freebsd-nq/sys/arm/at91/if_ate.c
Marius Strobl 0f0819525b Add support for the Atmel SAM9XE familiy of microcontrollers, which
consist of a ARM926EJ-S processor core with up to 512 Kbytes of on-chip
flash. Tested with SAM9XE512.
2012-04-14 17:09:38 +00:00

1458 lines
38 KiB
C

/*-
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
* Copyright (c) 2009 Greg Ansley. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* TODO
*
* 1) Turn on the clock in pmc? Turn off?
* 2) GPIO initializtion in board setup code.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "opt_at91.h"
#include <arm/at91/at91reg.h>
#include <arm/at91/at91var.h>
#include <arm/at91/if_atereg.h>
#include "miibus_if.h"
/*
* Driver-specific flags.
*/
#define ATE_FLAG_DETACHING 0x01
#define ATE_FLAG_MULTICAST 0x02
/*
* Old EMAC assumes whole packet fits in one buffer;
* new EBACB assumes all receive buffers are 128 bytes
*/
#define RX_BUF_SIZE(sc) (sc->is_emacb ? 128 : MCLBYTES)
/*
* EMACB has an 11 bit counter for Rx/Tx Descriptors
* for max total of 1024 decriptors each.
*/
#define ATE_MAX_RX_DESCR 1024
#define ATE_MAX_TX_DESCR 1024
/* How many buffers to allocate */
#define ATE_MAX_TX_BUFFERS 4 /* We have ping-pong tx buffers */
/* How much memory to use for rx buffers */
#define ATE_RX_MEMORY (ATE_MAX_RX_DESCR * 128)
/* Actual number of descriptors we allocate */
#define ATE_NUM_RX_DESCR ATE_MAX_RX_DESCR
#define ATE_NUM_TX_DESCR ATE_MAX_TX_BUFFERS
#if ATE_NUM_TX_DESCR > ATE_MAX_TX_DESCR
#error "Can't have more TX buffers that descriptors"
#endif
#if ATE_NUM_RX_DESCR > ATE_MAX_RX_DESCR
#error "Can't have more RX buffers that descriptors"
#endif
/* Wrap indexes the same way the hardware does */
#define NEXT_RX_IDX(sc, cur) \
((sc->rx_descs[cur].addr & ETH_WRAP_BIT) ? 0 : (cur + 1))
#define NEXT_TX_IDX(sc, cur) \
((sc->tx_descs[cur].status & ETHB_TX_WRAP) ? 0 : (cur + 1))
struct ate_softc
{
struct ifnet *ifp; /* ifnet pointer */
struct mtx sc_mtx; /* Basically a perimeter lock */
device_t dev; /* Myself */
device_t miibus; /* My child miibus */
struct resource *irq_res; /* IRQ resource */
struct resource *mem_res; /* Memory resource */
struct callout tick_ch; /* Tick callout */
struct ifmib_iso_8802_3 mibdata; /* Stuff for network mgmt */
bus_dma_tag_t mtag; /* bus dma tag for mbufs */
bus_dma_tag_t rx_tag;
bus_dma_tag_t rx_desc_tag;
bus_dmamap_t rx_desc_map;
bus_dmamap_t rx_map[ATE_MAX_RX_DESCR];
bus_addr_t rx_desc_phys; /* PA of rx descriptors */
eth_rx_desc_t *rx_descs; /* VA of rx descriptors */
void *rx_buf[ATE_NUM_RX_DESCR]; /* RX buffer space */
int rxhead; /* Current RX map/desc index */
uint32_t rx_buf_size; /* Size of Rx buffers */
bus_dma_tag_t tx_desc_tag;
bus_dmamap_t tx_desc_map;
bus_dmamap_t tx_map[ATE_MAX_TX_BUFFERS];
bus_addr_t tx_desc_phys; /* PA of tx descriptors */
eth_tx_desc_t *tx_descs; /* VA of tx descriptors */
int txhead; /* Current TX map/desc index */
int txtail; /* Current TX map/desc index */
struct mbuf *sent_mbuf[ATE_MAX_TX_BUFFERS]; /* Sent mbufs */
void *intrhand; /* Interrupt handle */
int flags;
int if_flags;
int use_rmii;
int is_emacb; /* SAM9x hardware version */
};
static inline uint32_t
RD4(struct ate_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
WR4(struct ate_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static inline void
BARRIER(struct ate_softc *sc, bus_size_t off, bus_size_t len, int flags)
{
bus_barrier(sc->mem_res, off, len, flags);
}
#define ATE_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define ATE_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define ATE_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define ATE_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define ATE_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define ATE_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static devclass_t ate_devclass;
/*
* ifnet entry points.
*/
static void ateinit_locked(void *);
static void atestart_locked(struct ifnet *);
static void ateinit(void *);
static void atestart(struct ifnet *);
static void atestop(struct ate_softc *);
static int ateioctl(struct ifnet * ifp, u_long, caddr_t);
/*
* Bus entry points.
*/
static int ate_probe(device_t dev);
static int ate_attach(device_t dev);
static int ate_detach(device_t dev);
static void ate_intr(void *);
/*
* Helper routines.
*/
static int ate_activate(device_t dev);
static void ate_deactivate(struct ate_softc *sc);
static int ate_ifmedia_upd(struct ifnet *ifp);
static void ate_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static int ate_get_mac(struct ate_softc *sc, u_char *eaddr);
static void ate_set_mac(struct ate_softc *sc, u_char *eaddr);
static void ate_rxfilter(struct ate_softc *sc);
static int ate_miibus_readreg(device_t dev, int phy, int reg);
static int ate_miibus_writereg(device_t dev, int phy, int reg, int data);
/*
* The AT91 family of products has the ethernet interface called EMAC.
* However, it isn't self identifying. It is anticipated that the parent bus
* code will take care to only add ate devices where they really are. As
* such, we do nothing here to identify the device and just set its name.
*/
static int
ate_probe(device_t dev)
{
device_set_desc(dev, "EMAC");
return (0);
}
static int
ate_attach(device_t dev)
{
struct ate_softc *sc;
struct ifnet *ifp = NULL;
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
u_char eaddr[ETHER_ADDR_LEN];
uint32_t rnd;
int rid, err;
sc = device_get_softc(dev);
sc->dev = dev;
ATE_LOCK_INIT(sc);
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "could not allocate memory resources.\n");
err = ENOMEM;
goto out;
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "could not allocate interrupt resources.\n");
err = ENOMEM;
goto out;
}
/* New or old version, chooses buffer size. */
sc->is_emacb = at91_is_sam9() || at91_is_sam9xe();
sc->rx_buf_size = RX_BUF_SIZE(sc);
err = ate_activate(dev);
if (err)
goto out;
/* Default to what boot rom did */
if (!sc->is_emacb)
sc->use_rmii =
(RD4(sc, ETH_CFG) & ETH_CFG_RMII) == ETH_CFG_RMII;
else
sc->use_rmii =
(RD4(sc, ETHB_UIO) & ETHB_UIO_RMII) == ETHB_UIO_RMII;
#ifdef AT91_ATE_USE_RMII
/* Compile time override */
sc->use_rmii = 1;
#endif
/* Sysctls */
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "rmii",
CTLFLAG_RW, &sc->use_rmii, 0, "rmii in use");
/* Calling atestop before ifp is set is OK. */
ATE_LOCK(sc);
atestop(sc);
ATE_UNLOCK(sc);
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
if ((err = ate_get_mac(sc, eaddr)) != 0) {
/* No MAC address configured. Generate the random one. */
if (bootverbose)
device_printf(dev,
"Generating random ethernet address.\n");
rnd = arc4random();
/*
* Set OUI to convenient locally assigned address. 'b'
* is 0x62, which has the locally assigned bit set, and
* the broadcast/multicast bit clear.
*/
eaddr[0] = 'b';
eaddr[1] = 's';
eaddr[2] = 'd';
eaddr[3] = (rnd >> 16) & 0xff;
eaddr[4] = (rnd >> 8) & 0xff;
eaddr[5] = (rnd >> 0) & 0xff;
}
sc->ifp = ifp = if_alloc(IFT_ETHER);
err = mii_attach(dev, &sc->miibus, ifp, ate_ifmedia_upd,
ate_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (err != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto out;
}
/*
* XXX: Clear the isolate bit, or we won't get up,
* at least on the HL201
*/
ate_miibus_writereg(dev, 0, 0, 0x3000);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU; /* The hw bits already set. */
ifp->if_start = atestart;
ifp->if_ioctl = ateioctl;
ifp->if_init = ateinit;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_linkmib = &sc->mibdata;
ifp->if_linkmiblen = sizeof(sc->mibdata);
sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
sc->if_flags = ifp->if_flags;
ether_ifattach(ifp, eaddr);
/* Activate the interrupt. */
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ate_intr, sc, &sc->intrhand);
if (err) {
device_printf(dev, "could not establish interrupt handler.\n");
ether_ifdetach(ifp);
goto out;
}
out:
if (err)
ate_detach(dev);
return (err);
}
static int
ate_detach(device_t dev)
{
struct ate_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ate: %d]: sc is NULL", __LINE__));
ifp = sc->ifp;
if (device_is_attached(dev)) {
ATE_LOCK(sc);
sc->flags |= ATE_FLAG_DETACHING;
atestop(sc);
ATE_UNLOCK(sc);
callout_drain(&sc->tick_ch);
ether_ifdetach(ifp);
}
if (sc->miibus != NULL) {
device_delete_child(dev, sc->miibus);
sc->miibus = NULL;
}
bus_generic_detach(sc->dev);
ate_deactivate(sc);
if (sc->intrhand != NULL) {
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
sc->intrhand = NULL;
}
if (ifp != NULL) {
if_free(ifp);
sc->ifp = NULL;
}
if (sc->mem_res != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT,
rman_get_rid(sc->mem_res), sc->mem_res);
sc->mem_res = NULL;
}
if (sc->irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res), sc->irq_res);
sc->irq_res = NULL;
}
ATE_LOCK_DESTROY(sc);
return (0);
}
static void
ate_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
ate_load_rx_buf(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct ate_softc *sc;
if (error != 0)
return;
sc = (struct ate_softc *)arg;
bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_PREWRITE);
sc->rx_descs[sc->rxhead].addr = segs[0].ds_addr;
sc->rx_descs[sc->rxhead].status = 0;
bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_POSTWRITE);
}
static uint32_t
ate_mac_hash(const uint8_t *buf)
{
uint32_t index = 0;
for (int i = 0; i < 48; i++) {
index ^= ((buf[i >> 3] >> (i & 7)) & 1) << (i % 6);
}
return (index);
}
/*
* Compute the multicast filter for this device.
*/
static int
ate_setmcast(struct ate_softc *sc)
{
uint32_t index;
uint32_t mcaf[2];
u_char *af = (u_char *) mcaf;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
ifp = sc->ifp;
if ((ifp->if_flags & IFF_PROMISC) != 0)
return (0);
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
WR4(sc, ETH_HSL, 0xffffffff);
WR4(sc, ETH_HSH, 0xffffffff);
return (1);
}
/* Compute the multicast hash. */
mcaf[0] = 0;
mcaf[1] = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
index = ate_mac_hash(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr));
af[index >> 3] |= 1 << (index & 7);
}
if_maddr_runlock(ifp);
/*
* Write the hash to the hash register. This card can also
* accept unicast packets as well as multicast packets using this
* register for easier bridging operations, but we don't take
* advantage of that. Locks here are to avoid LOR with the
* if_maddr_rlock, but might not be strictly necessary.
*/
WR4(sc, ETH_HSL, mcaf[0]);
WR4(sc, ETH_HSH, mcaf[1]);
return (mcaf[0] || mcaf[1]);
}
static int
ate_activate(device_t dev)
{
struct ate_softc *sc;
int i;
sc = device_get_softc(dev);
/* Allocate DMA tags and maps for TX mbufs */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->mtag))
goto errout;
for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
if ( bus_dmamap_create(sc->mtag, 0, &sc->tx_map[i]))
goto errout;
}
/* DMA tag and map for the RX descriptors. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), sizeof(eth_rx_desc_t),
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
ATE_NUM_RX_DESCR * sizeof(eth_rx_desc_t), 1,
ATE_NUM_RX_DESCR * sizeof(eth_rx_desc_t), 0, busdma_lock_mutex,
&sc->sc_mtx, &sc->rx_desc_tag))
goto errout;
if (bus_dmamem_alloc(sc->rx_desc_tag, (void **)&sc->rx_descs,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->rx_desc_map) != 0)
goto errout;
if (bus_dmamap_load(sc->rx_desc_tag, sc->rx_desc_map,
sc->rx_descs, ATE_NUM_RX_DESCR * sizeof(eth_rx_desc_t),
ate_getaddr, &sc->rx_desc_phys, 0) != 0)
goto errout;
/* Allocate DMA tags and maps for RX. buffers */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sc->rx_buf_size, 1, sc->rx_buf_size, 0,
busdma_lock_mutex, &sc->sc_mtx, &sc->rx_tag))
goto errout;
/*
* Allocate our RX buffers.
* This chip has a RX structure that's filled in.
* XXX On MACB (SAM9 part) we should receive directly into mbuf
* to avoid the copy. XXX
*/
sc->rxhead = 0;
for (sc->rxhead = 0; sc->rxhead < ATE_RX_MEMORY/sc->rx_buf_size;
sc->rxhead++) {
if (bus_dmamem_alloc(sc->rx_tag,
(void **)&sc->rx_buf[sc->rxhead], BUS_DMA_NOWAIT,
&sc->rx_map[sc->rxhead]) != 0)
goto errout;
if (bus_dmamap_load(sc->rx_tag, sc->rx_map[sc->rxhead],
sc->rx_buf[sc->rxhead], sc->rx_buf_size,
ate_load_rx_buf, sc, 0) != 0) {
printf("bus_dmamem_load\n");
goto errout;
}
bus_dmamap_sync(sc->rx_tag, sc->rx_map[sc->rxhead], BUS_DMASYNC_PREREAD);
}
/*
* For the last buffer, set the wrap bit so the controller
* restarts from the first descriptor.
*/
sc->rx_descs[--sc->rxhead].addr |= ETH_WRAP_BIT;
sc->rxhead = 0;
/* Flush the memory for the EMAC rx descriptor. */
bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_PREWRITE);
/* Write the descriptor queue address. */
WR4(sc, ETH_RBQP, sc->rx_desc_phys);
/*
* DMA tag and map for the TX descriptors.
* XXX Old EMAC (not EMACB) doesn't really need DMA'able
* memory. We could just malloc it. gja XXX
*/
if (bus_dma_tag_create(bus_get_dma_tag(dev), sizeof(eth_tx_desc_t),
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
ATE_MAX_TX_BUFFERS * sizeof(eth_tx_desc_t), 1,
ATE_MAX_TX_BUFFERS * sizeof(eth_tx_desc_t), 0, busdma_lock_mutex,
&sc->sc_mtx, &sc->tx_desc_tag) != 0)
goto errout;
if (bus_dmamem_alloc(sc->tx_desc_tag, (void **)&sc->tx_descs,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->tx_desc_map) != 0)
goto errout;
if (bus_dmamap_load(sc->tx_desc_tag, sc->tx_desc_map,
sc->tx_descs, ATE_MAX_TX_BUFFERS * sizeof(eth_tx_desc_t),
ate_getaddr, &sc->tx_desc_phys, 0) != 0)
goto errout;
/* Initilize descriptors; mark all empty */
for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
sc->tx_descs[i].addr =0;
sc->tx_descs[i].status = ETHB_TX_USED;
sc->sent_mbuf[i] = NULL;
}
/* Mark last entry to cause wrap when indexing through */
sc->tx_descs[ATE_MAX_TX_BUFFERS - 1].status =
ETHB_TX_WRAP | ETHB_TX_USED;
/* Flush the memory for the EMAC tx descriptor. */
bus_dmamap_sync(sc->tx_desc_tag, sc->tx_desc_map, BUS_DMASYNC_PREWRITE);
sc->txhead = sc->txtail = 0;
if (sc->is_emacb) {
/* Write the descriptor queue address. */
WR4(sc, ETHB_TBQP, sc->tx_desc_phys);
}
/* EMACB: Enable transceiver input clock */
if (sc->is_emacb)
WR4(sc, ETHB_UIO, RD4(sc, ETHB_UIO) | ETHB_UIO_CLKE);
return (0);
errout:
return (ENOMEM);
}
static void
ate_deactivate(struct ate_softc *sc)
{
int i;
KASSERT(sc != NULL, ("[ate, %d]: sc is NULL!", __LINE__));
if (sc->mtag != NULL) {
for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
if (sc->sent_mbuf[i] != NULL) {
bus_dmamap_sync(sc->mtag, sc->tx_map[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, sc->tx_map[i]);
m_freem(sc->sent_mbuf[i]);
}
bus_dmamap_destroy(sc->mtag, sc->tx_map[i]);
sc->sent_mbuf[i] = NULL;
sc->tx_map[i] = NULL;
}
bus_dma_tag_destroy(sc->mtag);
}
if (sc->rx_desc_tag != NULL) {
if (sc->rx_descs != NULL) {
if (sc->rx_desc_phys != 0) {
bus_dmamap_sync(sc->rx_desc_tag,
sc->rx_desc_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rx_desc_tag,
sc->rx_desc_map);
sc->rx_desc_phys = 0;
}
}
}
if (sc->rx_tag != NULL) {
for (i = 0; sc->rx_buf[i] != NULL; i++) {
if (sc->rx_descs[i].addr != 0) {
bus_dmamap_sync(sc->rx_tag,
sc->rx_map[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rx_tag,
sc->rx_map[i]);
sc->rx_descs[i].addr = 0;
}
bus_dmamem_free(sc->rx_tag, sc->rx_buf[i],
sc->rx_map[i]);
sc->rx_buf[i] = NULL;
sc->rx_map[i] = NULL;
}
bus_dma_tag_destroy(sc->rx_tag);
}
if (sc->rx_desc_tag != NULL) {
if (sc->rx_descs != NULL)
bus_dmamem_free(sc->rx_desc_tag, sc->rx_descs,
sc->rx_desc_map);
bus_dma_tag_destroy(sc->rx_desc_tag);
sc->rx_descs = NULL;
sc->rx_desc_tag = NULL;
}
if (sc->is_emacb)
WR4(sc, ETHB_UIO, RD4(sc, ETHB_UIO) & ~ETHB_UIO_CLKE);
}
/*
* Change media according to request.
*/
static int
ate_ifmedia_upd(struct ifnet *ifp)
{
struct ate_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
ATE_LOCK(sc);
mii_mediachg(mii);
ATE_UNLOCK(sc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
ate_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ate_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
ATE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ATE_UNLOCK(sc);
}
static void
ate_stat_update(struct ate_softc *sc, int active)
{
uint32_t reg;
/*
* The speed and full/half-duplex state needs to be reflected
* in the ETH_CFG register.
*/
reg = RD4(sc, ETH_CFG);
reg &= ~(ETH_CFG_SPD | ETH_CFG_FD);
if (IFM_SUBTYPE(active) != IFM_10_T)
reg |= ETH_CFG_SPD;
if (active & IFM_FDX)
reg |= ETH_CFG_FD;
WR4(sc, ETH_CFG, reg);
}
static void
ate_tick(void *xsc)
{
struct ate_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
struct mii_data *mii;
int active;
uint32_t c;
/*
* The KB920x boot loader tests ETH_SR & ETH_SR_LINK and will ask
* the MII if there's a link if this bit is clear. Not sure if we
* should do the same thing here or not.
*/
ATE_ASSERT_LOCKED(sc);
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
active = mii->mii_media_active;
mii_tick(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
active != mii->mii_media_active)
ate_stat_update(sc, mii->mii_media_active);
}
/*
* Update the stats as best we can. When we're done, clear
* the status counters and start over. We're supposed to read these
* registers often enough that they won't overflow. Hopefully
* once a second is often enough. Some don't map well to
* the dot3Stats mib, so for those we just count them as general
* errors. Stats for iframes, ibutes, oframes and obytes are
* collected elsewhere. These registers zero on a read to prevent
* races. For all the collision stats, also update the collision
* stats for the interface.
*/
sc->mibdata.dot3StatsAlignmentErrors += RD4(sc, ETH_ALE);
sc->mibdata.dot3StatsFCSErrors += RD4(sc, ETH_SEQE);
c = RD4(sc, ETH_SCOL);
ifp->if_collisions += c;
sc->mibdata.dot3StatsSingleCollisionFrames += c;
c = RD4(sc, ETH_MCOL);
sc->mibdata.dot3StatsMultipleCollisionFrames += c;
ifp->if_collisions += c;
sc->mibdata.dot3StatsSQETestErrors += RD4(sc, ETH_SQEE);
sc->mibdata.dot3StatsDeferredTransmissions += RD4(sc, ETH_DTE);
c = RD4(sc, ETH_LCOL);
sc->mibdata.dot3StatsLateCollisions += c;
ifp->if_collisions += c;
c = RD4(sc, ETH_ECOL);
sc->mibdata.dot3StatsExcessiveCollisions += c;
ifp->if_collisions += c;
sc->mibdata.dot3StatsCarrierSenseErrors += RD4(sc, ETH_CSE);
sc->mibdata.dot3StatsFrameTooLongs += RD4(sc, ETH_ELR);
sc->mibdata.dot3StatsInternalMacReceiveErrors += RD4(sc, ETH_DRFC);
/*
* Not sure where to lump these, so count them against the errors
* for the interface.
*/
sc->ifp->if_oerrors += RD4(sc, ETH_TUE);
sc->ifp->if_ierrors += RD4(sc, ETH_CDE) + RD4(sc, ETH_RJB) +
RD4(sc, ETH_USF);
/* Schedule another timeout one second from now. */
callout_reset(&sc->tick_ch, hz, ate_tick, sc);
}
static void
ate_set_mac(struct ate_softc *sc, u_char *eaddr)
{
WR4(sc, ETH_SA1L, (eaddr[3] << 24) | (eaddr[2] << 16) |
(eaddr[1] << 8) | eaddr[0]);
WR4(sc, ETH_SA1H, (eaddr[5] << 8) | (eaddr[4]));
}
static int
ate_get_mac(struct ate_softc *sc, u_char *eaddr)
{
bus_size_t sa_low_reg[] = { ETH_SA1L, ETH_SA2L, ETH_SA3L, ETH_SA4L };
bus_size_t sa_high_reg[] = { ETH_SA1H, ETH_SA2H, ETH_SA3H, ETH_SA4H };
uint32_t low, high;
int i;
/*
* The boot loader may setup the MAC with an address(es), grab the
* first MAC address from the SA[1-4][HL] registers.
*/
for (i = 0; i < 4; i++) {
low = RD4(sc, sa_low_reg[i]);
high = RD4(sc, sa_high_reg[i]);
if ((low | (high & 0xffff)) != 0) {
eaddr[0] = low & 0xff;
eaddr[1] = (low >> 8) & 0xff;
eaddr[2] = (low >> 16) & 0xff;
eaddr[3] = (low >> 24) & 0xff;
eaddr[4] = high & 0xff;
eaddr[5] = (high >> 8) & 0xff;
return (0);
}
}
return (ENXIO);
}
static void
ate_intr(void *xsc)
{
struct ate_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
struct mbuf *mb;
eth_rx_desc_t *rxdhead;
uint32_t status, reg, idx;
int remain, count, done;
status = RD4(sc, ETH_ISR);
if (status == 0)
return;
if (status & ETH_ISR_RCOM) {
bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
BUS_DMASYNC_POSTREAD);
rxdhead = &sc->rx_descs[sc->rxhead];
while (rxdhead->addr & ETH_CPU_OWNER) {
if (!sc->is_emacb) {
/*
* Simulate SAM9 FIRST/LAST bits for RM9200.
* RM9200 EMAC has only on Rx buffer per packet.
* But sometime we are handed a zero lenght packet.
*/
if ((rxdhead->status & ETH_LEN_MASK) == 0)
rxdhead->status = 0; /* Mark error */
else
rxdhead->status |= ETH_BUF_FIRST | ETH_BUF_LAST;
}
if ((rxdhead->status & ETH_BUF_FIRST) == 0) {
/* Something went wrong during RX so
release back to EMAC all buffers of invalid packets.
*/
rxdhead->status = 0;
rxdhead->addr &= ~ETH_CPU_OWNER;
sc->rxhead = NEXT_RX_IDX(sc, sc->rxhead);
rxdhead = &sc->rx_descs[sc->rxhead];
continue;
}
/* Find end of packet or start of next */
idx = sc->rxhead;
if ((sc->rx_descs[idx].status & ETH_BUF_LAST) == 0) {
idx = NEXT_RX_IDX(sc, idx);
while ((sc->rx_descs[idx].addr & ETH_CPU_OWNER) &&
((sc->rx_descs[idx].status &
(ETH_BUF_FIRST|ETH_BUF_LAST))== 0))
idx = NEXT_RX_IDX(sc, idx);
}
/* Packet NOT yet completely in memory; we are done */
if ((sc->rx_descs[idx].addr & ETH_CPU_OWNER) == 0 ||
((sc->rx_descs[idx].status & (ETH_BUF_FIRST|ETH_BUF_LAST))== 0))
break;
/* Packets with no end descriptor are invalid. */
if ((sc->rx_descs[idx].status & ETH_BUF_LAST) == 0) {
rxdhead->status &= ~ETH_BUF_FIRST;
continue;
}
/* FCS is not coppied into mbuf. */
remain = (sc->rx_descs[idx].status & ETH_LEN_MASK) - 4;
/* Get an appropriately sized mbuf */
if (remain + ETHER_ALIGN >= MINCLSIZE)
mb = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
else
MGETHDR(mb, M_DONTWAIT, MT_DATA);
if (mb == NULL) {
sc->ifp->if_iqdrops++;
rxdhead->status = 0;
continue;
}
mb->m_data += ETHER_ALIGN;
mb->m_pkthdr.rcvif = ifp;
WR4(sc, ETH_RSR, RD4(sc, ETH_RSR)); /* Reset status */
/* Now we process the buffers that make up the packet */
do {
/* Last buffer may just be 1-4 bytes of FCS so remain
* may be zero for last decriptor. */
if (remain > 0) {
/* Make sure we get the current bytes */
bus_dmamap_sync(sc->rx_tag, sc->rx_map[sc->rxhead],
BUS_DMASYNC_POSTREAD);
count = MIN(remain, sc->rx_buf_size);
/* XXX Performance robbing copy. Could
* recieve directly to mbufs if not an
* RM9200. XXX */
m_append(mb, count, sc->rx_buf[sc->rxhead]);
remain -= count;
}
done = (rxdhead->status & ETH_BUF_LAST) != 0;
/* Return the descriptor to the EMAC */
rxdhead->status = 0;
rxdhead->addr &= ~ETH_CPU_OWNER;
bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
BUS_DMASYNC_PREWRITE);
/* Move on to next descriptor with wrap */
sc->rxhead = NEXT_RX_IDX(sc, sc->rxhead);
rxdhead = &sc->rx_descs[sc->rxhead];
} while (!done);
if (mb != NULL) {
ifp->if_ipackets++;
(*ifp->if_input)(ifp, mb);
}
}
}
if (status & ETH_ISR_TCOM) {
bus_dmamap_sync(sc->tx_desc_tag, sc->tx_desc_map,
BUS_DMASYNC_POSTREAD);
ATE_LOCK(sc);
/* XXX TSR register should be cleared */
if (!sc->is_emacb) {
/* Simulate Transmit descriptor table */
/* First packet done */
if (sc->txtail < sc->txhead)
sc->tx_descs[sc->txtail].status |= ETHB_TX_USED;
/* Second Packet done */
if (sc->txtail + 1 < sc->txhead &&
RD4(sc, ETH_TSR) & ETH_TSR_IDLE)
sc->tx_descs[sc->txtail + 1].status |= ETHB_TX_USED;
}
while (sc->txtail != sc->txhead &&
sc->tx_descs[sc->txtail].status & ETHB_TX_USED ) {
bus_dmamap_sync(sc->mtag, sc->tx_map[sc->txtail],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, sc->tx_map[sc->txtail]);
m_freem(sc->sent_mbuf[sc->txtail]);
sc->tx_descs[sc->txtail].addr = 0;
sc->sent_mbuf[sc->txtail] = NULL;
ifp->if_opackets++;
sc->txtail = NEXT_TX_IDX(sc, sc->txtail);
}
/* Flush descriptors to EMAC */
bus_dmamap_sync(sc->tx_desc_tag, sc->tx_desc_map, BUS_DMASYNC_PREWRITE);
/*
* We're no longer busy, so clear the busy flag and call the
* start routine to xmit more packets.
*/
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
atestart_locked(sc->ifp);
ATE_UNLOCK(sc);
}
if (status & ETH_ISR_RBNA) {
/* Workaround RM9200 Errata #11 */
if (bootverbose)
device_printf(sc->dev, "RBNA workaround\n");
reg = RD4(sc, ETH_CTL);
WR4(sc, ETH_CTL, reg & ~ETH_CTL_RE);
BARRIER(sc, ETH_CTL, 4, BUS_SPACE_BARRIER_WRITE);
WR4(sc, ETH_CTL, reg | ETH_CTL_RE);
}
}
/*
* Reset and initialize the chip.
*/
static void
ateinit_locked(void *xsc)
{
struct ate_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
uint32_t reg;
ATE_ASSERT_LOCKED(sc);
/*
* XXX TODO(3)
* we need to turn on the EMAC clock in the pmc. With the
* default boot loader, this is already turned on. However, we
* need to think about how best to turn it on/off as the interface
* is brought up/down, as well as dealing with the mii bus...
*
* We also need to multiplex the pins correctly (in board_xxx.c).
*/
/*
* There are two different ways that the mii bus is connected
* to this chip mii or rmii.
*/
if (!sc->is_emacb) {
/* RM9200 */
reg = RD4(sc, ETH_CFG);
if (sc->use_rmii)
reg |= ETH_CFG_RMII;
else
reg &= ~ETH_CFG_RMII;
WR4(sc, ETH_CFG, reg);
} else {
/* SAM9 */
reg = ETHB_UIO_CLKE;
reg |= (sc->use_rmii) ? ETHB_UIO_RMII : 0;
WR4(sc, ETHB_UIO, reg);
}
ate_rxfilter(sc);
/*
* Set the chip MAC address.
*/
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
ate_set_mac(sc, eaddr);
/* Make sure we know state of TX queue */
sc->txhead = sc->txtail = 0;
if (sc->is_emacb) {
/* Write the descriptor queue address. */
WR4(sc, ETHB_TBQP, sc->tx_desc_phys);
}
/*
* Turn on MACs and interrupt processing.
*/
WR4(sc, ETH_CTL, RD4(sc, ETH_CTL) | ETH_CTL_TE | ETH_CTL_RE);
WR4(sc, ETH_IER, ETH_ISR_RCOM | ETH_ISR_TCOM | ETH_ISR_RBNA);
/* Enable big packets. */
WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) | ETH_CFG_BIG);
/*
* Set 'running' flag, and clear output active flag
* and attempt to start the output.
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
ate_stat_update(sc, mii->mii_media_active);
atestart_locked(ifp);
callout_reset(&sc->tick_ch, hz, ate_tick, sc);
}
/*
* Dequeue packets and transmit.
*/
static void
atestart_locked(struct ifnet *ifp)
{
struct ate_softc *sc = ifp->if_softc;
struct mbuf *m, *mdefrag;
bus_dma_segment_t segs[1];
int nseg, e;
ATE_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
while (sc->tx_descs[sc->txhead].status & ETHB_TX_USED) {
/*
* Check to see if there's room to put another packet into the
* xmit queue. The old EMAC version has a ping-pong buffer for
* xmit packets. We use OACTIVE to indicate "we can stuff more
* into our buffers (clear) or not (set)."
*/
if (!sc->is_emacb) {
/* RM9200 has only two hardware entries */
if (!sc->is_emacb && (RD4(sc, ETH_TSR) & ETH_TSR_BNQ) == 0) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
e = bus_dmamap_load_mbuf_sg(sc->mtag, sc->tx_map[sc->txhead], m,
segs, &nseg, 0);
if (e == EFBIG) {
mdefrag = m_defrag(m, M_DONTWAIT);
if (mdefrag == NULL) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
return;
}
m = mdefrag;
e = bus_dmamap_load_mbuf_sg(sc->mtag,
sc->tx_map[sc->txhead], m, segs, &nseg, 0);
}
if (e != 0) {
m_freem(m);
continue;
}
sc->sent_mbuf[sc->txhead] = m;
bus_dmamap_sync(sc->mtag, sc->tx_map[sc->txhead],
BUS_DMASYNC_PREWRITE);
/* Tell the hardware to xmit the packet. */
if (!sc->is_emacb) {
WR4(sc, ETH_TAR, segs[0].ds_addr);
BARRIER(sc, ETH_TAR, 4, BUS_SPACE_BARRIER_WRITE);
WR4(sc, ETH_TCR, segs[0].ds_len);
} else {
bus_dmamap_sync(sc->tx_desc_tag, sc->tx_desc_map,
BUS_DMASYNC_POSTWRITE);
sc->tx_descs[sc->txhead].addr = segs[0].ds_addr;
sc->tx_descs[sc->txhead].status = segs[0].ds_len |
(sc->tx_descs[sc->txhead].status & ETHB_TX_WRAP) |
ETHB_TX_BUF_LAST;
bus_dmamap_sync(sc->tx_desc_tag, sc->tx_desc_map,
BUS_DMASYNC_PREWRITE);
WR4(sc, ETH_CTL, RD4(sc, ETH_CTL) | ETHB_CTL_TGO);
}
sc->txhead = NEXT_TX_IDX(sc, sc->txhead);
/* Tap off here if there is a bpf listener. */
BPF_MTAP(ifp, m);
}
if ((sc->tx_descs[sc->txhead].status & ETHB_TX_USED) == 0)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
static void
ateinit(void *xsc)
{
struct ate_softc *sc = xsc;
ATE_LOCK(sc);
ateinit_locked(sc);
ATE_UNLOCK(sc);
}
static void
atestart(struct ifnet *ifp)
{
struct ate_softc *sc = ifp->if_softc;
ATE_LOCK(sc);
atestart_locked(ifp);
ATE_UNLOCK(sc);
}
/*
* Turn off interrupts, and stop the NIC. Can be called with sc->ifp NULL,
* so be careful.
*/
static void
atestop(struct ate_softc *sc)
{
struct ifnet *ifp;
int i;
ATE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if (ifp) {
//ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
callout_stop(&sc->tick_ch);
/*
* Enable some parts of the MAC that are needed always (like the
* MII bus. This turns off the RE and TE bits, which will remain
* off until ateinit() is called to turn them on. With RE and TE
* turned off, there's no DMA to worry about after this write.
*/
WR4(sc, ETH_CTL, ETH_CTL_MPE);
/*
* Turn off all the configured options and revert to defaults.
*/
/* Make sure thate the MDIO clk is less than
* 2.5 Mhz. Can no longer default to /32 since
* SAM9 family may have MCK > 80 Mhz */
if (at91_master_clock <= 2000000)
WR4(sc, ETH_CFG, ETH_CFG_CLK_8);
else if (at91_master_clock <= 4000000)
WR4(sc, ETH_CFG, ETH_CFG_CLK_16);
else if (at91_master_clock <= 800000)
WR4(sc, ETH_CFG, ETH_CFG_CLK_32);
else
WR4(sc, ETH_CFG, ETH_CFG_CLK_64);
/*
* Turn off all the interrupts, and ack any pending ones by reading
* the ISR.
*/
WR4(sc, ETH_IDR, 0xffffffff);
RD4(sc, ETH_ISR);
/*
* Clear out the Transmit and Receiver Status registers of any
* errors they may be reporting
*/
WR4(sc, ETH_TSR, 0xffffffff);
WR4(sc, ETH_RSR, 0xffffffff);
/* Release TX resources. */
for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
if (sc->sent_mbuf[i] != NULL) {
bus_dmamap_sync(sc->mtag, sc->tx_map[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, sc->tx_map[i]);
m_freem(sc->sent_mbuf[i]);
sc->sent_mbuf[i] = NULL;
}
}
/* Turn off transeiver input clock */
if (sc->is_emacb)
WR4(sc, ETHB_UIO, RD4(sc, ETHB_UIO) & ~ETHB_UIO_CLKE);
/*
* XXX we should power down the EMAC if it isn't in use, after
* putting it into loopback mode. This saves about 400uA according
* to the datasheet.
*/
}
static void
ate_rxfilter(struct ate_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
int enabled;
KASSERT(sc != NULL, ("[ate, %d]: sc is NULL!", __LINE__));
ATE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
/* Wipe out old filter settings. */
reg = RD4(sc, ETH_CFG);
reg &= ~(ETH_CFG_CAF | ETH_CFG_MTI | ETH_CFG_UNI);
reg |= ETH_CFG_NBC;
sc->flags &= ~ATE_FLAG_MULTICAST;
/* Set new parameters. */
if ((ifp->if_flags & IFF_BROADCAST) != 0)
reg &= ~ETH_CFG_NBC;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
reg |= ETH_CFG_CAF;
} else {
enabled = ate_setmcast(sc);
if (enabled != 0) {
reg |= ETH_CFG_MTI;
sc->flags |= ATE_FLAG_MULTICAST;
}
}
WR4(sc, ETH_CFG, reg);
}
static int
ateioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ate_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *)data;
int drv_flags, flags;
int mask, error, enabled;
error = 0;
flags = ifp->if_flags;
drv_flags = ifp->if_drv_flags;
switch (cmd) {
case SIOCSIFFLAGS:
ATE_LOCK(sc);
if ((flags & IFF_UP) != 0) {
if ((drv_flags & IFF_DRV_RUNNING) != 0) {
if (((flags ^ sc->if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
ate_rxfilter(sc);
} else {
if ((sc->flags & ATE_FLAG_DETACHING) == 0)
ateinit_locked(sc);
}
} else if ((drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
atestop(sc);
}
sc->if_flags = flags;
ATE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((drv_flags & IFF_DRV_RUNNING) != 0) {
ATE_LOCK(sc);
enabled = ate_setmcast(sc);
if (enabled != (sc->flags & ATE_FLAG_MULTICAST))
ate_rxfilter(sc);
ATE_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_VLAN_MTU) {
ATE_LOCK(sc);
if (ifr->ifr_reqcap & IFCAP_VLAN_MTU) {
WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) | ETH_CFG_BIG);
ifp->if_capenable |= IFCAP_VLAN_MTU;
} else {
WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) & ~ETH_CFG_BIG);
ifp->if_capenable &= ~IFCAP_VLAN_MTU;
}
ATE_UNLOCK(sc);
}
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
ate_child_detached(device_t dev, device_t child)
{
struct ate_softc *sc;
sc = device_get_softc(dev);
if (child == sc->miibus)
sc->miibus = NULL;
}
/*
* MII bus support routines.
*/
static int
ate_miibus_readreg(device_t dev, int phy, int reg)
{
struct ate_softc *sc;
int val;
/*
* XXX if we implement agressive power savings, then we need
* XXX to make sure that the clock to the emac is on here
*/
sc = device_get_softc(dev);
DELAY(1); /* Hangs w/o this delay really 30.5us atm */
WR4(sc, ETH_MAN, ETH_MAN_REG_RD(phy, reg));
while ((RD4(sc, ETH_SR) & ETH_SR_IDLE) == 0)
continue;
val = RD4(sc, ETH_MAN) & ETH_MAN_VALUE_MASK;
return (val);
}
static int
ate_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct ate_softc *sc;
/*
* XXX if we implement agressive power savings, then we need
* XXX to make sure that the clock to the emac is on here
*/
sc = device_get_softc(dev);
WR4(sc, ETH_MAN, ETH_MAN_REG_WR(phy, reg, data));
while ((RD4(sc, ETH_SR) & ETH_SR_IDLE) == 0)
continue;
return (0);
}
static device_method_t ate_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ate_probe),
DEVMETHOD(device_attach, ate_attach),
DEVMETHOD(device_detach, ate_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, ate_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, ate_miibus_readreg),
DEVMETHOD(miibus_writereg, ate_miibus_writereg),
DEVMETHOD_END
};
static driver_t ate_driver = {
"ate",
ate_methods,
sizeof(struct ate_softc),
};
DRIVER_MODULE(ate, atmelarm, ate_driver, ate_devclass, NULL, NULL);
DRIVER_MODULE(miibus, ate, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(ate, miibus, 1, 1, 1);
MODULE_DEPEND(ate, ether, 1, 1, 1);