
|
|
static inline float
|
|
f(float a, float b, float hypot_a_b)
|
|
{
|
|
if (b < 0)
|
|
return ((hypot_a_b - b) / 2);
|
|
if (b == 0)
|
|
return (a / 2);
|
|
return (a * a / (hypot_a_b + b) / 2);
|
|
}
|
|
|
|
static inline void
|
|
do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
|
|
float *sqrt_A2my2, float *new_y)
|
|
{
|
|
float R, S, A;
|
|
float Am1, Amy;
|
|
|
|
R = hypotf(x, y + 1);
|
|
S = hypotf(x, y - 1);
|
|
|
|
A = (R + S) / 2;
|
|
if (A < 1)
|
|
A = 1;
|
|
|
|
if (A < A_crossover) {
|
|
if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
|
|
*rx = sqrtf(x);
|
|
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
|
|
Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
|
|
*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
|
|
} else if (y < 1) {
|
|
*rx = x / sqrtf((1 - y) * (1 + y));
|
|
} else {
|
|
*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
|
|
}
|
|
} else {
|
|
*rx = logf(A + sqrtf(A * A - 1));
|
|
}
|
|
|
|
*new_y = y;
|
|
|
|
if (y < FOUR_SQRT_MIN) {
|
|
*B_is_usable = 0;
|
|
*sqrt_A2my2 = A * (2 / FLT_EPSILON);
|
|
*new_y = y * (2 / FLT_EPSILON);
|
|
return;
|
|
}
|
|
|
|
*B = y / A;
|
|
*B_is_usable = 1;
|
|
|
|
if (*B > B_crossover) {
|
|
*B_is_usable = 0;
|
|
if (y == 1 && x < FLT_EPSILON / 128) {
|
|
*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
|
|
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
|
|
Amy = f(x, y + 1, R) + f(x, y - 1, S);
|
|
*sqrt_A2my2 = sqrtf(Amy * (A + y));
|
|
} else if (y > 1) {
|
|
*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
|
|
sqrtf((y + 1) * (y - 1));
|
|
*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
|
|
} else {
|
|
*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
|
|
}
|
|
}
|
|
}
|
|
|
|
float complex
|
|
casinhf(float complex z)
|
|
{
|
|
float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
|
|
int B_is_usable;
|
|
float complex w;
|
|
|
|
x = crealf(z);
|
|
y = cimagf(z);
|
|
ax = fabsf(x);
|
|
ay = fabsf(y);
|
|
|
|
if (isnan(x) || isnan(y)) {
|
|
if (isinf(x))
|
|
return (CMPLXF(x, y + y));
|
|
if (isinf(y))
|
|
return (CMPLXF(y, x + x));
|
|
if (y == 0)
|
|
return (CMPLXF(x + x, y));
|
|
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
|
}
|
|
|
|
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
|
if (signbit(x) == 0)
|
|
w = clog_for_large_values(z) + m_ln2;
|
|
else
|
|
w = clog_for_large_values(-z) + m_ln2;
|
|
return (CMPLXF(copysignf(crealf(w), x),
|
|
copysignf(cimagf(w), y)));
|
|
}
|
|
|
|
if (x == 0 && y == 0)
|
|
return (z);
|
|
|
|
raise_inexact();
|
|
|
|
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
|
|
return (z);
|
|
|
|
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
|
|
if (B_is_usable)
|
|
ry = asinf(B);
|
|
else
|
|
ry = atan2f(new_y, sqrt_A2my2);
|
|
return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
|
|
}
|
|
|
|
float complex
|
|
casinf(float complex z)
|
|
{
|
|
float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
|
|
|
|
return (CMPLXF(cimagf(w), crealf(w)));
|
|
}
|
|
|
|
float complex
|
|
cacosf(float complex z)
|
|
{
|
|
float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
|
|
int sx, sy;
|
|
int B_is_usable;
|
|
float complex w;
|
|
|
|
x = crealf(z);
|
|
y = cimagf(z);
|
|
sx = signbit(x);
|
|
sy = signbit(y);
|
|
ax = fabsf(x);
|
|
ay = fabsf(y);
|
|
|
|
if (isnan(x) || isnan(y)) {
|
|
if (isinf(x))
|
|
return (CMPLXF(y + y, -INFINITY));
|
|
if (isinf(y))
|
|
return (CMPLXF(x + x, -y));
|
|
if (x == 0)
|
|
return (CMPLXF(pio2_hi + pio2_lo, y + y));
|
|
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
|
}
|
|
|
|
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
|
w = clog_for_large_values(z);
|
|
rx = fabsf(cimagf(w));
|
|
ry = crealf(w) + m_ln2;
|
|
if (sy == 0)
|
|
ry = -ry;
|
|
return (CMPLXF(rx, ry));
|
|
}
|
|
|
|
if (x == 1 && y == 0)
|
|
return (CMPLXF(0, -y));
|
|
|
|
raise_inexact();
|
|
|
|
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
|
|
return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
|
|
|
|
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
|
|
if (B_is_usable) {
|
|
if (sx == 0)
|
|
rx = acosf(B);
|
|
else
|
|
rx = acosf(-B);
|
|
} else {
|
|
if (sx == 0)
|
|
rx = atan2f(sqrt_A2mx2, new_x);
|
|
else
|
|
rx = atan2f(sqrt_A2mx2, -new_x);
|
|
}
|
|
if (sy == 0)
|
|
ry = -ry;
|
|
return (CMPLXF(rx, ry));
|
|
}
|
|
|
|
float complex
|
|
cacoshf(float complex z)
|
|
{
|
|
float complex w;
|
|
float rx, ry;
|
|
|
|
w = cacosf(z);
|
|
rx = crealf(w);
|
|
ry = cimagf(w);
|
|
if (isnan(rx) && isnan(ry))
|
|
return (CMPLXF(ry, rx));
|
|
if (isnan(rx))
|
|
return (CMPLXF(fabsf(ry), rx));
|
|
if (isnan(ry))
|
|
return (CMPLXF(ry, ry));
|
|
return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
|
|
}
|
|
|
|
static float complex
|
|
clog_for_large_values(float complex z)
|
|
{
|
|
float x, y;
|
|
float ax, ay, t;
|
|
|
|
x = crealf(z);
|
|
y = cimagf(z);
|
|
ax = fabsf(x);
|
|
ay = fabsf(y);
|
|
if (ax < ay) {
|
|
t = ax;
|
|
ax = ay;
|
|
ay = t;
|
|
}
|
|
|
|
if (ax > FLT_MAX / 2)
|
|
return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
|
|
atan2f(y, x)));
|
|
|
|
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
|
|
return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
|
|
|
|
return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
|
|
}
|
|
|
|
static inline float
|
|
sum_squares(float x, float y)
|
|
{
|
|
|
|
if (y < SQRT_MIN)
|
|
return (x * x);
|
|
|
|
return (x * x + y * y);
|
|
}
|
|
|
|
static inline float
|
|
real_part_reciprocal(float x, float y)
|
|
{
|
|
float scale;
|
|
uint32_t hx, hy;
|
|
int32_t ix, iy;
|
|
|
|
GET_FLOAT_WORD(hx, x);
|
|
ix = hx & 0x7f800000;
|
|
GET_FLOAT_WORD(hy, y);
|
|
iy = hy & 0x7f800000;
|
|
#define BIAS (FLT_MAX_EXP - 1)
|
|
#define CUTOFF (FLT_MANT_DIG / 2 + 1)
|
|
if (ix - iy >= CUTOFF << 23 || isinf(x))
|
|
return (1 / x);
|
|
if (iy - ix >= CUTOFF << 23)
|
|
return (x / y / y);
|
|
if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
|
|
return (x / (x * x + y * y));
|
|
SET_FLOAT_WORD(scale, 0x7f800000 - ix);
|
|
x *= scale;
|
|
y *= scale;
|
|
return (x / (x * x + y * y) * scale);
|
|
}
|
|
|
|
float complex
|
|
catanhf(float complex z)
|
|
{
|
|
float x, y, ax, ay, rx, ry;
|
|
|
|
x = crealf(z);
|
|
y = cimagf(z);
|
|
ax = fabsf(x);
|
|
ay = fabsf(y);
|
|
|
|
if (y == 0 && ax <= 1)
|
|
return (CMPLXF(atanhf(x), y));
|
|
|
|
if (x == 0)
|
|
return (CMPLXF(x, atanf(y)));
|
|
|
|
if (isnan(x) || isnan(y)) {
|
|
if (isinf(x))
|
|
return (CMPLXF(copysignf(0, x), y + y));
|
|
if (isinf(y))
|
|
return (CMPLXF(copysignf(0, x),
|
|
copysignf(pio2_hi + pio2_lo, y)));
|
|
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
|
}
|
|
|
|
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
|
|
return (CMPLXF(real_part_reciprocal(x, y),
|
|
copysignf(pio2_hi + pio2_lo, y)));
|
|
|
|
if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
|
|
raise_inexact();
|
|
return (z);
|
|
}
|
|
|
|
if (ax == 1 && ay < FLT_EPSILON)
|
|
rx = (m_ln2 - logf(ay)) / 2;
|
|
else
|
|
rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
|
|
|
|
if (ax == 1)
|
|
ry = atan2f(2, -ay) / 2;
|
|
else if (ay < FLT_EPSILON)
|
|
ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
|
|
else
|
|
ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
|
|
|
|
return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
|
|
}
|
|
|
|
float complex
|
|
catanf(float complex z)
|
|
{
|
|
float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
|
|
|
|
return (CMPLXF(cimagf(w), crealf(w)));
|
|
}
|