Ed Schouten 6472ac3d8a Mark all SYSCTL_NODEs static that have no corresponding SYSCTL_DECLs.
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
2011-11-07 15:43:11 +00:00

786 lines
22 KiB
C

/* $NetBSD: fpu_emu.c,v 1.14 2005/12/11 12:18:42 christos Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/signal.h>
#include <sys/syslog.h>
#include <sys/signalvar.h>
#include <machine/fpu.h>
#include <machine/reg.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>
#include <powerpc/fpu/fpu_instr.h>
static SYSCTL_NODE(_hw, OID_AUTO, fpu_emu, CTLFLAG_RW, 0, "FPU emulator");
#define FPU_EMU_EVCNT_DECL(name) \
static u_int fpu_emu_evcnt_##name; \
SYSCTL_INT(_hw_fpu_emu, OID_AUTO, evcnt_##name, CTLFLAG_RD, \
&fpu_emu_evcnt_##name, 0, "")
#define FPU_EMU_EVCNT_INCR(name) fpu_emu_evcnt_##name++
FPU_EMU_EVCNT_DECL(stfiwx);
FPU_EMU_EVCNT_DECL(fpstore);
FPU_EMU_EVCNT_DECL(fpload);
FPU_EMU_EVCNT_DECL(fcmpu);
FPU_EMU_EVCNT_DECL(frsp);
FPU_EMU_EVCNT_DECL(fctiw);
FPU_EMU_EVCNT_DECL(fcmpo);
FPU_EMU_EVCNT_DECL(mtfsb1);
FPU_EMU_EVCNT_DECL(fnegabs);
FPU_EMU_EVCNT_DECL(mcrfs);
FPU_EMU_EVCNT_DECL(mtfsb0);
FPU_EMU_EVCNT_DECL(fmr);
FPU_EMU_EVCNT_DECL(mtfsfi);
FPU_EMU_EVCNT_DECL(fnabs);
FPU_EMU_EVCNT_DECL(fabs);
FPU_EMU_EVCNT_DECL(mffs);
FPU_EMU_EVCNT_DECL(mtfsf);
FPU_EMU_EVCNT_DECL(fctid);
FPU_EMU_EVCNT_DECL(fcfid);
FPU_EMU_EVCNT_DECL(fdiv);
FPU_EMU_EVCNT_DECL(fsub);
FPU_EMU_EVCNT_DECL(fadd);
FPU_EMU_EVCNT_DECL(fsqrt);
FPU_EMU_EVCNT_DECL(fsel);
FPU_EMU_EVCNT_DECL(fpres);
FPU_EMU_EVCNT_DECL(fmul);
FPU_EMU_EVCNT_DECL(frsqrte);
FPU_EMU_EVCNT_DECL(fmulsub);
FPU_EMU_EVCNT_DECL(fmuladd);
FPU_EMU_EVCNT_DECL(fnmsub);
FPU_EMU_EVCNT_DECL(fnmadd);
/* FPSR exception masks */
#define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \
FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
FPSCR_VXSQRT|FPSCR_VXCVI)
#define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
#define FPSR_EXOP (FPSR_EX_MSK&(~FPSR_EX))
int fpe_debug = 0;
#ifdef DEBUG
vm_offset_t opc_disasm(vm_offset_t, int);
/*
* Dump a `fpn' structure.
*/
void
fpu_dumpfpn(struct fpn *fp)
{
static const char *class[] = {
"SNAN", "QNAN", "ZERO", "NUM", "INF"
};
printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
fp->fp_sign ? '-' : ' ',
fp->fp_mant[0], fp->fp_mant[1],
fp->fp_mant[2], fp->fp_mant[3],
fp->fp_exp);
}
#endif
/*
* fpu_execute returns the following error numbers (0 = no error):
*/
#define FPE 1 /* take a floating point exception */
#define NOTFPU 2 /* not an FPU instruction */
#define FAULT 3
/*
* Emulate a floating-point instruction.
* Return zero for success, else signal number.
* (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
*/
int
fpu_emulate(struct trapframe *frame, struct fpreg *fpf)
{
static union instr insn;
static struct fpemu fe;
static int lastill = 0;
int sig;
/* initialize insn.is_datasize to tell it is *not* initialized */
fe.fe_fpstate = fpf;
fe.fe_cx = 0;
/* always set this (to avoid a warning) */
if (copyin((void *) (frame->srr0), &insn.i_int, sizeof (insn.i_int))) {
#ifdef DEBUG
printf("fpu_emulate: fault reading opcode\n");
#endif
return SIGSEGV;
}
DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
insn.i_int, (void *)frame->srr0));
if ((insn.i_any.i_opcd == OPC_TWI) ||
((insn.i_any.i_opcd == OPC_integer_31) &&
(insn.i_x.i_xo == OPC31_TW))) {
/* Check for the two trap insns. */
DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
return (SIGTRAP);
}
sig = 0;
switch (fpu_execute(frame, &fe, &insn)) {
case 0:
DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
frame->srr0 += 4;
break;
case FPE:
DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
sig = SIGFPE;
break;
case FAULT:
DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
sig = SIGSEGV;
break;
case NOTFPU:
default:
DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
#ifdef DEBUG
if (fpe_debug & FPE_EX) {
printf("fpu_emulate: illegal insn %x at %p:",
insn.i_int, (void *) (frame->srr0));
opc_disasm(frame->srr0, insn.i_int);
}
#endif
/*
* XXXX retry an illegal insn once due to cache issues.
*/
if (lastill == frame->srr0) {
sig = SIGILL;
#ifdef DEBUG
if (fpe_debug & FPE_EX)
kdb_enter(KDB_WHY_UNSET, "illegal instruction");
#endif
}
lastill = frame->srr0;
break;
}
return (sig);
}
/*
* Execute an FPU instruction (one that runs entirely in the FPU; not
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
* modified to reflect the setting the hardware would have left.
*
* Note that we do not catch all illegal opcodes, so you can, for instance,
* multiply two integers this way.
*/
int
fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
{
struct fpn *fp;
union instr instr = *insn;
int *a;
vm_offset_t addr;
int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr;
unsigned int cond;
struct fpreg *fs;
/* Setup work. */
fp = NULL;
fs = fe->fe_fpstate;
fe->fe_fpscr = ((int *)&fs->fpscr)[1];
/*
* On PowerPC all floating point values are stored in registers
* as doubles, even when used for single precision operations.
*/
type = FTYPE_DBL;
cond = instr.i_any.i_rc;
setcr = 0;
bf = 0; /* XXX gcc */
#if defined(DDB) && defined(DEBUG)
if (fpe_debug & FPE_EX) {
vm_offset_t loc = tf->srr0;
printf("Trying to emulate: %p ", (void *)loc);
opc_disasm(loc, instr.i_int);
}
#endif
/*
* `Decode' and execute instruction.
*/
if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
instr.i_any.i_opcd == OPC_integer_31) {
/*
* Handle load/store insns:
*
* Convert to/from single if needed, calculate addr,
* and update index reg if needed.
*/
double buf;
size_t size = sizeof(float);
int store, update;
cond = 0; /* ld/st never set condition codes */
if (instr.i_any.i_opcd == OPC_integer_31) {
if (instr.i_x.i_xo == OPC31_STFIWX) {
FPU_EMU_EVCNT_INCR(stfiwx);
/* Store as integer */
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
DPRINTF(FPE_INSN, ("reg %d has %x reg %d has %x\n",
ra, tf->fixreg[ra], rb, tf->fixreg[rb]));
addr = tf->fixreg[rb];
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_x.i_rt;
a = (int *)&fs->fpreg[rt];
DPRINTF(FPE_INSN,
("fpu_execute: Store INT %x at %p\n",
a[1], (void *)addr));
if (copyout(&a[1], (void *)addr, sizeof(int)))
return (FAULT);
return (0);
}
if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
/* Not an indexed FP load/store op */
return (NOTFPU);
store = (instr.i_x.i_xo & 0x80);
if (instr.i_x.i_xo & 0x40)
size = sizeof(double);
else
type = FTYPE_SNG;
update = (instr.i_x.i_xo & 0x20);
/* calculate EA of load/store */
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
DPRINTF(FPE_INSN, ("reg %d has %x reg %d has %x\n",
ra, tf->fixreg[ra], rb, tf->fixreg[rb]));
addr = tf->fixreg[rb];
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_x.i_rt;
} else {
store = instr.i_d.i_opcd & 0x4;
if (instr.i_d.i_opcd & 0x2)
size = sizeof(double);
else
type = FTYPE_SNG;
update = instr.i_d.i_opcd & 0x1;
/* calculate EA of load/store */
ra = instr.i_d.i_ra;
addr = instr.i_d.i_d;
DPRINTF(FPE_INSN, ("reg %d has %x displ %x\n",
ra, tf->fixreg[ra], addr));
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_d.i_rt;
}
if (update && ra == 0)
return (NOTFPU);
if (store) {
/* Store */
FPU_EMU_EVCNT_INCR(fpstore);
if (type != FTYPE_DBL) {
DPRINTF(FPE_INSN,
("fpu_execute: Store SNG at %p\n",
(void *)addr));
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rt);
fpu_implode(fe, fp, type, (void *)&buf);
if (copyout(&buf, (void *)addr, size))
return (FAULT);
} else {
DPRINTF(FPE_INSN,
("fpu_execute: Store DBL at %p\n",
(void *)addr));
if (copyout(&fs->fpreg[rt], (void *)addr, size))
return (FAULT);
}
} else {
/* Load */
FPU_EMU_EVCNT_INCR(fpload);
DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
(void *)addr));
if (copyin((const void *)addr, &fs->fpreg[rt], size))
return (FAULT);
if (type != FTYPE_DBL) {
fpu_explode(fe, fp = &fe->fe_f1, type, rt);
fpu_implode(fe, fp, FTYPE_DBL,
(u_int *)&fs->fpreg[rt]);
}
}
if (update)
tf->fixreg[ra] = addr;
/* Complete. */
return (0);
#ifdef notyet
} else if (instr.i_any.i_opcd == OPC_load_st_62) {
/* These are 64-bit extenstions */
return (NOTFPU);
#endif
} else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
instr.i_any.i_opcd == OPC_dp_fp_63) {
if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
!(instr.i_a.i_xo & OPC63M_MASK)) {
/* Format X */
rt = instr.i_x.i_rt;
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
/* One of the special opcodes.... */
switch (instr.i_x.i_xo) {
case OPC63_FCMPU:
FPU_EMU_EVCNT_INCR(fcmpu);
DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
rt >>= 2;
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fpu_compare(fe, 0);
/* Make sure we do the condition regs. */
cond = 0;
/* N.B.: i_rs is already left shifted by two. */
bf = instr.i_x.i_rs & 0xfc;
setcr = 1;
break;
case OPC63_FRSP:
/*
* Convert to single:
*
* PowerPC uses this to round a double
* precision value to single precision,
* but values in registers are always
* stored in double precision format.
*/
FPU_EMU_EVCNT_INCR(frsp);
DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rb);
fpu_implode(fe, fp, FTYPE_SNG,
(u_int *)&fs->fpreg[rt]);
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
type = FTYPE_DBL;
break;
case OPC63_FCTIW:
case OPC63_FCTIWZ:
FPU_EMU_EVCNT_INCR(fctiw);
DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_INT;
break;
case OPC63_FCMPO:
FPU_EMU_EVCNT_INCR(fcmpo);
DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
rt >>= 2;
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fpu_compare(fe, 1);
/* Make sure we do the condition regs. */
cond = 0;
/* N.B.: i_rs is already left shifted by two. */
bf = instr.i_x.i_rs & 0xfc;
setcr = 1;
break;
case OPC63_MTFSB1:
FPU_EMU_EVCNT_INCR(mtfsb1);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
fe->fe_fpscr |=
(~(FPSCR_VX|FPSR_EX) & (1<<(31-rt)));
break;
case OPC63_FNEG:
FPU_EMU_EVCNT_INCR(fnegabs);
DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
sizeof(double));
a = (int *)&fs->fpreg[rt];
*a ^= (1 << 31);
break;
case OPC63_MCRFS:
FPU_EMU_EVCNT_INCR(mcrfs);
DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
cond = 0;
rt &= 0x1c;
ra &= 0x1c;
/* Extract the bits we want */
mask = (fe->fe_fpscr >> (28 - ra)) & 0xf;
/* Clear the bits we copied. */
fe->fe_cx =
(FPSR_EX_MSK | (0xf << (28 - ra)));
fe->fe_fpscr &= fe->fe_cx;
/* Now shove them in the right part of cr */
tf->cr &= ~(0xf << (28 - rt));
tf->cr |= (mask << (28 - rt));
break;
case OPC63_MTFSB0:
FPU_EMU_EVCNT_INCR(mtfsb0);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
fe->fe_fpscr &=
((FPSCR_VX|FPSR_EX) & ~(1<<(31-rt)));
break;
case OPC63_FMR:
FPU_EMU_EVCNT_INCR(fmr);
DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
sizeof(double));
break;
case OPC63_MTFSFI:
FPU_EMU_EVCNT_INCR(mtfsfi);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
rb >>= 1;
rt &= 0x1c; /* Already left-shifted 4 */
fe->fe_cx = rb << (28 - rt);
mask = 0xf<<(28 - rt);
fe->fe_fpscr = (fe->fe_fpscr & ~mask) |
fe->fe_cx;
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
break;
case OPC63_FNABS:
FPU_EMU_EVCNT_INCR(fnabs);
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
sizeof(double));
a = (int *)&fs->fpreg[rt];
*a |= (1 << 31);
break;
case OPC63_FABS:
FPU_EMU_EVCNT_INCR(fabs);
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
sizeof(double));
a = (int *)&fs->fpreg[rt];
*a &= ~(1 << 31);
break;
case OPC63_MFFS:
FPU_EMU_EVCNT_INCR(mffs);
DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
memcpy(&fs->fpreg[rt], &fs->fpscr,
sizeof(fs->fpscr));
break;
case OPC63_MTFSF:
FPU_EMU_EVCNT_INCR(mtfsf);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
if ((rt = instr.i_xfl.i_flm) == -1)
mask = -1;
else {
mask = 0;
/* Convert 1 bit -> 4 bits */
for (ra = 0; ra < 8; ra ++)
if (rt & (1<<ra))
mask |= (0xf<<(4*ra));
}
a = (int *)&fs->fpreg[rt];
fe->fe_cx = mask & a[1];
fe->fe_fpscr = (fe->fe_fpscr&~mask) |
(fe->fe_cx);
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
break;
case OPC63_FCTID:
case OPC63_FCTIDZ:
FPU_EMU_EVCNT_INCR(fctid);
DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_LNG;
break;
case OPC63_FCFID:
FPU_EMU_EVCNT_INCR(fcfid);
DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
type = FTYPE_LNG;
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_DBL;
break;
default:
return (NOTFPU);
break;
}
} else {
/* Format A */
rt = instr.i_a.i_frt;
ra = instr.i_a.i_fra;
rb = instr.i_a.i_frb;
rc = instr.i_a.i_frc;
type = FTYPE_SNG;
if (instr.i_any.i_opcd & 0x4)
type = FTYPE_DBL;
switch ((unsigned int)instr.i_a.i_xo) {
case OPC59_FDIVS:
FPU_EMU_EVCNT_INCR(fdiv);
DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_div(fe);
break;
case OPC59_FSUBS:
FPU_EMU_EVCNT_INCR(fsub);
DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
break;
case OPC59_FADDS:
FPU_EMU_EVCNT_INCR(fadd);
DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
break;
case OPC59_FSQRTS:
FPU_EMU_EVCNT_INCR(fsqrt);
DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
break;
case OPC63M_FSEL:
FPU_EMU_EVCNT_INCR(fsel);
DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
a = (int *)&fe->fe_fpstate->fpreg[ra];
if ((*a & 0x80000000) && (*a & 0x7fffffff))
/* fra < 0 */
rc = rb;
DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
memcpy(&fs->fpreg[rt], &fs->fpreg[rc],
sizeof(double));
break;
case OPC59_FRES:
FPU_EMU_EVCNT_INCR(fpres);
DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
/* now we've gotta overwrite the dest reg */
*((int *)&fe->fe_fpstate->fpreg[rt]) = 1;
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
fpu_div(fe);
break;
case OPC59_FMULS:
FPU_EMU_EVCNT_INCR(fmul);
DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
break;
case OPC63M_FRSQRTE:
/* Reciprocal sqrt() estimate */
FPU_EMU_EVCNT_INCR(frsqrte);
DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
fe->fe_f2 = *fp;
/* now we've gotta overwrite the dest reg */
*((int *)&fe->fe_fpstate->fpreg[rt]) = 1;
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
fpu_div(fe);
break;
case OPC59_FMSUBS:
FPU_EMU_EVCNT_INCR(fmulsub);
DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
break;
case OPC59_FMADDS:
FPU_EMU_EVCNT_INCR(fmuladd);
DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
break;
case OPC59_FNMSUBS:
FPU_EMU_EVCNT_INCR(fnmsub);
DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
/* Negate */
fp->fp_sign ^= 1;
break;
case OPC59_FNMADDS:
FPU_EMU_EVCNT_INCR(fnmadd);
DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
/* Negate */
fp->fp_sign ^= 1;
break;
default:
return (NOTFPU);
break;
}
}
} else {
return (NOTFPU);
}
/*
* ALU operation is complete. Collapse the result and then check
* for exceptions. If we got any, and they are enabled, do not
* alter the destination register, just stop with an exception.
* Otherwise set new current exceptions and accrue.
*/
if (fp)
fpu_implode(fe, fp, type, (u_int *)&fs->fpreg[rt]);
cx = fe->fe_cx;
fsr = fe->fe_fpscr;
if (cx != 0) {
fsr &= ~FPSCR_FX;
if ((cx^fsr)&FPSR_EX_MSK)
fsr |= FPSCR_FX;
mask = fsr & FPSR_EX;
mask <<= (25-3);
if (cx & mask)
fsr |= FPSCR_FEX;
if (cx & FPSCR_FPRF) {
/* Need to replace CC */
fsr &= ~FPSCR_FPRF;
}
if (cx & (FPSR_EXOP))
fsr |= FPSCR_VX;
fsr |= cx;
DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
}
if (cond) {
cond = fsr & 0xf0000000;
/* Isolate condition codes */
cond >>= 28;
/* Move fpu condition codes to cr[1] */
tf->cr &= (0x0f000000);
tf->cr |= (cond<<24);
DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", cond));
}
if (setcr) {
cond = fsr & FPSCR_FPCC;
/* Isolate condition codes */
cond <<= 16;
/* Move fpu condition codes to cr[1] */
tf->cr &= ~(0xf0000000>>bf);
tf->cr |= (cond>>bf);
DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%x) <= %x\n", bf/4, tf->cr, cond));
}
((int *)&fs->fpscr)[1] = fsr;
if (fsr & FPSCR_FEX)
return(FPE);
return (0); /* success */
}