freebsd-nq/sys/dev/netmap/netmap_kern.h
Navdeep Parhar 9721a22d4a Change netmap's global lock to sx instead of a mutex.
Reviewed by:	luigi@
MFC after:	1 day
2014-08-20 23:37:44 +00:00

1622 lines
50 KiB
C

/*
* Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
* Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*
* The header contains the definitions of constants and function
* prototypes used only in kernelspace.
*/
#ifndef _NET_NETMAP_KERN_H_
#define _NET_NETMAP_KERN_H_
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#if defined(__FreeBSD__)
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#define NM_LOCK_T struct mtx
#define NMG_LOCK_T struct sx
#define NMG_LOCK_INIT() sx_init(&netmap_global_lock, \
"netmap global lock")
#define NMG_LOCK_DESTROY() sx_destroy(&netmap_global_lock)
#define NMG_LOCK() sx_xlock(&netmap_global_lock)
#define NMG_UNLOCK() sx_xunlock(&netmap_global_lock)
#define NMG_LOCK_ASSERT() sx_assert(&netmap_global_lock, SA_XLOCKED)
#define NM_SELINFO_T struct selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
#define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m)
#define NM_ATOMIC_T volatile int // XXX ?
/* atomic operations */
#include <machine/atomic.h>
#define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
#define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
#if __FreeBSD_version >= 1100005
struct netmap_adapter *netmap_getna(if_t ifp);
#endif
#if __FreeBSD_version >= 1100027
#define GET_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ext_cnt) = x
#define PNT_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt)
#else
#define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x
#define PNT_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt)
#endif
MALLOC_DECLARE(M_NETMAP);
// XXX linux struct, not used in FreeBSD
struct net_device_ops {
};
struct ethtool_ops {
};
struct hrtimer {
};
#elif defined (linux)
#define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
#define NM_SELINFO_T wait_queue_head_t
#define MBUF_LEN(m) ((m)->len)
#define MBUF_IFP(m) ((m)->dev)
#define NM_SEND_UP(ifp, m) \
do { \
m->priority = NM_MAGIC_PRIORITY_RX; \
netif_rx(m); \
} while (0)
#define NM_ATOMIC_T volatile long unsigned int
// XXX a mtx would suffice here too 20130404 gl
#define NMG_LOCK_T struct semaphore
#define NMG_LOCK_INIT() sema_init(&netmap_global_lock, 1)
#define NMG_LOCK_DESTROY()
#define NMG_LOCK() down(&netmap_global_lock)
#define NMG_UNLOCK() up(&netmap_global_lock)
#define NMG_LOCK_ASSERT() // XXX to be completed
#ifndef DEV_NETMAP
#define DEV_NETMAP
#endif /* DEV_NETMAP */
#elif defined (__APPLE__)
#warning apple support is incomplete.
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define NM_LOCK_T IOLock *
#define NM_SELINFO_T struct selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m)
#else
#error unsupported platform
#endif /* end - platform-specific code */
#define ND(format, ...)
#define D(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
printf("%03d.%06d [%4d] %-25s " format "\n", \
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
/* rate limited, lps indicates how many per second */
#define RD(lps, format, ...) \
do { \
static int t0, __cnt; \
if (t0 != time_second) { \
t0 = time_second; \
__cnt = 0; \
} \
if (__cnt++ < lps) \
D(format, ##__VA_ARGS__); \
} while (0)
struct netmap_adapter;
struct nm_bdg_fwd;
struct nm_bridge;
struct netmap_priv_d;
const char *nm_dump_buf(char *p, int len, int lim, char *dst);
#include "netmap_mbq.h"
extern NMG_LOCK_T netmap_global_lock;
/*
* private, kernel view of a ring. Keeps track of the status of
* a ring across system calls.
*
* nr_hwcur index of the next buffer to refill.
* It corresponds to ring->head
* at the time the system call returns.
*
* nr_hwtail index of the first buffer owned by the kernel.
* On RX, hwcur->hwtail are receive buffers
* not yet released. hwcur is advanced following
* ring->head, hwtail is advanced on incoming packets,
* and a wakeup is generated when hwtail passes ring->cur
* On TX, hwcur->rcur have been filled by the sender
* but not sent yet to the NIC; rcur->hwtail are available
* for new transmissions, and hwtail->hwcur-1 are pending
* transmissions not yet acknowledged.
*
* The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
* This is so that, on a reset, buffers owned by userspace are not
* modified by the kernel. In particular:
* RX rings: the next empty buffer (hwtail + hwofs) coincides with
* the next empty buffer as known by the hardware (next_to_check or so).
* TX rings: hwcur + hwofs coincides with next_to_send
*
* For received packets, slot->flags is set to nkr_slot_flags
* so we can provide a proper initial value (e.g. set NS_FORWARD
* when operating in 'transparent' mode).
*
* The following fields are used to implement lock-free copy of packets
* from input to output ports in VALE switch:
* nkr_hwlease buffer after the last one being copied.
* A writer in nm_bdg_flush reserves N buffers
* from nr_hwlease, advances it, then does the
* copy outside the lock.
* In RX rings (used for VALE ports),
* nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
* In TX rings (used for NIC or host stack ports)
* nkr_hwcur <= nkr_hwlease < nkr_hwtail
* nkr_leases array of nkr_num_slots where writers can report
* completion of their block. NR_NOSLOT (~0) indicates
* that the writer has not finished yet
* nkr_lease_idx index of next free slot in nr_leases, to be assigned
*
* The kring is manipulated by txsync/rxsync and generic netmap function.
*
* Concurrent rxsync or txsync on the same ring are prevented through
* by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
* for NIC rings, and for TX rings attached to the host stack.
*
* RX rings attached to the host stack use an mbq (rx_queue) on both
* rxsync_from_host() and netmap_transmit(). The mbq is protected
* by its internal lock.
*
* RX rings attached to the VALE switch are accessed by both senders
* and receiver. They are protected through the q_lock on the RX ring.
*/
struct netmap_kring {
struct netmap_ring *ring;
uint32_t nr_hwcur;
uint32_t nr_hwtail;
/*
* Copies of values in user rings, so we do not need to look
* at the ring (which could be modified). These are set in the
* *sync_prologue()/finalize() routines.
*/
uint32_t rhead;
uint32_t rcur;
uint32_t rtail;
uint32_t nr_kflags; /* private driver flags */
#define NKR_PENDINTR 0x1 // Pending interrupt.
uint32_t nkr_num_slots;
/*
* On a NIC reset, the NIC ring indexes may be reset but the
* indexes in the netmap rings remain the same. nkr_hwofs
* keeps track of the offset between the two.
*/
int32_t nkr_hwofs;
uint16_t nkr_slot_flags; /* initial value for flags */
/* last_reclaim is opaque marker to help reduce the frequency
* of operations such as reclaiming tx buffers. A possible use
* is set it to ticks and do the reclaim only once per tick.
*/
uint64_t last_reclaim;
NM_SELINFO_T si; /* poll/select wait queue */
NM_LOCK_T q_lock; /* protects kring and ring. */
NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
struct netmap_adapter *na;
/* The folloiwing fields are for VALE switch support */
struct nm_bdg_fwd *nkr_ft;
uint32_t *nkr_leases;
#define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
uint32_t nkr_hwlease;
uint32_t nkr_lease_idx;
/* while nkr_stopped is set, no new [tr]xsync operations can
* be started on this kring.
* This is used by netmap_disable_all_rings()
* to find a synchronization point where critical data
* structures pointed to by the kring can be added or removed
*/
volatile int nkr_stopped;
/* Support for adapters without native netmap support.
* On tx rings we preallocate an array of tx buffers
* (same size as the netmap ring), on rx rings we
* store incoming mbufs in a queue that is drained by
* a rxsync.
*/
struct mbuf **tx_pool;
// u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */
struct mbq rx_queue; /* intercepted rx mbufs. */
uint32_t ring_id; /* debugging */
char name[64]; /* diagnostic */
/* [tx]sync callback for this kring.
* The default nm_kring_create callback (netmap_krings_create)
* sets the nm_sync callback of each hardware tx(rx) kring to
* the corresponding nm_txsync(nm_rxsync) taken from the
* netmap_adapter; moreover, it sets the sync callback
* of the host tx(rx) ring to netmap_txsync_to_host
* (netmap_rxsync_from_host).
*
* Overrides: the above configuration is not changed by
* any of the nm_krings_create callbacks.
*/
int (*nm_sync)(struct netmap_kring *kring, int flags);
#ifdef WITH_PIPES
struct netmap_kring *pipe; /* if this is a pipe ring,
* pointer to the other end
*/
struct netmap_ring *save_ring; /* pointer to hidden rings
* (see netmap_pipe.c for details)
*/
#endif /* WITH_PIPES */
#ifdef WITH_MONITOR
/* pointer to the adapter that is monitoring this kring (if any)
*/
struct netmap_monitor_adapter *monitor;
/*
* Monitors work by intercepting the txsync and/or rxsync of the
* monitored krings. This is implemented by replacing
* the nm_sync pointer above and saving the previous
* one in save_sync below.
*/
int (*save_sync)(struct netmap_kring *kring, int flags);
#endif
} __attribute__((__aligned__(64)));
/* return the next index, with wraparound */
static inline uint32_t
nm_next(uint32_t i, uint32_t lim)
{
return unlikely (i == lim) ? 0 : i + 1;
}
/* return the previous index, with wraparound */
static inline uint32_t
nm_prev(uint32_t i, uint32_t lim)
{
return unlikely (i == 0) ? lim : i - 1;
}
/*
*
* Here is the layout for the Rx and Tx rings.
RxRING TxRING
+-----------------+ +-----------------+
| | | |
|XXX free slot XXX| |XXX free slot XXX|
+-----------------+ +-----------------+
head->| owned by user |<-hwcur | not sent to nic |<-hwcur
| | | yet |
+-----------------+ | |
cur->| available to | | |
| user, not read | +-----------------+
| yet | cur->| (being |
| | | prepared) |
| | | |
+-----------------+ + ------ +
tail->| |<-hwtail | |<-hwlease
| (being | ... | | ...
| prepared) | ... | | ...
+-----------------+ ... | | ...
| |<-hwlease +-----------------+
| | tail->| |<-hwtail
| | | |
| | | |
| | | |
+-----------------+ +-----------------+
* The cur/tail (user view) and hwcur/hwtail (kernel view)
* are used in the normal operation of the card.
*
* When a ring is the output of a switch port (Rx ring for
* a VALE port, Tx ring for the host stack or NIC), slots
* are reserved in blocks through 'hwlease' which points
* to the next unused slot.
* On an Rx ring, hwlease is always after hwtail,
* and completions cause hwtail to advance.
* On a Tx ring, hwlease is always between cur and hwtail,
* and completions cause cur to advance.
*
* nm_kr_space() returns the maximum number of slots that
* can be assigned.
* nm_kr_lease() reserves the required number of buffers,
* advances nkr_hwlease and also returns an entry in
* a circular array where completions should be reported.
*/
enum txrx { NR_RX = 0, NR_TX = 1 };
struct netmap_vp_adapter; // forward
/*
* The "struct netmap_adapter" extends the "struct adapter"
* (or equivalent) device descriptor.
* It contains all base fields needed to support netmap operation.
* There are in fact different types of netmap adapters
* (native, generic, VALE switch...) so a netmap_adapter is
* just the first field in the derived type.
*/
struct netmap_adapter {
/*
* On linux we do not have a good way to tell if an interface
* is netmap-capable. So we always use the following trick:
* NA(ifp) points here, and the first entry (which hopefully
* always exists and is at least 32 bits) contains a magic
* value which we can use to detect that the interface is good.
*/
uint32_t magic;
uint32_t na_flags; /* enabled, and other flags */
#define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
* useful during initialization
*/
#define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
#define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
* forwarding packets coming from this
* interface
*/
#define NAF_MEM_OWNER 8 /* the adapter is responsible for the
* deallocation of the memory allocator
*/
#define NAF_NATIVE_ON 16 /* the adapter is native and the attached
* interface is in netmap mode.
* Virtual ports (vale, pipe, monitor...)
* should never use this flag.
*/
#define NAF_NETMAP_ON 32 /* netmap is active (either native or
* emulated). Where possible (e.g. FreeBSD)
* IFCAP_NETMAP also mirrors this flag.
*/
#define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
#define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
#define NAF_BUSY (1U<<31) /* the adapter is used internally and
* cannot be registered from userspace
*/
int active_fds; /* number of user-space descriptors using this
interface, which is equal to the number of
struct netmap_if objs in the mapped region. */
u_int num_rx_rings; /* number of adapter receive rings */
u_int num_tx_rings; /* number of adapter transmit rings */
u_int num_tx_desc; /* number of descriptor in each queue */
u_int num_rx_desc;
/* tx_rings and rx_rings are private but allocated
* as a contiguous chunk of memory. Each array has
* N+1 entries, for the adapter queues and for the host queue.
*/
struct netmap_kring *tx_rings; /* array of TX rings. */
struct netmap_kring *rx_rings; /* array of RX rings. */
void *tailroom; /* space below the rings array */
/* (used for leases) */
NM_SELINFO_T tx_si, rx_si; /* global wait queues */
/* count users of the global wait queues */
int tx_si_users, rx_si_users;
void *pdev; /* used to store pci device */
/* copy of if_qflush and if_transmit pointers, to intercept
* packets from the network stack when netmap is active.
*/
int (*if_transmit)(struct ifnet *, struct mbuf *);
/* copy of if_input for netmap_send_up() */
void (*if_input)(struct ifnet *, struct mbuf *);
/* references to the ifnet and device routines, used by
* the generic netmap functions.
*/
struct ifnet *ifp; /* adapter is ifp->if_softc */
/*---- callbacks for this netmap adapter -----*/
/*
* nm_dtor() is the cleanup routine called when destroying
* the adapter.
* Called with NMG_LOCK held.
*
* nm_register() is called on NIOCREGIF and close() to enter
* or exit netmap mode on the NIC
* Called with NNG_LOCK held.
*
* nm_txsync() pushes packets to the underlying hw/switch
*
* nm_rxsync() collects packets from the underlying hw/switch
*
* nm_config() returns configuration information from the OS
* Called with NMG_LOCK held.
*
* nm_krings_create() create and init the tx_rings and
* rx_rings arrays of kring structures. In particular,
* set the nm_sync callbacks for each ring.
* There is no need to also allocate the corresponding
* netmap_rings, since netmap_mem_rings_create() will always
* be called to provide the missing ones.
* Called with NNG_LOCK held.
*
* nm_krings_delete() cleanup and delete the tx_rings and rx_rings
* arrays
* Called with NMG_LOCK held.
*
* nm_notify() is used to act after data have become available
* (or the stopped state of the ring has changed)
* For hw devices this is typically a selwakeup(),
* but for NIC/host ports attached to a switch (or vice-versa)
* we also need to invoke the 'txsync' code downstream.
*/
void (*nm_dtor)(struct netmap_adapter *);
int (*nm_register)(struct netmap_adapter *, int onoff);
int (*nm_txsync)(struct netmap_kring *kring, int flags);
int (*nm_rxsync)(struct netmap_kring *kring, int flags);
#define NAF_FORCE_READ 1
#define NAF_FORCE_RECLAIM 2
/* return configuration information */
int (*nm_config)(struct netmap_adapter *,
u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
int (*nm_krings_create)(struct netmap_adapter *);
void (*nm_krings_delete)(struct netmap_adapter *);
int (*nm_notify)(struct netmap_adapter *,
u_int ring, enum txrx, int flags);
#define NAF_DISABLE_NOTIFY 8 /* notify that the stopped state of the
* ring has changed (kring->nkr_stopped)
*/
#ifdef WITH_VALE
/*
* nm_bdg_attach() initializes the na_vp field to point
* to an adapter that can be attached to a VALE switch. If the
* current adapter is already a VALE port, na_vp is simply a cast;
* otherwise, na_vp points to a netmap_bwrap_adapter.
* If applicable, this callback also initializes na_hostvp,
* that can be used to connect the adapter host rings to the
* switch.
* Called with NMG_LOCK held.
*
* nm_bdg_ctl() is called on the actual attach/detach to/from
* to/from the switch, to perform adapter-specific
* initializations
* Called with NMG_LOCK held.
*/
int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
/* adapter used to attach this adapter to a VALE switch (if any) */
struct netmap_vp_adapter *na_vp;
/* adapter used to attach the host rings of this adapter
* to a VALE switch (if any) */
struct netmap_vp_adapter *na_hostvp;
#endif
/* standard refcount to control the lifetime of the adapter
* (it should be equal to the lifetime of the corresponding ifp)
*/
int na_refcount;
/* memory allocator (opaque)
* We also cache a pointer to the lut_entry for translating
* buffer addresses, and the total number of buffers.
*/
struct netmap_mem_d *nm_mem;
struct lut_entry *na_lut;
uint32_t na_lut_objtotal; /* max buffer index */
uint32_t na_lut_objsize; /* buffer size */
/* additional information attached to this adapter
* by other netmap subsystems. Currently used by
* bwrap and LINUX/v1000.
*/
void *na_private;
#ifdef WITH_PIPES
/* array of pipes that have this adapter as a parent */
struct netmap_pipe_adapter **na_pipes;
int na_next_pipe; /* next free slot in the array */
int na_max_pipes; /* size of the array */
#endif /* WITH_PIPES */
char name[64];
};
/*
* If the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMG_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
#define NETMAP_OWNED_BY_ANY(na) \
(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
/*
* derived netmap adapters for various types of ports
*/
struct netmap_vp_adapter { /* VALE software port */
struct netmap_adapter up;
/*
* Bridge support:
*
* bdg_port is the port number used in the bridge;
* na_bdg points to the bridge this NA is attached to.
*/
int bdg_port;
struct nm_bridge *na_bdg;
int retry;
/* Offset of ethernet header for each packet. */
u_int virt_hdr_len;
/* Maximum Frame Size, used in bdg_mismatch_datapath() */
u_int mfs;
};
struct netmap_hw_adapter { /* physical device */
struct netmap_adapter up;
struct net_device_ops nm_ndo; // XXX linux only
struct ethtool_ops nm_eto; // XXX linux only
const struct ethtool_ops* save_ethtool;
int (*nm_hw_register)(struct netmap_adapter *, int onoff);
};
/* Mitigation support. */
struct nm_generic_mit {
struct hrtimer mit_timer;
int mit_pending;
int mit_ring_idx; /* index of the ring being mitigated */
struct netmap_adapter *mit_na; /* backpointer */
};
struct netmap_generic_adapter { /* emulated device */
struct netmap_hw_adapter up;
/* Pointer to a previously used netmap adapter. */
struct netmap_adapter *prev;
/* generic netmap adapters support:
* a net_device_ops struct overrides ndo_select_queue(),
* save_if_input saves the if_input hook (FreeBSD),
* mit implements rx interrupt mitigation,
*/
struct net_device_ops generic_ndo;
void (*save_if_input)(struct ifnet *, struct mbuf *);
struct nm_generic_mit *mit;
#ifdef linux
netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
#endif
};
static __inline int
netmap_real_tx_rings(struct netmap_adapter *na)
{
return na->num_tx_rings + !!(na->na_flags & NAF_HOST_RINGS);
}
static __inline int
netmap_real_rx_rings(struct netmap_adapter *na)
{
return na->num_rx_rings + !!(na->na_flags & NAF_HOST_RINGS);
}
#ifdef WITH_VALE
/*
* Bridge wrapper for non VALE ports attached to a VALE switch.
*
* The real device must already have its own netmap adapter (hwna).
* The bridge wrapper and the hwna adapter share the same set of
* netmap rings and buffers, but they have two separate sets of
* krings descriptors, with tx/rx meanings swapped:
*
* netmap
* bwrap krings rings krings hwna
* +------+ +------+ +-----+ +------+ +------+
* |tx_rings->| |\ /| |----| |<-tx_rings|
* | | +------+ \ / +-----+ +------+ | |
* | | X | |
* | | / \ | |
* | | +------+/ \+-----+ +------+ | |
* |rx_rings->| | | |----| |<-rx_rings|
* | | +------+ +-----+ +------+ | |
* +------+ +------+
*
* - packets coming from the bridge go to the brwap rx rings,
* which are also the hwna tx rings. The bwrap notify callback
* will then complete the hwna tx (see netmap_bwrap_notify).
*
* - packets coming from the outside go to the hwna rx rings,
* which are also the bwrap tx rings. The (overwritten) hwna
* notify method will then complete the bridge tx
* (see netmap_bwrap_intr_notify).
*
* The bridge wrapper may optionally connect the hwna 'host' rings
* to the bridge. This is done by using a second port in the
* bridge and connecting it to the 'host' netmap_vp_adapter
* contained in the netmap_bwrap_adapter. The brwap host adapter
* cross-links the hwna host rings in the same way as shown above.
*
* - packets coming from the bridge and directed to the host stack
* are handled by the bwrap host notify callback
* (see netmap_bwrap_host_notify)
*
* - packets coming from the host stack are still handled by the
* overwritten hwna notify callback (netmap_bwrap_intr_notify),
* but are diverted to the host adapter depending on the ring number.
*
*/
struct netmap_bwrap_adapter {
struct netmap_vp_adapter up;
struct netmap_vp_adapter host; /* for host rings */
struct netmap_adapter *hwna; /* the underlying device */
/* backup of the hwna notify callback */
int (*save_notify)(struct netmap_adapter *,
u_int ring, enum txrx, int flags);
/* backup of the hwna memory allocator */
struct netmap_mem_d *save_nmd;
/*
* When we attach a physical interface to the bridge, we
* allow the controlling process to terminate, so we need
* a place to store the n_detmap_priv_d data structure.
* This is only done when physical interfaces
* are attached to a bridge.
*/
struct netmap_priv_d *na_kpriv;
};
int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
#endif /* WITH_VALE */
#ifdef WITH_PIPES
#define NM_MAXPIPES 64 /* max number of pipes per adapter */
struct netmap_pipe_adapter {
struct netmap_adapter up;
u_int id; /* pipe identifier */
int role; /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
struct netmap_adapter *parent; /* adapter that owns the memory */
struct netmap_pipe_adapter *peer; /* the other end of the pipe */
int peer_ref; /* 1 iff we are holding a ref to the peer */
u_int parent_slot; /* index in the parent pipe array */
};
#endif /* WITH_PIPES */
/* return slots reserved to rx clients; used in drivers */
static inline uint32_t
nm_kr_rxspace(struct netmap_kring *k)
{
int space = k->nr_hwtail - k->nr_hwcur;
if (space < 0)
space += k->nkr_num_slots;
ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
return space;
}
/* True if no space in the tx ring. only valid after txsync_prologue */
static inline int
nm_kr_txempty(struct netmap_kring *kring)
{
return kring->rcur == kring->nr_hwtail;
}
/*
* protect against multiple threads using the same ring.
* also check that the ring has not been stopped.
* We only care for 0 or !=0 as a return code.
*/
#define NM_KR_BUSY 1
#define NM_KR_STOPPED 2
static __inline void nm_kr_put(struct netmap_kring *kr)
{
NM_ATOMIC_CLEAR(&kr->nr_busy);
}
static __inline int nm_kr_tryget(struct netmap_kring *kr)
{
/* check a first time without taking the lock
* to avoid starvation for nm_kr_get()
*/
if (unlikely(kr->nkr_stopped)) {
ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
return NM_KR_STOPPED;
}
if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
return NM_KR_BUSY;
/* check a second time with lock held */
if (unlikely(kr->nkr_stopped)) {
ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
nm_kr_put(kr);
return NM_KR_STOPPED;
}
return 0;
}
/*
* The following functions are used by individual drivers to
* support netmap operation.
*
* netmap_attach() initializes a struct netmap_adapter, allocating the
* struct netmap_ring's and the struct selinfo.
*
* netmap_detach() frees the memory allocated by netmap_attach().
*
* netmap_transmit() replaces the if_transmit routine of the interface,
* and is used to intercept packets coming from the stack.
*
* netmap_load_map/netmap_reload_map are helper routines to set/reset
* the dmamap for a packet buffer
*
* netmap_reset() is a helper routine to be called in the hw driver
* when reinitializing a ring. It should not be called by
* virtual ports (vale, pipes, monitor)
*/
int netmap_attach(struct netmap_adapter *);
void netmap_detach(struct ifnet *);
int netmap_transmit(struct ifnet *, struct mbuf *);
struct netmap_slot *netmap_reset(struct netmap_adapter *na,
enum txrx tx, u_int n, u_int new_cur);
int netmap_ring_reinit(struct netmap_kring *);
/* default functions to handle rx/tx interrupts */
int netmap_rx_irq(struct ifnet *, u_int, u_int *);
#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
#ifdef WITH_VALE
/* functions used by external modules to interface with VALE */
#define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
#define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
#define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
const char *netmap_bdg_name(struct netmap_vp_adapter *);
#else /* !WITH_VALE */
#define netmap_vp_to_ifp(_vp) NULL
#define netmap_ifp_to_vp(_ifp) NULL
#define netmap_ifp_to_host_vp(_ifp) NULL
#define netmap_bdg_idx(_vp) -1
#define netmap_bdg_name(_vp) NULL
#endif /* WITH_VALE */
static inline int
nm_native_on(struct netmap_adapter *na)
{
return na && na->na_flags & NAF_NATIVE_ON;
}
static inline int
nm_netmap_on(struct netmap_adapter *na)
{
return na && na->na_flags & NAF_NETMAP_ON;
}
/* set/clear native flags and if_transmit/netdev_ops */
static inline void
nm_set_native_flags(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON);
#ifdef IFCAP_NETMAP /* or FreeBSD ? */
ifp->if_capenable |= IFCAP_NETMAP;
#endif
#ifdef __FreeBSD__
na->if_transmit = ifp->if_transmit;
ifp->if_transmit = netmap_transmit;
#else
na->if_transmit = (void *)ifp->netdev_ops;
ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
#endif
}
static inline void
nm_clear_native_flags(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
#ifdef __FreeBSD__
ifp->if_transmit = na->if_transmit;
#else
ifp->netdev_ops = (void *)na->if_transmit;
ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
#endif
na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON);
#ifdef IFCAP_NETMAP /* or FreeBSD ? */
ifp->if_capenable &= ~IFCAP_NETMAP;
#endif
}
/*
* validates parameters in the ring/kring, returns a value for head
* If any error, returns ring_size to force a reinit.
*/
uint32_t nm_txsync_prologue(struct netmap_kring *);
/*
* validates parameters in the ring/kring, returns a value for head,
* and the 'reserved' value in the argument.
* If any error, returns ring_size lim to force a reinit.
*/
uint32_t nm_rxsync_prologue(struct netmap_kring *);
/*
* update kring and ring at the end of txsync.
*/
static inline void
nm_txsync_finalize(struct netmap_kring *kring)
{
/* update ring tail to what the kernel knows */
kring->ring->tail = kring->rtail = kring->nr_hwtail;
/* note, head/rhead/hwcur might be behind cur/rcur
* if no carrier
*/
ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
kring->name, kring->nr_hwcur, kring->nr_hwtail,
kring->rhead, kring->rcur, kring->rtail);
}
/*
* update kring and ring at the end of rxsync
*/
static inline void
nm_rxsync_finalize(struct netmap_kring *kring)
{
/* tell userspace that there might be new packets */
//struct netmap_ring *ring = kring->ring;
ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail,
kring->nr_hwtail);
kring->ring->tail = kring->rtail = kring->nr_hwtail;
/* make a copy of the state for next round */
kring->rhead = kring->ring->head;
kring->rcur = kring->ring->cur;
}
/* check/fix address and len in tx rings */
#if 1 /* debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
RD(5, "bad addr/len ring %d slot %d idx %d len %d", \
kring->ring_id, nm_i, slot->buf_idx, len); \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} } while (0)
#else /* no debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} while (0)
#endif
/*---------------------------------------------------------------*/
/*
* Support routines used by netmap subsystems
* (native drivers, VALE, generic, pipes, monitors, ...)
*/
/* common routine for all functions that create a netmap adapter. It performs
* two main tasks:
* - if the na points to an ifp, mark the ifp as netmap capable
* using na as its native adapter;
* - provide defaults for the setup callbacks and the memory allocator
*/
int netmap_attach_common(struct netmap_adapter *);
/* common actions to be performed on netmap adapter destruction */
void netmap_detach_common(struct netmap_adapter *);
/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
* coming from a struct nmreq
*/
int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
/* update the ring parameters (number and size of tx and rx rings).
* It calls the nm_config callback, if available.
*/
int netmap_update_config(struct netmap_adapter *na);
/* create and initialize the common fields of the krings array.
* using the information that must be already available in the na.
* tailroom can be used to request the allocation of additional
* tailroom bytes after the krings array. This is used by
* netmap_vp_adapter's (i.e., VALE ports) to make room for
* leasing-related data structures
*/
int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
/* deletes the kring array of the adapter. The array must have
* been created using netmap_krings_create
*/
void netmap_krings_delete(struct netmap_adapter *na);
/* set the stopped/enabled status of ring
* When stopping, they also wait for all current activity on the ring to
* terminate. The status change is then notified using the na nm_notify
* callback.
*/
void netmap_set_txring(struct netmap_adapter *, u_int ring_id, int stopped);
void netmap_set_rxring(struct netmap_adapter *, u_int ring_id, int stopped);
/* set the stopped/enabled status of all rings of the adapter. */
void netmap_set_all_rings(struct netmap_adapter *, int stopped);
/* convenience wrappers for netmap_set_all_rings, used in drivers */
void netmap_disable_all_rings(struct ifnet *);
void netmap_enable_all_rings(struct ifnet *);
int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
struct netmap_if *
netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
uint16_t ringid, uint32_t flags, int *err);
u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
#ifdef WITH_VALE
/*
* The following bridge-related functions are used by other
* kernel modules.
*
* VALE only supports unicast or broadcast. The lookup
* function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
* NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
* XXX in practice "unknown" might be handled same as broadcast.
*/
typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
const struct netmap_vp_adapter *);
typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
struct netmap_bdg_ops {
bdg_lookup_fn_t lookup;
bdg_config_fn_t config;
bdg_dtor_fn_t dtor;
};
u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
const struct netmap_vp_adapter *);
#define NM_BDG_MAXPORTS 254 /* up to 254 */
#define NM_BDG_BROADCAST NM_BDG_MAXPORTS
#define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1)
#define NM_NAME "vale" /* prefix for bridge port name */
/* these are redefined in case of no VALE support */
int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
void netmap_init_bridges(void);
int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
int netmap_bdg_config(struct nmreq *nmr);
#else /* !WITH_VALE */
#define netmap_get_bdg_na(_1, _2, _3) 0
#define netmap_init_bridges(_1)
#define netmap_bdg_ctl(_1, _2) EINVAL
#endif /* !WITH_VALE */
#ifdef WITH_PIPES
/* max number of pipes per device */
#define NM_MAXPIPES 64 /* XXX how many? */
/* in case of no error, returns the actual number of pipes in nmr->nr_arg1 */
int netmap_pipe_alloc(struct netmap_adapter *, struct nmreq *nmr);
void netmap_pipe_dealloc(struct netmap_adapter *);
int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
#else /* !WITH_PIPES */
#define NM_MAXPIPES 0
#define netmap_pipe_alloc(_1, _2) EOPNOTSUPP
#define netmap_pipe_dealloc(_1)
#define netmap_get_pipe_na(_1, _2, _3) 0
#endif
#ifdef WITH_MONITOR
int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
#else
#define netmap_get_monitor_na(_1, _2, _3) 0
#endif
/* Various prototypes */
int netmap_poll(struct cdev *dev, int events, struct thread *td);
int netmap_init(void);
void netmap_fini(void);
int netmap_get_memory(struct netmap_priv_d* p);
void netmap_dtor(void *data);
int netmap_dtor_locked(struct netmap_priv_d *priv);
int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
/* netmap_adapter creation/destruction */
// #define NM_DEBUG_PUTGET 1
#ifdef NM_DEBUG_PUTGET
#define NM_DBG(f) __##f
void __netmap_adapter_get(struct netmap_adapter *na);
#define netmap_adapter_get(na) \
do { \
struct netmap_adapter *__na = na; \
D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_get(__na); \
} while (0)
int __netmap_adapter_put(struct netmap_adapter *na);
#define netmap_adapter_put(na) \
({ \
struct netmap_adapter *__na = na; \
D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_put(__na); \
})
#else /* !NM_DEBUG_PUTGET */
#define NM_DBG(f) f
void netmap_adapter_get(struct netmap_adapter *na);
int netmap_adapter_put(struct netmap_adapter *na);
#endif /* !NM_DEBUG_PUTGET */
/*
* module variables
*/
#define NETMAP_BUF_BASE(na) ((na)->na_lut[0].vaddr)
#define NETMAP_BUF_SIZE(na) ((na)->na_lut_objsize)
extern int netmap_mitigate; // XXX not really used
extern int netmap_no_pendintr;
extern int netmap_verbose; // XXX debugging
enum { /* verbose flags */
NM_VERB_ON = 1, /* generic verbose */
NM_VERB_HOST = 0x2, /* verbose host stack */
NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */
NM_VERB_TXSYNC = 0x20,
NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */
NM_VERB_TXINTR = 0x200,
NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */
NM_VERB_NIC_TXSYNC = 0x2000,
};
extern int netmap_txsync_retry;
extern int netmap_generic_mit;
extern int netmap_generic_ringsize;
extern int netmap_generic_rings;
/*
* NA returns a pointer to the struct netmap adapter from the ifp,
* WNA is used to write it.
*/
#ifndef WNA
#define WNA(_ifp) (_ifp)->if_pspare[0]
#endif
#define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp))
/*
* Macros to determine if an interface is netmap capable or netmap enabled.
* See the magic field in struct netmap_adapter.
*/
#ifdef __FreeBSD__
/*
* on FreeBSD just use if_capabilities and if_capenable.
*/
#define NETMAP_CAPABLE(ifp) (NA(ifp) && \
(ifp)->if_capabilities & IFCAP_NETMAP )
#define NETMAP_SET_CAPABLE(ifp) \
(ifp)->if_capabilities |= IFCAP_NETMAP
#else /* linux */
/*
* on linux:
* we check if NA(ifp) is set and its first element has a related
* magic value. The capenable is within the struct netmap_adapter.
*/
#define NETMAP_MAGIC 0x52697a7a
#define NETMAP_CAPABLE(ifp) (NA(ifp) && \
((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
#define NETMAP_SET_CAPABLE(ifp) \
NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
#endif /* linux */
#ifdef __FreeBSD__
/* Assigns the device IOMMU domain to an allocator.
* Returns -ENOMEM in case the domain is different */
#define nm_iommu_group_id(dev) (0)
/* Callback invoked by the dma machinery after a successful dmamap_load */
static void netmap_dmamap_cb(__unused void *arg,
__unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
{
}
/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
* XXX can we do it without a callback ?
*/
static inline void
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map)
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
if (map)
bus_dmamap_unload(tag, map);
}
/* update the map when a buffer changes. */
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map) {
bus_dmamap_unload(tag, map);
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
}
#else /* linux */
int nm_iommu_group_id(bus_dma_tag_t dev);
extern size_t netmap_mem_get_bufsize(struct netmap_mem_d *);
#include <linux/dma-mapping.h>
static inline void
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map) {
*map = dma_map_single(na->pdev, buf, netmap_mem_get_bufsize(na->nm_mem),
DMA_BIDIRECTIONAL);
}
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
u_int sz = netmap_mem_get_bufsize(na->nm_mem);
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
}
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
u_int sz = netmap_mem_get_bufsize(na->nm_mem);
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
*map = dma_map_single(na->pdev, buf, sz,
DMA_BIDIRECTIONAL);
}
/*
* XXX How do we redefine these functions:
*
* on linux we need
* dma_map_single(&pdev->dev, virt_addr, len, direction)
* dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
* The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
* unfortunately the direction is not, so we need to change
* something to have a cross API
*/
#if 0
struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->length = len;
//buffer_info->next_to_watch = l;
/* reload dma map */
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
NETMAP_BUF_SIZE, DMA_TO_DEVICE);
buffer_info->dma = dma_map_single(&adapter->pdev->dev,
addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
D("dma mapping error");
/* goto dma_error; See e1000_put_txbuf() */
/* XXX reset */
}
tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
#endif
/*
* The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
*/
#define bus_dmamap_sync(_a, _b, _c)
#endif /* linux */
/*
* functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
*/
static inline int
netmap_idx_n2k(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
idx += kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
static inline int
netmap_idx_k2n(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
idx -= kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
/* Entries of the look-up table. */
struct lut_entry {
void *vaddr; /* virtual address. */
vm_paddr_t paddr; /* physical address. */
};
struct netmap_obj_pool;
/*
* NMB return the virtual address of a buffer (buffer 0 on bad index)
* PNMB also fills the physical address
*/
static inline void *
NMB(struct netmap_adapter *na, struct netmap_slot *slot)
{
struct lut_entry *lut = na->na_lut;
uint32_t i = slot->buf_idx;
return (unlikely(i >= na->na_lut_objtotal)) ?
lut[0].vaddr : lut[i].vaddr;
}
static inline void *
PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
{
uint32_t i = slot->buf_idx;
struct lut_entry *lut = na->na_lut;
void *ret = (i >= na->na_lut_objtotal) ? lut[0].vaddr : lut[i].vaddr;
*pp = (i >= na->na_lut_objtotal) ? lut[0].paddr : lut[i].paddr;
return ret;
}
/* Generic version of NMB, which uses device-specific memory. */
void netmap_txsync_to_host(struct netmap_adapter *na);
/*
* Structure associated to each thread which registered an interface.
*
* The first 4 fields of this structure are written by NIOCREGIF and
* read by poll() and NIOC?XSYNC.
*
* There is low contention among writers (a correct user program
* should have none) and among writers and readers, so we use a
* single global lock to protect the structure initialization;
* since initialization involves the allocation of memory,
* we reuse the memory allocator lock.
*
* Read access to the structure is lock free. Readers must check that
* np_nifp is not NULL before using the other fields.
* If np_nifp is NULL initialization has not been performed,
* so they should return an error to userspace.
*
* The ref_done field is used to regulate access to the refcount in the
* memory allocator. The refcount must be incremented at most once for
* each open("/dev/netmap"). The increment is performed by the first
* function that calls netmap_get_memory() (currently called by
* mmap(), NIOCGINFO and NIOCREGIF).
* If the refcount is incremented, it is then decremented when the
* private structure is destroyed.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
struct netmap_adapter *np_na;
uint32_t np_flags; /* from the ioctl */
u_int np_txqfirst, np_txqlast; /* range of tx rings to scan */
u_int np_rxqfirst, np_rxqlast; /* range of rx rings to scan */
uint16_t np_txpoll; /* XXX and also np_rxpoll ? */
struct netmap_mem_d *np_mref; /* use with NMG_LOCK held */
/* np_refcount is only used on FreeBSD */
int np_refcount; /* use with NMG_LOCK held */
/* pointers to the selinfo to be used for selrecord.
* Either the local or the global one depending on the
* number of rings.
*/
NM_SELINFO_T *np_rxsi, *np_txsi;
struct thread *np_td; /* kqueue, just debugging */
};
#ifdef WITH_MONITOR
struct netmap_monitor_adapter {
struct netmap_adapter up;
struct netmap_priv_d priv;
uint32_t flags;
};
#endif /* WITH_MONITOR */
/*
* generic netmap emulation for devices that do not have
* native netmap support.
*/
int generic_netmap_attach(struct ifnet *ifp);
int netmap_catch_rx(struct netmap_adapter *na, int intercept);
void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
//#define RATE_GENERIC /* Enables communication statistics for generic. */
#ifdef RATE_GENERIC
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
#else
#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
#endif
/*
* netmap_mitigation API. This is used by the generic adapter
* to reduce the number of interrupt requests/selwakeup
* to clients on incoming packets.
*/
void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
struct netmap_adapter *na);
void netmap_mitigation_start(struct nm_generic_mit *mit);
void netmap_mitigation_restart(struct nm_generic_mit *mit);
int netmap_mitigation_active(struct nm_generic_mit *mit);
void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
/* Shared declarations for the VALE switch. */
/*
* Each transmit queue accumulates a batch of packets into
* a structure before forwarding. Packets to the same
* destination are put in a list using ft_next as a link field.
* ft_frags and ft_next are valid only on the first fragment.
*/
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *ft_buf; /* netmap or indirect buffer */
uint8_t ft_frags; /* how many fragments (only on 1st frag) */
uint8_t _ft_port; /* dst port (unused) */
uint16_t ft_flags; /* flags, e.g. indirect */
uint16_t ft_len; /* src fragment len */
uint16_t ft_next; /* next packet to same destination */
};
/* struct 'virtio_net_hdr' from linux. */
struct nm_vnet_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len;
uint16_t gso_size;
uint16_t csum_start;
uint16_t csum_offset;
};
#define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
struct nm_iphdr {
uint8_t version_ihl;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
/*The options start here. */
};
struct nm_tcphdr {
uint16_t source;
uint16_t dest;
uint32_t seq;
uint32_t ack_seq;
uint8_t doff; /* Data offset + Reserved */
uint8_t flags;
uint16_t window;
uint16_t check;
uint16_t urg_ptr;
};
struct nm_udphdr {
uint16_t source;
uint16_t dest;
uint16_t len;
uint16_t check;
};
struct nm_ipv6hdr {
uint8_t priority_version;
uint8_t flow_lbl[3];
uint16_t payload_len;
uint8_t nexthdr;
uint8_t hop_limit;
uint8_t saddr[16];
uint8_t daddr[16];
};
/* Type used to store a checksum (in host byte order) that hasn't been
* folded yet.
*/
#define rawsum_t uint32_t
rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check);
void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check);
uint16_t nm_csum_fold(rawsum_t cur_sum);
void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
struct netmap_vp_adapter *dst_na,
struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
u_int *j, u_int lim, u_int *howmany);
/* persistent virtual port routines */
int nm_vi_persist(const char *, struct ifnet **);
void nm_vi_detach(struct ifnet *);
void nm_vi_init_index(void);
#endif /* _NET_NETMAP_KERN_H_ */