Scott Long 7628acd8ee Up until now, the free SCB pool received only a small initial allocation,
and new SCBs were allocated on demand later if needed.  This has two
problems.  First, allocating SCBs involves allocating contiguous memory,
and if memory is exhausted then the VM will try to page out to satisfy
the request, leading to recursion and deadlock.  The second problem is
that it can cause lock order reversals due to parts of the VM still being
under Giant.

Fix the problem be allocating the full pool at driver attach, when it is
safe to do so.
2007-04-19 18:53:52 +00:00

10337 lines
281 KiB
C

/*-
* Core routines and tables shareable across OS platforms.
*
* Copyright (c) 1994-2002, 2004 Justin T. Gibbs.
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#246 $
*/
#ifdef __linux__
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#include "aicasm/aicasm_insformat.h"
#else
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#include <dev/aic7xxx/aicasm/aicasm_insformat.h>
#endif
/******************************** Globals *************************************/
struct ahd_softc_tailq ahd_tailq = TAILQ_HEAD_INITIALIZER(ahd_tailq);
uint32_t ahd_attach_to_HostRAID_controllers = 1;
/***************************** Lookup Tables **********************************/
char *ahd_chip_names[] =
{
"NONE",
"aic7901",
"aic7902",
"aic7901A"
};
static const u_int num_chip_names = NUM_ELEMENTS(ahd_chip_names);
/*
* Hardware error codes.
*/
struct ahd_hard_error_entry {
uint8_t errno;
char *errmesg;
};
static struct ahd_hard_error_entry ahd_hard_errors[] = {
{ DSCTMOUT, "Discard Timer has timed out" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
static const u_int num_errors = NUM_ELEMENTS(ahd_hard_errors);
static struct ahd_phase_table_entry ahd_phase_table[] =
{
{ P_DATAOUT, MSG_NOOP, "in Data-out phase" },
{ P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
{ P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
{ P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
{ P_COMMAND, MSG_NOOP, "in Command phase" },
{ P_MESGOUT, MSG_NOOP, "in Message-out phase" },
{ P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
{ P_BUSFREE, MSG_NOOP, "while idle" },
{ 0, MSG_NOOP, "in unknown phase" }
};
/*
* In most cases we only wish to itterate over real phases, so
* exclude the last element from the count.
*/
static const u_int num_phases = NUM_ELEMENTS(ahd_phase_table) - 1;
/* Our Sequencer Program */
#include "aic79xx_seq.h"
/**************************** Function Declarations ***************************/
static void ahd_handle_transmission_error(struct ahd_softc *ahd);
static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
u_int lqistat1);
static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
u_int busfreetime);
static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
static void ahd_handle_proto_violation(struct ahd_softc *ahd);
static void ahd_force_renegotiation(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static struct ahd_tmode_tstate*
ahd_alloc_tstate(struct ahd_softc *ahd,
u_int scsi_id, char channel);
#ifdef AHD_TARGET_MODE
static void ahd_free_tstate(struct ahd_softc *ahd,
u_int scsi_id, char channel, int force);
#endif
static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *,
u_int *period,
u_int *ppr_options,
role_t role);
static void ahd_update_neg_table(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct ahd_transinfo *tinfo);
static void ahd_update_pending_scbs(struct ahd_softc *ahd);
static void ahd_fetch_devinfo(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_scb_devinfo(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
static void ahd_build_transfer_msg(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_construct_sdtr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int period, u_int offset);
static void ahd_construct_wdtr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int bus_width);
static void ahd_construct_ppr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int period, u_int offset,
u_int bus_width, u_int ppr_options);
static void ahd_clear_msg_state(struct ahd_softc *ahd);
static void ahd_handle_message_phase(struct ahd_softc *ahd);
typedef enum {
AHDMSG_1B,
AHDMSG_2B,
AHDMSG_EXT
} ahd_msgtype;
static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
u_int msgval, int full);
static int ahd_parse_msg(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static int ahd_handle_msg_reject(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
static void ahd_handle_devreset(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int lun, cam_status status,
char *message, int verbose_level);
#ifdef AHD_TARGET_MODE
static void ahd_setup_target_msgin(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
#endif
static u_int ahd_sglist_size(struct ahd_softc *ahd);
static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
static bus_dmamap_callback_t
ahd_dmamap_cb;
static void ahd_initialize_hscbs(struct ahd_softc *ahd);
static int ahd_init_scbdata(struct ahd_softc *ahd);
static void ahd_fini_scbdata(struct ahd_softc *ahd);
static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
static void ahd_iocell_first_selection(struct ahd_softc *ahd);
static void ahd_add_col_list(struct ahd_softc *ahd,
struct scb *scb, u_int col_idx);
static void ahd_rem_col_list(struct ahd_softc *ahd,
struct scb *scb);
static void ahd_chip_init(struct ahd_softc *ahd);
static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
struct scb *prev_scb,
struct scb *scb);
static int ahd_qinfifo_count(struct ahd_softc *ahd);
static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
char channel, int lun, u_int tag,
role_t role, uint32_t status,
ahd_search_action action,
u_int *list_head, u_int *list_tail,
u_int tid);
static void ahd_stitch_tid_list(struct ahd_softc *ahd,
u_int tid_prev, u_int tid_cur,
u_int tid_next);
static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
u_int scbid);
static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
u_int prev, u_int next, u_int tid);
static void ahd_reset_current_bus(struct ahd_softc *ahd);
static ahd_callback_t ahd_reset_poll;
static ahd_callback_t ahd_stat_timer;
#ifdef AHD_DUMP_SEQ
static void ahd_dumpseq(struct ahd_softc *ahd);
#endif
static void ahd_loadseq(struct ahd_softc *ahd);
static int ahd_check_patch(struct ahd_softc *ahd,
struct patch **start_patch,
u_int start_instr, u_int *skip_addr);
static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
u_int address);
static void ahd_download_instr(struct ahd_softc *ahd,
u_int instrptr, uint8_t *dconsts);
static int ahd_probe_stack_size(struct ahd_softc *ahd);
static int ahd_other_scb_timeout(struct ahd_softc *ahd,
struct scb *scb,
struct scb *other_scb);
static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
struct scb *scb);
static void ahd_run_data_fifo(struct ahd_softc *ahd,
struct scb *scb);
#ifdef AHD_TARGET_MODE
static void ahd_queue_lstate_event(struct ahd_softc *ahd,
struct ahd_tmode_lstate *lstate,
u_int initiator_id,
u_int event_type,
u_int event_arg);
static void ahd_update_scsiid(struct ahd_softc *ahd,
u_int targid_mask);
static int ahd_handle_target_cmd(struct ahd_softc *ahd,
struct target_cmd *cmd);
#endif
/******************************** Private Inlines *****************************/
static __inline void ahd_assert_atn(struct ahd_softc *ahd);
static __inline int ahd_currently_packetized(struct ahd_softc *ahd);
static __inline int ahd_set_active_fifo(struct ahd_softc *ahd);
static __inline void
ahd_assert_atn(struct ahd_softc *ahd)
{
ahd_outb(ahd, SCSISIGO, ATNO);
}
/*
* Determine if the current connection has a packetized
* agreement. This does not necessarily mean that we
* are currently in a packetized transfer. We could
* just as easily be sending or receiving a message.
*/
static __inline int
ahd_currently_packetized(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
int packetized;
saved_modes = ahd_save_modes(ahd);
if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
/*
* The packetized bit refers to the last
* connection, not the current one. Check
* for non-zero LQISTATE instead.
*/
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
packetized = ahd_inb(ahd, LQISTATE) != 0;
} else {
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
}
ahd_restore_modes(ahd, saved_modes);
return (packetized);
}
static __inline int
ahd_set_active_fifo(struct ahd_softc *ahd)
{
u_int active_fifo;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
switch (active_fifo) {
case 0:
case 1:
ahd_set_modes(ahd, active_fifo, active_fifo);
return (1);
default:
return (0);
}
}
/************************* Sequencer Execution Control ************************/
/*
* Restart the sequencer program from address zero
*/
void
ahd_restart(struct ahd_softc *ahd)
{
ahd_pause(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* No more pending messages */
ahd_clear_msg_state(ahd);
ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
ahd_outb(ahd, SEQINTCTL, 0);
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_outb(ahd, SAVED_SCSIID, 0xFF);
ahd_outb(ahd, SAVED_LUN, 0xFF);
/*
* Ensure that the sequencer's idea of TQINPOS
* matches our own. The sequencer increments TQINPOS
* only after it sees a DMA complete and a reset could
* occur before the increment leaving the kernel to believe
* the command arrived but the sequencer to not.
*/
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
/* Always allow reselection */
ahd_outb(ahd, SCSISEQ1,
ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Clear any pending sequencer interrupt. It is no
* longer relevant since we're resetting the Program
* Counter.
*/
ahd_outb(ahd, CLRINT, CLRSEQINT);
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
ahd_unpause(ahd);
}
void
ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
{
ahd_mode_state saved_modes;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
printf("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
#endif
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, fifo, fifo);
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
ahd_outb(ahd, CCSGCTL, CCSGRESET);
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SG_STATE, 0);
ahd_restore_modes(ahd, saved_modes);
}
/************************* Input/Output Queues ********************************/
/*
* Flush and completed commands that are sitting in the command
* complete queues down on the chip but have yet to be dma'ed back up.
*/
void
ahd_flush_qoutfifo(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int saved_scbptr;
u_int ccscbctl;
u_int scbid;
u_int next_scbid;
saved_modes = ahd_save_modes(ahd);
/*
* Flush the good status FIFO for completed packetized commands.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_scbptr = ahd_get_scbptr(ahd);
while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
u_int fifo_mode;
u_int i;
scbid = ahd_inw(ahd, GSFIFO);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - GSFIFO SCB %d invalid\n",
ahd_name(ahd), scbid);
continue;
}
/*
* Determine if this transaction is still active in
* any FIFO. If it is, we must flush that FIFO to
* the host before completing the command.
*/
fifo_mode = 0;
rescan_fifos:
for (i = 0; i < 2; i++) {
/* Toggle to the other mode. */
fifo_mode ^= 1;
ahd_set_modes(ahd, fifo_mode, fifo_mode);
if (ahd_scb_active_in_fifo(ahd, scb) == 0)
continue;
ahd_run_data_fifo(ahd, scb);
/*
* Running this FIFO may cause a CFG4DATA for
* this same transaction to assert in the other
* FIFO or a new snapshot SAVEPTRS interrupt
* in this FIFO. Even running a FIFO may not
* clear the transaction if we are still waiting
* for data to drain to the host. We must loop
* until the transaction is not active in either
* FIFO just to be sure. Reset our loop counter
* so we will visit both FIFOs again before
* declaring this transaction finished. We
* also delay a bit so that status has a chance
* to change before we look at this FIFO again.
*/
aic_delay(200);
goto rescan_fifos;
}
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_set_scbptr(ahd, scbid);
if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
&& ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
|| (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
& SG_LIST_NULL) != 0)) {
u_int comp_head;
/*
* The transfer completed with a residual.
* Place this SCB on the complete DMA list
* so that we update our in-core copy of the
* SCB before completing the command.
*/
ahd_outb(ahd, SCB_SCSI_STATUS, 0);
ahd_outb(ahd, SCB_SGPTR,
ahd_inb_scbram(ahd, SCB_SGPTR)
| SG_STATUS_VALID);
ahd_outw(ahd, SCB_TAG, scbid);
ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
if (SCBID_IS_NULL(comp_head)) {
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
} else {
u_int tail;
tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
ahd_set_scbptr(ahd, tail);
ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
ahd_set_scbptr(ahd, scbid);
}
} else
ahd_complete_scb(ahd, scb);
}
ahd_set_scbptr(ahd, saved_scbptr);
/*
* Setup for command channel portion of flush.
*/
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Wait for any inprogress DMA to complete and clear DMA state
* if this if for an SCB in the qinfifo.
*/
while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
if ((ccscbctl & ARRDONE) != 0)
break;
} else if ((ccscbctl & CCSCBDONE) != 0)
break;
aic_delay(200);
}
/*
* We leave the sequencer to cleanup in the case of DMA's to
* update the qoutfifo. In all other cases (DMA's to the
* chip or a push of an SCB from the COMPLETE_DMA_SCB list),
* we disable the DMA engine so that the sequencer will not
* attempt to handle the DMA completion.
*/
if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
/*
* Complete any SCBs that just finished
* being DMA'ed into the qoutfifo.
*/
ahd_run_qoutfifo(ahd);
saved_scbptr = ahd_get_scbptr(ahd);
/*
* Manually update/complete any completed SCBs that are waiting to be
* DMA'ed back up to the host.
*/
scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
while (!SCBID_IS_NULL(scbid)) {
uint8_t *hscb_ptr;
u_int i;
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - DMA-up and complete "
"SCB %d invalid\n", ahd_name(ahd), scbid);
continue;
}
hscb_ptr = (uint8_t *)scb->hscb;
for (i = 0; i < sizeof(struct hardware_scb); i++)
*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
while (!SCBID_IS_NULL(scbid)) {
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - Complete Qfrz SCB %d invalid\n",
ahd_name(ahd), scbid);
continue;
}
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
while (!SCBID_IS_NULL(scbid)) {
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - Complete SCB %d invalid\n",
ahd_name(ahd), scbid);
continue;
}
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
/*
* Restore state.
*/
ahd_set_scbptr(ahd, saved_scbptr);
ahd_restore_modes(ahd, saved_modes);
ahd->flags |= AHD_UPDATE_PEND_CMDS;
}
/*
* Determine if an SCB for a packetized transaction
* is active in a FIFO.
*/
static int
ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
{
/*
* The FIFO is only active for our transaction if
* the SCBPTR matches the SCB's ID and the firmware
* has installed a handler for the FIFO or we have
* a pending SAVEPTRS or CFG4DATA interrupt.
*/
if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
|| ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
&& (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
return (0);
return (1);
}
/*
* Run a data fifo to completion for a transaction we know
* has completed across the SCSI bus (good status has been
* received). We are already set to the correct FIFO mode
* on entry to this routine.
*
* This function attempts to operate exactly as the firmware
* would when running this FIFO. Care must be taken to update
* this routine any time the firmware's FIFO algorithm is
* changed.
*/
static void
ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
{
u_int seqintsrc;
seqintsrc = ahd_inb(ahd, SEQINTSRC);
if ((seqintsrc & CFG4DATA) != 0) {
uint32_t datacnt;
uint32_t sgptr;
/*
* Clear full residual flag.
*/
sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
ahd_outb(ahd, SCB_SGPTR, sgptr);
/*
* Load datacnt and address.
*/
datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
sgptr |= LAST_SEG;
ahd_outb(ahd, SG_STATE, 0);
} else
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
ahd_outb(ahd, SG_CACHE_PRE, sgptr);
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
/*
* Initialize Residual Fields.
*/
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
/*
* Mark the SCB as having a FIFO in use.
*/
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
/*
* Install a "fake" handler for this FIFO.
*/
ahd_outw(ahd, LONGJMP_ADDR, 0);
/*
* Notify the hardware that we have satisfied
* this sequencer interrupt.
*/
ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
} else if ((seqintsrc & SAVEPTRS) != 0) {
uint32_t sgptr;
uint32_t resid;
if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
/*
* Snapshot Save Pointers. All that
* is necessary to clear the snapshot
* is a CLRCHN.
*/
goto clrchn;
}
/*
* Disable S/G fetch so the DMA engine
* is available to future users.
*/
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
ahd_outb(ahd, CCSGCTL, 0);
ahd_outb(ahd, SG_STATE, 0);
/*
* Flush the data FIFO. Strickly only
* necessary for Rev A parts.
*/
ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
/*
* Calculate residual.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
resid = ahd_inl(ahd, SHCNT);
resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
/*
* Must back up to the correct S/G element.
* Typically this just means resetting our
* low byte to the offset in the SG_CACHE,
* but if we wrapped, we have to correct
* the other bytes of the sgptr too.
*/
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
&& (sgptr & 0x80) == 0)
sgptr -= 0x100;
sgptr &= ~0xFF;
sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
& SG_ADDR_MASK;
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
} else if ((resid & AHD_SG_LEN_MASK) == 0) {
ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
sgptr | SG_LIST_NULL);
}
/*
* Save Pointers.
*/
ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
ahd_outl(ahd, SCB_DATACNT, resid);
ahd_outl(ahd, SCB_SGPTR, sgptr);
ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
ahd_outb(ahd, SEQIMODE,
ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
/*
* If the data is to the SCSI bus, we are
* done, otherwise wait for FIFOEMP.
*/
if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
goto clrchn;
} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
uint32_t sgptr;
uint64_t data_addr;
uint32_t data_len;
u_int dfcntrl;
/*
* Disable S/G fetch so the DMA engine
* is available to future users. We won't
* be using the DMA engine to load segments.
*/
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
ahd_outb(ahd, CCSGCTL, 0);
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
}
/*
* Wait for the DMA engine to notice that the
* host transfer is enabled and that there is
* space in the S/G FIFO for new segments before
* loading more segments.
*/
if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
&& (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
/*
* Determine the offset of the next S/G
* element to load.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
sgptr &= SG_PTR_MASK;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
data_addr = sg->addr;
data_len = sg->len;
sgptr += sizeof(*sg);
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
data_addr <<= 8;
data_addr |= sg->addr;
data_len = sg->len;
sgptr += sizeof(*sg);
}
/*
* Update residual information.
*/
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
/*
* Load the S/G.
*/
if (data_len & AHD_DMA_LAST_SEG) {
sgptr |= LAST_SEG;
ahd_outb(ahd, SG_STATE, 0);
}
ahd_outq(ahd, HADDR, data_addr);
ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
/*
* Advertise the segment to the hardware.
*/
dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
/*
* Use SCSIENWRDIS so that SCSIEN
* is never modified by this
* operation.
*/
dfcntrl |= SCSIENWRDIS;
}
ahd_outb(ahd, DFCNTRL, dfcntrl);
}
} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
/*
* Transfer completed to the end of SG list
* and has flushed to the host.
*/
ahd_outb(ahd, SCB_SGPTR,
ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
goto clrchn;
} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
clrchn:
/*
* Clear any handler for this FIFO, decrement
* the FIFO use count for the SCB, and release
* the FIFO.
*/
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
}
}
/*
* Look for entries in the QoutFIFO that have completed.
* The valid_tag completion field indicates the validity
* of the entry - the valid value toggles each time through
* the queue. We use the sg_status field in the completion
* entry to avoid referencing the hscb if the completion
* occurred with no errors and no residual. sg_status is
* a copy of the first byte (little endian) of the sgptr
* hscb field.
*/
void
ahd_run_qoutfifo(struct ahd_softc *ahd)
{
struct ahd_completion *completion;
struct scb *scb;
u_int scb_index;
if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
panic("ahd_run_qoutfifo recursion");
ahd->flags |= AHD_RUNNING_QOUTFIFO;
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
for (;;) {
completion = &ahd->qoutfifo[ahd->qoutfifonext];
if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
break;
scb_index = aic_le16toh(completion->tag);
scb = ahd_lookup_scb(ahd, scb_index);
if (scb == NULL) {
printf("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahd_name(ahd), scb_index,
ahd->qoutfifonext);
ahd_dump_card_state(ahd);
} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
ahd_handle_scb_status(ahd, scb);
} else {
ahd_done(ahd, scb);
}
ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
if (ahd->qoutfifonext == 0)
ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
}
ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
}
/************************* Interrupt Handling *********************************/
void
ahd_handle_hwerrint(struct ahd_softc *ahd)
{
/*
* Some catastrophic hardware error has occurred.
* Print it for the user and disable the controller.
*/
int i;
int error;
error = ahd_inb(ahd, ERROR);
for (i = 0; i < num_errors; i++) {
if ((error & ahd_hard_errors[i].errno) != 0)
printf("%s: hwerrint, %s\n",
ahd_name(ahd), ahd_hard_errors[i].errmesg);
}
ahd_dump_card_state(ahd);
panic("BRKADRINT");
/* Tell everyone that this HBA is no longer available */
ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_NO_HBA);
/* Tell the system that this controller has gone away. */
ahd_free(ahd);
}
void
ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
{
u_int seqintcode;
/*
* Save the sequencer interrupt code and clear the SEQINT
* bit. We will unpause the sequencer, if appropriate,
* after servicing the request.
*/
seqintcode = ahd_inb(ahd, SEQINTCODE);
ahd_outb(ahd, CLRINT, CLRSEQINT);
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
/*
* Unpause the sequencer and let it clear
* SEQINT by writing NO_SEQINT to it. This
* will cause the sequencer to be paused again,
* which is the expected state of this routine.
*/
ahd_unpause(ahd);
while (!ahd_is_paused(ahd))
;
ahd_outb(ahd, CLRINT, CLRSEQINT);
}
ahd_update_modes(ahd);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Handle Seqint Called for code %d\n",
ahd_name(ahd), seqintcode);
#endif
switch (seqintcode) {
case ENTERING_NONPACK:
{
struct scb *scb;
u_int scbid;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
/*
* Somehow need to know if this
* is from a selection or reselection.
* From that, we can determine target
* ID so we at least have an I_T nexus.
*/
} else {
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
ahd_outb(ahd, SEQ_FLAGS, 0x0);
}
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
&& (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
/*
* Phase change after read stream with
* CRC error with P0 asserted on last
* packet.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s: Assuming LQIPHASE_NLQ with "
"P0 assertion\n", ahd_name(ahd));
#endif
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s: Entering NONPACK\n", ahd_name(ahd));
#endif
break;
}
case INVALID_SEQINT:
printf("%s: Invalid Sequencer interrupt occurred.\n",
ahd_name(ahd));
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
break;
case STATUS_OVERRUN:
{
struct scb *scb;
u_int scbid;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL)
ahd_print_path(ahd, scb);
else
printf("%s: ", ahd_name(ahd));
printf("SCB %d Packetized Status Overrun", scbid);
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
break;
}
case CFG4ISTAT_INTR:
{
struct scb *scb;
u_int scbid;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
ahd_dump_card_state(ahd);
printf("CFG4ISTAT: Free SCB %d referenced", scbid);
panic("For safety");
}
ahd_outq(ahd, HADDR, scb->sense_busaddr);
ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
ahd_outb(ahd, HCNT + 2, 0);
ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
break;
}
case ILLEGAL_PHASE:
{
u_int bus_phase;
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
printf("%s: ILLEGAL_PHASE 0x%x\n",
ahd_name(ahd), bus_phase);
switch (bus_phase) {
case P_DATAOUT:
case P_DATAIN:
case P_DATAOUT_DT:
case P_DATAIN_DT:
case P_MESGOUT:
case P_STATUS:
case P_MESGIN:
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
printf("%s: Issued Bus Reset.\n", ahd_name(ahd));
break;
case P_COMMAND:
{
struct ahd_devinfo devinfo;
struct scb *scb;
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
struct ahd_transinfo *tinfo;
u_int scbid;
/*
* If a target takes us into the command phase
* assume that it has been externally reset and
* has thus lost our previous packetized negotiation
* agreement. Since we have not sent an identify
* message and may not have fully qualified the
* connection, we change our command to TUR, assert
* ATN and ABORT the task when we go to message in
* phase. The OSM will see the REQUEUE_REQUEST
* status and retry the command.
*/
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("Invalid phase with no valid SCB. "
"Resetting bus.\n");
ahd_reset_channel(ahd, 'A',
/*Initiate Reset*/TRUE);
break;
}
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb),
SCB_GET_CHANNEL(ahd, scb),
ROLE_INITIATOR);
targ_info = ahd_fetch_transinfo(ahd,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
tinfo = &targ_info->curr;
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_ACTIVE, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_ACTIVE, /*paused*/TRUE);
ahd_outb(ahd, SCB_CDB_STORE, 0);
ahd_outb(ahd, SCB_CDB_STORE+1, 0);
ahd_outb(ahd, SCB_CDB_STORE+2, 0);
ahd_outb(ahd, SCB_CDB_STORE+3, 0);
ahd_outb(ahd, SCB_CDB_STORE+4, 0);
ahd_outb(ahd, SCB_CDB_STORE+5, 0);
ahd_outb(ahd, SCB_CDB_LEN, 6);
scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
scb->hscb->control |= MK_MESSAGE;
ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
/*
* The lun is 0, regardless of the SCB's lun
* as we have not sent an identify message.
*/
ahd_outb(ahd, SAVED_LUN, 0);
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_assert_atn(ahd);
scb->flags &= ~SCB_PACKETIZED;
scb->flags |= SCB_ABORT|SCB_CMDPHASE_ABORT;
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
aic_freeze_scb(scb);
/*
* Allow the sequencer to continue with
* non-pack processing.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
ahd_outb(ahd, CLRLQOINT1, 0);
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
ahd_print_path(ahd, scb);
printf("Unexpected command phase from "
"packetized target\n");
}
#endif
break;
}
}
break;
}
case CFG4OVERRUN:
{
struct scb *scb;
u_int scb_index;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
ahd_inb(ahd, MODE_PTR));
}
#endif
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
if (scb == NULL) {
/*
* Attempt to transfer to an SCB that is
* not outstanding.
*/
ahd_assert_atn(ahd);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd->msgout_buf[0] = MSG_ABORT_TASK;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
/*
* Clear status received flag to prevent any
* attempt to complete this bogus SCB.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL)
& ~STATUS_RCVD);
}
break;
}
case DUMP_CARD_STATE:
{
ahd_dump_card_state(ahd);
break;
}
case PDATA_REINIT:
{
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: PDATA_REINIT - DFCNTRL = 0x%x "
"SG_CACHE_SHADOW = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
ahd_inb(ahd, SG_CACHE_SHADOW));
}
#endif
ahd_reinitialize_dataptrs(ahd);
break;
}
case HOST_MSG_LOOP:
{
struct ahd_devinfo devinfo;
/*
* The sequencer has encountered a message phase
* that requires host assistance for completion.
* While handling the message phase(s), we will be
* notified by the sequencer after each byte is
* transfered so we can track bus phase changes.
*
* If this is the first time we've seen a HOST_MSG_LOOP
* interrupt, initialize the state of the host message
* loop.
*/
ahd_fetch_devinfo(ahd, &devinfo);
if (ahd->msg_type == MSG_TYPE_NONE) {
struct scb *scb;
u_int scb_index;
u_int bus_phase;
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
if (bus_phase != P_MESGIN
&& bus_phase != P_MESGOUT) {
printf("ahd_intr: HOST_MSG_LOOP bad "
"phase 0x%x\n", bus_phase);
/*
* Probably transitioned to bus free before
* we got here. Just punt the message.
*/
ahd_dump_card_state(ahd);
ahd_clear_intstat(ahd);
ahd_restart(ahd);
return;
}
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
if (devinfo.role == ROLE_INITIATOR) {
if (bus_phase == P_MESGOUT)
ahd_setup_initiator_msgout(ahd,
&devinfo,
scb);
else {
ahd->msg_type =
MSG_TYPE_INITIATOR_MSGIN;
ahd->msgin_index = 0;
}
}
#ifdef AHD_TARGET_MODE
else {
if (bus_phase == P_MESGOUT) {
ahd->msg_type =
MSG_TYPE_TARGET_MSGOUT;
ahd->msgin_index = 0;
}
else
ahd_setup_target_msgin(ahd,
&devinfo,
scb);
}
#endif
}
ahd_handle_message_phase(ahd);
break;
}
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
printf("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
printf("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
"REG0 == 0x%x ACCUM = 0x%x\n",
ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
printf("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
"SINDEX == 0x%x\n",
ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
ahd_find_busy_tcl(ahd,
BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
ahd_inb(ahd, SAVED_LUN))),
ahd_inw(ahd, SINDEX));
printf("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
"SCB_CONTROL == 0x%x\n",
ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
ahd_inb_scbram(ahd, SCB_LUN),
ahd_inb_scbram(ahd, SCB_CONTROL));
printf("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
printf("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
printf("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
ahd_dump_card_state(ahd);
ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_assert_atn(ahd);
break;
}
case PROTO_VIOLATION:
{
ahd_handle_proto_violation(ahd);
break;
}
case IGN_WIDE_RES:
{
struct ahd_devinfo devinfo;
ahd_fetch_devinfo(ahd, &devinfo);
ahd_handle_ign_wide_residue(ahd, &devinfo);
break;
}
case BAD_PHASE:
{
u_int lastphase;
lastphase = ahd_inb(ahd, LASTPHASE);
printf("%s:%c:%d: unknown scsi bus phase %x, "
"lastphase = 0x%x. Attempting to continue\n",
ahd_name(ahd), 'A',
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
lastphase, ahd_inb(ahd, SCSISIGI));
break;
}
case MISSED_BUSFREE:
{
u_int lastphase;
lastphase = ahd_inb(ahd, LASTPHASE);
printf("%s:%c:%d: Missed busfree. "
"Lastphase = 0x%x, Curphase = 0x%x\n",
ahd_name(ahd), 'A',
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
lastphase, ahd_inb(ahd, SCSISIGI));
ahd_restart(ahd);
return;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
struct scb *scb;
u_int scbindex;
#ifdef AHD_DEBUG
u_int lastphase;
#endif
scbindex = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbindex);
#ifdef AHD_DEBUG
lastphase = ahd_inb(ahd, LASTPHASE);
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
ahd_print_path(ahd, scb);
printf("data overrun detected %s. Tag == 0x%x.\n",
ahd_lookup_phase_entry(lastphase)->phasemsg,
SCB_GET_TAG(scb));
ahd_print_path(ahd, scb);
printf("%s seen Data Phase. Length = %ld. "
"NumSGs = %d.\n",
ahd_inb(ahd, SEQ_FLAGS) & DPHASE
? "Have" : "Haven't",
aic_get_transfer_length(scb), scb->sg_count);
ahd_dump_sglist(scb);
}
#endif
/*
* Set this and it will take effect when the
* target does a command complete.
*/
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
aic_freeze_scb(scb);
break;
}
case MKMSG_FAILED:
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int scbid;
ahd_fetch_devinfo(ahd, &devinfo);
printf("%s:%c:%d:%d: Attempt to issue message failed\n",
ahd_name(ahd), devinfo.channel, devinfo.target,
devinfo.lun);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
break;
}
case TASKMGMT_FUNC_COMPLETE:
{
u_int scbid;
struct scb *scb;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL) {
u_int lun;
u_int tag;
cam_status error;
ahd_print_path(ahd, scb);
printf("Task Management Func 0x%x Complete\n",
scb->hscb->task_management);
lun = CAM_LUN_WILDCARD;
tag = SCB_LIST_NULL;
switch (scb->hscb->task_management) {
case SIU_TASKMGMT_ABORT_TASK:
tag = SCB_GET_TAG(scb);
case SIU_TASKMGMT_ABORT_TASK_SET:
case SIU_TASKMGMT_CLEAR_TASK_SET:
lun = scb->hscb->lun;
error = CAM_REQ_ABORTED;
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
'A', lun, tag, ROLE_INITIATOR,
error);
break;
case SIU_TASKMGMT_LUN_RESET:
lun = scb->hscb->lun;
case SIU_TASKMGMT_TARGET_RESET:
{
struct ahd_devinfo devinfo;
ahd_scb_devinfo(ahd, &devinfo, scb);
error = CAM_BDR_SENT;
ahd_handle_devreset(ahd, &devinfo, lun,
CAM_BDR_SENT,
lun != CAM_LUN_WILDCARD
? "Lun Reset"
: "Target Reset",
/*verbose_level*/0);
break;
}
default:
panic("Unexpected TaskMgmt Func\n");
break;
}
}
break;
}
case TASKMGMT_CMD_CMPLT_OKAY:
{
u_int scbid;
struct scb *scb;
/*
* An ABORT TASK TMF failed to be delivered before
* the targeted command completed normally.
*/
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL) {
/*
* Remove the second instance of this SCB from
* the QINFIFO if it is still there.
*/
ahd_print_path(ahd, scb);
printf("SCB completes before TMF\n");
/*
* Handle losing the race. Wait until any
* current selection completes. We will then
* set the TMF back to zero in this SCB so that
* the sequencer doesn't bother to issue another
* sequencer interrupt for its completion.
*/
while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
&& (ahd_inb(ahd, SSTAT0) & SELDO) == 0
&& (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
;
ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
}
break;
}
case TRACEPOINT0:
case TRACEPOINT1:
case TRACEPOINT2:
case TRACEPOINT3:
printf("%s: Tracepoint %d\n", ahd_name(ahd),
seqintcode - TRACEPOINT0);
break;
case NO_SEQINT:
break;
case SAW_HWERR:
ahd_handle_hwerrint(ahd);
break;
default:
printf("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
seqintcode);
break;
}
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
ahd_unpause(ahd);
}
void
ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
{
struct scb *scb;
u_int status0;
u_int status3;
u_int status;
u_int lqistat1;
u_int lqostat0;
u_int scbid;
u_int busfreetime;
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
lqistat1 = ahd_inb(ahd, LQISTAT1);
lqostat0 = ahd_inb(ahd, LQOSTAT0);
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
if ((status0 & (SELDI|SELDO)) != 0) {
u_int simode0;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
simode0 = ahd_inb(ahd, SIMODE0);
status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
scb = NULL;
if ((status0 & IOERR) != 0) {
u_int now_lvd;
now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
printf("%s: Transceiver State Has Changed to %s mode\n",
ahd_name(ahd), now_lvd ? "LVD" : "SE");
ahd_outb(ahd, CLRSINT0, CLRIOERR);
/*
* A change in I/O mode is equivalent to a bus reset.
*/
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
ahd_pause(ahd);
ahd_setup_iocell_workaround(ahd);
ahd_unpause(ahd);
} else if ((status0 & OVERRUN) != 0) {
printf("%s: SCSI offset overrun detected. Resetting bus.\n",
ahd_name(ahd));
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
} else if ((status & SCSIRSTI) != 0) {
printf("%s: Someone reset channel A\n", ahd_name(ahd));
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
} else if ((status & SCSIPERR) != 0) {
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
ahd_handle_transmission_error(ahd);
} else if (lqostat0 != 0) {
printf("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
ahd_outb(ahd, CLRLQOINT0, lqostat0);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
ahd_outb(ahd, CLRLQOINT1, 0);
} else if ((status & SELTO) != 0) {
u_int scbid;
/* Stop the selection */
ahd_outb(ahd, SCSISEQ0, 0);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
/* No more pending messages */
ahd_clear_msg_state(ahd);
/* Clear interrupt state */
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
/*
* Although the driver does not care about the
* 'Selection in Progress' status bit, the busy
* LED does. SELINGO is only cleared by a sucessfull
* selection, so we must manually clear it to insure
* the LED turns off just incase no future successful
* selections occur (e.g. no devices on the bus).
*/
ahd_outb(ahd, CLRSINT0, CLRSELINGO);
scbid = ahd_inw(ahd, WAITING_TID_HEAD);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: ahd_intr - referenced scb not "
"valid during SELTO scb(0x%x)\n",
ahd_name(ahd), scbid);
ahd_dump_card_state(ahd);
} else {
struct ahd_devinfo devinfo;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
ahd_print_path(ahd, scb);
printf("Saw Selection Timeout for SCB 0x%x\n",
scbid);
}
#endif
ahd_scb_devinfo(ahd, &devinfo, scb);
aic_set_transaction_status(scb, CAM_SEL_TIMEOUT);
ahd_freeze_devq(ahd, scb);
/*
* Cancel any pending transactions on the device
* now that it seems to be missing. This will
* also revert us to async/narrow transfers until
* we can renegotiate with the device.
*/
ahd_handle_devreset(ahd, &devinfo,
CAM_LUN_WILDCARD,
CAM_SEL_TIMEOUT,
"Selection Timeout",
/*verbose_level*/1);
}
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_iocell_first_selection(ahd);
ahd_unpause(ahd);
} else if ((status0 & (SELDI|SELDO)) != 0) {
ahd_iocell_first_selection(ahd);
ahd_unpause(ahd);
} else if (status3 != 0) {
printf("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
ahd_name(ahd), status3);
ahd_outb(ahd, CLRSINT3, status3);
} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
ahd_handle_lqiphase_error(ahd, lqistat1);
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
/*
* This status can be delayed during some
* streaming operations. The SCSIPHASE
* handler has already dealt with this case
* so just clear the error.
*/
ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
} else if ((status & BUSFREE) != 0
|| (lqistat1 & LQOBUSFREE) != 0) {
u_int lqostat1;
int restart;
int clear_fifo;
int packetized;
u_int mode;
/*
* Clear our selection hardware as soon as possible.
* We may have an entry in the waiting Q for this target,
* that is affected by this busfree and we don't want to
* go about selecting the target while we handle the event.
*/
ahd_outb(ahd, SCSISEQ0, 0);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
/*
* Determine what we were up to at the time of
* the busfree.
*/
mode = AHD_MODE_SCSI;
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
lqostat1 = ahd_inb(ahd, LQOSTAT1);
switch (busfreetime) {
case BUSFREE_DFF0:
case BUSFREE_DFF1:
{
u_int scbid;
struct scb *scb;
mode = busfreetime == BUSFREE_DFF0
? AHD_MODE_DFF0 : AHD_MODE_DFF1;
ahd_set_modes(ahd, mode, mode);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Invalid SCB %d in DFF%d "
"during unexpected busfree\n",
ahd_name(ahd), scbid, mode);
packetized = 0;
} else
packetized = (scb->flags & SCB_PACKETIZED) != 0;
clear_fifo = 1;
break;
}
case BUSFREE_LQO:
clear_fifo = 0;
packetized = 1;
break;
default:
clear_fifo = 0;
packetized = (lqostat1 & LQOBUSFREE) != 0;
if (!packetized
&& ahd_inb(ahd, LASTPHASE) == P_BUSFREE
&& (ahd_inb(ahd, SSTAT0) & SELDI) == 0
&& ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
/*
* Assume packetized if we are not
* on the bus in a non-packetized
* capacity and any pending selection
* was a packetized selection.
*/
packetized = 1;
break;
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("Saw Busfree. Busfreetime = 0x%x.\n",
busfreetime);
#endif
/*
* Busfrees that occur in non-packetized phases are
* handled by the nonpkt_busfree handler.
*/
if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
restart = ahd_handle_pkt_busfree(ahd, busfreetime);
} else {
packetized = 0;
restart = ahd_handle_nonpkt_busfree(ahd);
}
/*
* Clear the busfree interrupt status. The setting of
* the interrupt is a pulse, so in a perfect world, we
* would not need to muck with the ENBUSFREE logic. This
* would ensure that if the bus moves on to another
* connection, busfree protection is still in force. If
* BUSFREEREV is broken, however, we must manually clear
* the ENBUSFREE if the busfree occurred during a non-pack
* connection so that we don't get false positives during
* future, packetized, connections.
*/
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
if (packetized == 0
&& (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
ahd_outb(ahd, SIMODE1,
ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
if (clear_fifo)
ahd_clear_fifo(ahd, mode);
ahd_clear_msg_state(ahd);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
if (restart) {
ahd_restart(ahd);
} else {
ahd_unpause(ahd);
}
} else {
printf("%s: Missing case in ahd_handle_scsiint. status = %x\n",
ahd_name(ahd), status);
ahd_dump_card_state(ahd);
ahd_clear_intstat(ahd);
ahd_unpause(ahd);
}
}
static void
ahd_handle_transmission_error(struct ahd_softc *ahd)
{
struct scb *scb;
u_int scbid;
u_int lqistat1;
u_int lqistat2;
u_int msg_out;
u_int curphase;
u_int lastphase;
u_int perrdiag;
u_int cur_col;
int silent;
scb = NULL;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
lqistat2 = ahd_inb(ahd, LQISTAT2);
if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
&& (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
u_int lqistate;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
lqistate = ahd_inb(ahd, LQISTATE);
if ((lqistate >= 0x1E && lqistate <= 0x24)
|| (lqistate == 0x29)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: NLQCRC found via LQISTATE\n",
ahd_name(ahd));
}
#endif
lqistat1 |= LQICRCI_NLQ;
}
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
ahd_outb(ahd, CLRLQIINT1, lqistat1);
lastphase = ahd_inb(ahd, LASTPHASE);
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
perrdiag = ahd_inb(ahd, PERRDIAG);
msg_out = MSG_INITIATOR_DET_ERR;
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
/*
* Try to find the SCB associated with this error.
*/
silent = FALSE;
if (lqistat1 == 0
|| (lqistat1 & LQICRCI_NLQ) != 0) {
if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
ahd_set_active_fifo(ahd);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL && SCB_IS_SILENT(scb))
silent = TRUE;
}
cur_col = 0;
if (silent == FALSE) {
printf("%s: Transmission error detected\n", ahd_name(ahd));
ahd_lqistat1_print(lqistat1, &cur_col, 50);
ahd_lastphase_print(lastphase, &cur_col, 50);
ahd_scsisigi_print(curphase, &cur_col, 50);
ahd_perrdiag_print(perrdiag, &cur_col, 50);
printf("\n");
ahd_dump_card_state(ahd);
}
if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
if (silent == FALSE) {
printf("%s: Gross protocol error during incoming "
"packet. lqistat1 == 0x%x. Resetting bus.\n",
ahd_name(ahd), lqistat1);
}
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
} else if ((lqistat1 & LQICRCI_LQ) != 0) {
/*
* A CRC error has been detected on an incoming LQ.
* The bus is currently hung on the last ACK.
* Hit LQIRETRY to release the last ack, and
* wait for the sequencer to determine that ATNO
* is asserted while in message out to take us
* to our host message loop. No NONPACKREQ or
* LQIPHASE type errors will occur in this
* scenario. After this first LQIRETRY, the LQI
* manager will be in ISELO where it will
* happily sit until another packet phase begins.
* Unexpected bus free detection is enabled
* through any phases that occur after we release
* this last ack until the LQI manager sees a
* packet phase. This implies we may have to
* ignore a perfectly valid "unexected busfree"
* after our "initiator detected error" message is
* sent. A busfree is the expected response after
* we tell the target that it's L_Q was corrupted.
* (SPI4R09 10.7.3.3.3)
*/
ahd_outb(ahd, LQCTL2, LQIRETRY);
printf("LQIRetry for LQICRCI_LQ to release ACK\n");
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
/*
* We detected a CRC error in a NON-LQ packet.
* The hardware has varying behavior in this situation
* depending on whether this packet was part of a
* stream or not.
*
* PKT by PKT mode:
* The hardware has already acked the complete packet.
* If the target honors our outstanding ATN condition,
* we should be (or soon will be) in MSGOUT phase.
* This will trigger the LQIPHASE_LQ status bit as the
* hardware was expecting another LQ. Unexpected
* busfree detection is enabled. Once LQIPHASE_LQ is
* true (first entry into host message loop is much
* the same), we must clear LQIPHASE_LQ and hit
* LQIRETRY so the hardware is ready to handle
* a future LQ. NONPACKREQ will not be asserted again
* once we hit LQIRETRY until another packet is
* processed. The target may either go busfree
* or start another packet in response to our message.
*
* Read Streaming P0 asserted:
* If we raise ATN and the target completes the entire
* stream (P0 asserted during the last packet), the
* hardware will ack all data and return to the ISTART
* state. When the target reponds to our ATN condition,
* LQIPHASE_LQ will be asserted. We should respond to
* this with an LQIRETRY to prepare for any future
* packets. NONPACKREQ will not be asserted again
* once we hit LQIRETRY until another packet is
* processed. The target may either go busfree or
* start another packet in response to our message.
* Busfree detection is enabled.
*
* Read Streaming P0 not asserted:
* If we raise ATN and the target transitions to
* MSGOUT in or after a packet where P0 is not
* asserted, the hardware will assert LQIPHASE_NLQ.
* We should respond to the LQIPHASE_NLQ with an
* LQIRETRY. Should the target stay in a non-pkt
* phase after we send our message, the hardware
* will assert LQIPHASE_LQ. Recovery is then just as
* listed above for the read streaming with P0 asserted.
* Busfree detection is enabled.
*/
if (silent == FALSE)
printf("LQICRC_NLQ\n");
if (scb == NULL) {
printf("%s: No SCB valid for LQICRC_NLQ. "
"Resetting bus\n", ahd_name(ahd));
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
}
} else if ((lqistat1 & LQIBADLQI) != 0) {
printf("Need to handle BADLQI!\n");
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
if ((curphase & ~P_DATAIN_DT) != 0) {
/* Ack the byte. So we can continue. */
if (silent == FALSE)
printf("Acking %s to clear perror\n",
ahd_lookup_phase_entry(curphase)->phasemsg);
ahd_inb(ahd, SCSIDAT);
}
if (curphase == P_MESGIN)
msg_out = MSG_PARITY_ERROR;
}
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
ahd->send_msg_perror = msg_out;
if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
scb->flags |= SCB_TRANSMISSION_ERROR;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_unpause(ahd);
}
static void
ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
{
/*
* Clear the sources of the interrupts.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRLQIINT1, lqistat1);
/*
* If the "illegal" phase changes were in response
* to our ATN to flag a CRC error, AND we ended up
* on packet boundaries, clear the error, restart the
* LQI manager as appropriate, and go on our merry
* way toward sending the message. Otherwise, reset
* the bus to clear the error.
*/
ahd_set_active_fifo(ahd);
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
&& (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
if ((lqistat1 & LQIPHASE_LQ) != 0) {
printf("LQIRETRY for LQIPHASE_LQ\n");
ahd_outb(ahd, LQCTL2, LQIRETRY);
} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
printf("LQIRETRY for LQIPHASE_NLQ\n");
ahd_outb(ahd, LQCTL2, LQIRETRY);
} else
panic("ahd_handle_lqiphase_error: No phase errors\n");
ahd_dump_card_state(ahd);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_unpause(ahd);
} else {
printf("Reseting Channel for LQI Phase error\n");
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
}
}
/*
* Packetized unexpected or expected busfree.
* Entered in mode based on busfreetime.
*/
static int
ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
{
u_int lqostat1;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
lqostat1 = ahd_inb(ahd, LQOSTAT1);
if ((lqostat1 & LQOBUSFREE) != 0) {
struct scb *scb;
u_int scbid;
u_int saved_scbptr;
u_int waiting_h;
u_int waiting_t;
u_int next;
/*
* The LQO manager detected an unexpected busfree
* either:
*
* 1) During an outgoing LQ.
* 2) After an outgoing LQ but before the first
* REQ of the command packet.
* 3) During an outgoing command packet.
*
* In all cases, CURRSCB is pointing to the
* SCB that encountered the failure. Clean
* up the queue, clear SELDO and LQOBUSFREE,
* and allow the sequencer to restart the select
* out at its lesure.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
scbid = ahd_inw(ahd, CURRSCB);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL)
panic("SCB not valid during LQOBUSFREE");
/*
* Clear the status.
*/
ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
ahd_outb(ahd, CLRLQOINT1, 0);
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
ahd_flush_device_writes(ahd);
ahd_outb(ahd, CLRSINT0, CLRSELDO);
/*
* Return the LQO manager to its idle loop. It will
* not do this automatically if the busfree occurs
* after the first REQ of either the LQ or command
* packet or between the LQ and command packet.
*/
ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
/*
* Update the waiting for selection queue so
* we restart on the correct SCB.
*/
waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
saved_scbptr = ahd_get_scbptr(ahd);
if (waiting_h != scbid) {
ahd_outw(ahd, WAITING_TID_HEAD, scbid);
waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
if (waiting_t == waiting_h) {
ahd_outw(ahd, WAITING_TID_TAIL, scbid);
next = SCB_LIST_NULL;
} else {
ahd_set_scbptr(ahd, waiting_h);
next = ahd_inw_scbram(ahd, SCB_NEXT2);
}
ahd_set_scbptr(ahd, scbid);
ahd_outw(ahd, SCB_NEXT2, next);
}
ahd_set_scbptr(ahd, saved_scbptr);
if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
if (SCB_IS_SILENT(scb) == FALSE) {
ahd_print_path(ahd, scb);
printf("Probable outgoing LQ CRC error. "
"Retrying command\n");
}
scb->crc_retry_count++;
} else {
aic_set_transaction_status(scb, CAM_UNCOR_PARITY);
aic_freeze_scb(scb);
ahd_freeze_devq(ahd, scb);
}
/* Return unpausing the sequencer. */
return (0);
} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
/*
* Ignore what are really parity errors that
* occur on the last REQ of a free running
* clock prior to going busfree. Some drives
* do not properly active negate just before
* going busfree resulting in a parity glitch.
*/
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
printf("%s: Parity on last REQ detected "
"during busfree phase.\n",
ahd_name(ahd));
#endif
/* Return unpausing the sequencer. */
return (0);
}
if (ahd->src_mode != AHD_MODE_SCSI) {
u_int scbid;
struct scb *scb;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
ahd_print_path(ahd, scb);
printf("Unexpected PKT busfree condition\n");
ahd_dump_card_state(ahd);
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
/* Return restarting the sequencer. */
return (1);
}
printf("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
ahd_dump_card_state(ahd);
/* Restart the sequencer. */
return (1);
}
/*
* Non-packetized unexpected or expected busfree.
*/
static int
ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int lastphase;
u_int saved_scsiid;
u_int saved_lun;
u_int target;
u_int initiator_role_id;
u_int scbid;
u_int ppr_busfree;
int printerror;
/*
* Look at what phase we were last in. If its message out,
* chances are pretty good that the busfree was in response
* to one of our abort requests.
*/
lastphase = ahd_inb(ahd, LASTPHASE);
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
saved_lun = ahd_inb(ahd, SAVED_LUN);
target = SCSIID_TARGET(ahd, saved_scsiid);
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
ahd_compile_devinfo(&devinfo, initiator_role_id,
target, saved_lun, 'A', ROLE_INITIATOR);
printerror = 1;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
scb = NULL;
ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
if (lastphase == P_MESGOUT) {
u_int tag;
tag = SCB_LIST_NULL;
if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
|| ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
int found;
int sent_msg;
if (scb == NULL) {
ahd_print_devinfo(ahd, &devinfo);
printf("Abort for unidentified "
"connection completed.\n");
/* restart the sequencer. */
return (1);
}
sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
ahd_print_path(ahd, scb);
printf("SCB %d - Abort%s Completed.\n",
SCB_GET_TAG(scb),
sent_msg == MSG_ABORT_TAG ? "" : " Tag");
if (sent_msg == MSG_ABORT_TAG)
tag = SCB_GET_TAG(scb);
if ((scb->flags & SCB_CMDPHASE_ABORT) != 0) {
/*
* This abort is in response to an
* unexpected switch to command phase
* for a packetized connection. Since
* the identify message was never sent,
* "saved lun" is 0. We really want to
* abort only the SCB that encountered
* this error, which could have a different
* lun. The SCB will be retried so the OS
* will see the UA after renegotiating to
* packetized.
*/
tag = SCB_GET_TAG(scb);
saved_lun = scb->hscb->lun;
}
found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
tag, ROLE_INITIATOR,
CAM_REQ_ABORTED);
printf("found == 0x%x\n", found);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_1B,
MSG_BUS_DEV_RESET, TRUE)) {
#ifdef __FreeBSD__
/*
* Don't mark the user's request for this BDR
* as completing with CAM_BDR_SENT. CAM3
* specifies CAM_REQ_CMP.
*/
if (scb != NULL
&& scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
&& ahd_match_scb(ahd, scb, target, 'A',
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_INITIATOR))
aic_set_transaction_status(scb, CAM_REQ_CMP);
#endif
ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
CAM_BDR_SENT, "Bus Device Reset",
/*verbose_level*/0);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
&& ppr_busfree == 0) {
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
/*
* PPR Rejected.
*
* If the previous negotiation was packetized,
* this could be because the device has been
* reset without our knowledge. Force our
* current negotiation to async and retry the
* negotiation. Otherwise retry the command
* with non-ppr negotiation.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR negotiation rejected busfree.\n");
#endif
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
ahd_set_width(ahd, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR,
/*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo,
/*period*/0, /*offset*/0,
/*ppr_options*/0,
AHD_TRANS_CUR,
/*paused*/TRUE);
/*
* The expect PPR busfree handler below
* will effect the retry and necessary
* abort.
*/
} else {
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
tinfo->goal.ppr_options = 0;
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so
* that command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
}
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
&& ppr_busfree == 0) {
/*
* Negotiation Rejected. Go-narrow and
* retry command.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("WDTR negotiation rejected busfree.\n");
#endif
ahd_set_width(ahd, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so that
* command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
&& ppr_busfree == 0) {
/*
* Negotiation Rejected. Go-async and
* retry command.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("SDTR negotiation rejected busfree.\n");
#endif
ahd_set_syncrate(ahd, &devinfo,
/*period*/0, /*offset*/0,
/*ppr_options*/0,
AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so that
* command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
&& ahd_sent_msg(ahd, AHDMSG_1B,
MSG_INITIATOR_DET_ERR, TRUE)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Expected IDE Busfree\n");
#endif
printerror = 0;
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
&& ahd_sent_msg(ahd, AHDMSG_1B,
MSG_MESSAGE_REJECT, TRUE)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Expected QAS Reject Busfree\n");
#endif
printerror = 0;
}
}
/*
* The busfree required flag is honored at the end of
* the message phases. We check it last in case we
* had to send some other message that caused a busfree.
*/
if (printerror != 0
&& (lastphase == P_MESGIN || lastphase == P_MESGOUT)
&& ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
aic_freeze_scb(scb);
if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQ_ABORTED);
} else {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR Negotiation Busfree.\n");
#endif
ahd_done(ahd, scb);
}
printerror = 0;
}
if (printerror != 0) {
int aborted;
aborted = 0;
if (scb != NULL) {
u_int tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = SCB_GET_TAG(scb);
else
tag = SCB_LIST_NULL;
ahd_print_path(ahd, scb);
aborted = ahd_abort_scbs(ahd, target, 'A',
SCB_GET_LUN(scb), tag,
ROLE_INITIATOR,
CAM_UNEXP_BUSFREE);
} else {
/*
* We had not fully identified this connection,
* so we cannot abort anything.
*/
printf("%s: ", ahd_name(ahd));
}
printf("Unexpected busfree %s, %d SCBs aborted, "
"PRGMCNT == 0x%x\n",
ahd_lookup_phase_entry(lastphase)->phasemsg,
aborted,
ahd_inw(ahd, PRGMCNT));
ahd_dump_card_state(ahd);
if (lastphase != P_BUSFREE)
ahd_force_renegotiation(ahd, &devinfo);
}
/* Always restart the sequencer. */
return (1);
}
static void
ahd_handle_proto_violation(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int scbid;
u_int seq_flags;
u_int curphase;
u_int lastphase;
int found;
ahd_fetch_devinfo(ahd, &devinfo);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
seq_flags = ahd_inb(ahd, SEQ_FLAGS);
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
lastphase = ahd_inb(ahd, LASTPHASE);
if ((seq_flags & NOT_IDENTIFIED) != 0) {
/*
* The reconnecting target either did not send an
* identify message, or did, but we didn't find an SCB
* to match.
*/
ahd_print_devinfo(ahd, &devinfo);
printf("Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x.\n", lastphase);
scb = NULL;
} else if (scb == NULL) {
/*
* We don't seem to have an SCB active for this
* transaction. Print an error and reset the bus.
*/
ahd_print_devinfo(ahd, &devinfo);
printf("No SCB found during protocol violation\n");
goto proto_violation_reset;
} else {
aic_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
if ((seq_flags & NO_CDB_SENT) != 0) {
ahd_print_path(ahd, scb);
printf("No or incomplete CDB sent to device.\n");
} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
& STATUS_RCVD) == 0) {
/*
* The target never bothered to provide status to
* us prior to completing the command. Since we don't
* know the disposition of this command, we must attempt
* to abort it. Assert ATN and prepare to send an abort
* message.
*/
ahd_print_path(ahd, scb);
printf("Completed command without status.\n");
} else {
ahd_print_path(ahd, scb);
printf("Unknown protocol violation.\n");
ahd_dump_card_state(ahd);
}
}
if ((lastphase & ~P_DATAIN_DT) == 0
|| lastphase == P_COMMAND) {
proto_violation_reset:
/*
* Target either went directly to data
* phase or didn't respond to our ATN.
* The only safe thing to do is to blow
* it away with a bus reset.
*/
found = ahd_reset_channel(ahd, 'A', TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahd_name(ahd), 'A', found);
} else {
/*
* Leave the selection hardware off in case
* this abort attempt will affect yet to
* be sent commands.
*/
ahd_outb(ahd, SCSISEQ0,
ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
ahd_assert_atn(ahd);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
if (scb == NULL) {
ahd_print_devinfo(ahd, &devinfo);
ahd->msgout_buf[0] = MSG_ABORT_TASK;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
} else {
ahd_print_path(ahd, scb);
scb->flags |= SCB_ABORT;
}
printf("Protocol violation %s. Attempting to abort.\n",
ahd_lookup_phase_entry(curphase)->phasemsg);
}
}
/*
* Force renegotiation to occur the next time we initiate
* a command to the current device.
*/
static void
ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, devinfo);
printf("Forcing renegotiation\n");
}
#endif
targ_info = ahd_fetch_transinfo(ahd,
devinfo->channel,
devinfo->our_scsiid,
devinfo->target,
&tstate);
ahd_update_neg_request(ahd, devinfo, tstate,
targ_info, AHD_NEG_IF_NON_ASYNC);
}
#define AHD_MAX_STEPS 2000
void
ahd_clear_critical_section(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
int stepping;
int steps;
int first_instr;
u_int simode0;
u_int simode1;
u_int simode3;
u_int lqimode0;
u_int lqimode1;
u_int lqomode0;
u_int lqomode1;
if (ahd->num_critical_sections == 0)
return;
stepping = FALSE;
steps = 0;
first_instr = 0;
simode0 = 0;
simode1 = 0;
simode3 = 0;
lqimode0 = 0;
lqimode1 = 0;
lqomode0 = 0;
lqomode1 = 0;
saved_modes = ahd_save_modes(ahd);
for (;;) {
struct cs *cs;
u_int seqaddr;
u_int i;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
seqaddr = ahd_inw(ahd, CURADDR);
cs = ahd->critical_sections;
for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
if (cs->begin < seqaddr && cs->end >= seqaddr)
break;
}
if (i == ahd->num_critical_sections)
break;
if (steps > AHD_MAX_STEPS) {
printf("%s: Infinite loop in critical section\n"
"%s: First Instruction 0x%x now 0x%x\n",
ahd_name(ahd), ahd_name(ahd), first_instr,
seqaddr);
ahd_dump_card_state(ahd);
panic("critical section loop");
}
steps++;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Single stepping at 0x%x\n", ahd_name(ahd),
seqaddr);
#endif
if (stepping == FALSE) {
first_instr = seqaddr;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
simode0 = ahd_inb(ahd, SIMODE0);
simode3 = ahd_inb(ahd, SIMODE3);
lqimode0 = ahd_inb(ahd, LQIMODE0);
lqimode1 = ahd_inb(ahd, LQIMODE1);
lqomode0 = ahd_inb(ahd, LQOMODE0);
lqomode1 = ahd_inb(ahd, LQOMODE1);
ahd_outb(ahd, SIMODE0, 0);
ahd_outb(ahd, SIMODE3, 0);
ahd_outb(ahd, LQIMODE0, 0);
ahd_outb(ahd, LQIMODE1, 0);
ahd_outb(ahd, LQOMODE0, 0);
ahd_outb(ahd, LQOMODE1, 0);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
simode1 = ahd_inb(ahd, SIMODE1);
/*
* We don't clear ENBUSFREE. Unfortunately
* we cannot re-enable busfree detection within
* the current connection, so we must leave it
* on while single stepping.
*/
ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
stepping = TRUE;
}
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
ahd_outb(ahd, HCNTRL, ahd->unpause);
while (!ahd_is_paused(ahd))
aic_delay(200);
ahd_update_modes(ahd);
}
if (stepping) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, SIMODE0, simode0);
ahd_outb(ahd, SIMODE3, simode3);
ahd_outb(ahd, LQIMODE0, lqimode0);
ahd_outb(ahd, LQIMODE1, lqimode1);
ahd_outb(ahd, LQOMODE0, lqomode0);
ahd_outb(ahd, LQOMODE1, lqomode1);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
ahd_outb(ahd, SIMODE1, simode1);
/*
* SCSIINT seems to glitch occassionally when
* the interrupt masks are restored. Clear SCSIINT
* one more time so that only persistent errors
* are seen as a real interrupt.
*/
ahd_outb(ahd, CLRINT, CLRSCSIINT);
}
ahd_restore_modes(ahd, saved_modes);
}
/*
* Clear any pending interrupt status.
*/
void
ahd_clear_intstat(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
/* Clear any interrupt conditions this may have caused */
ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
|CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
|CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
|CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
|CLRLQOATNPKT|CLRLQOTCRC);
ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
|CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
ahd_outb(ahd, CLRLQOINT0, 0);
ahd_outb(ahd, CLRLQOINT1, 0);
}
ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
|CLRIOERR|CLROVERRUN);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
}
/**************************** Debugging Routines ******************************/
#ifdef AHD_DEBUG
uint32_t ahd_debug = AHD_DEBUG_OPTS;
#endif
void
ahd_print_scb(struct scb *scb)
{
struct hardware_scb *hscb;
int i;
hscb = scb->hscb;
printf("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
(void *)scb,
hscb->control,
hscb->scsiid,
hscb->lun,
hscb->cdb_len);
printf("Shared Data: ");
for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
printf("%#02x", hscb->shared_data.idata.cdb[i]);
printf(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
(uint32_t)((aic_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
(uint32_t)(aic_le64toh(hscb->dataptr) & 0xFFFFFFFF),
aic_le32toh(hscb->datacnt),
aic_le32toh(hscb->sgptr),
SCB_GET_TAG(scb));
ahd_dump_sglist(scb);
}
void
ahd_dump_sglist(struct scb *scb)
{
int i;
if (scb->sg_count > 0) {
if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg_list;
sg_list = (struct ahd_dma64_seg*)scb->sg_list;
for (i = 0; i < scb->sg_count; i++) {
uint64_t addr;
uint32_t len;
addr = aic_le64toh(sg_list[i].addr);
len = aic_le32toh(sg_list[i].len);
printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
i,
(uint32_t)((addr >> 32) & 0xFFFFFFFF),
(uint32_t)(addr & 0xFFFFFFFF),
sg_list[i].len & AHD_SG_LEN_MASK,
(sg_list[i].len & AHD_DMA_LAST_SEG)
? " Last" : "");
}
} else {
struct ahd_dma_seg *sg_list;
sg_list = (struct ahd_dma_seg*)scb->sg_list;
for (i = 0; i < scb->sg_count; i++) {
uint32_t len;
len = aic_le32toh(sg_list[i].len);
printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
i,
(len & AHD_SG_HIGH_ADDR_MASK) >> 24,
aic_le32toh(sg_list[i].addr),
len & AHD_SG_LEN_MASK,
len & AHD_DMA_LAST_SEG ? " Last" : "");
}
}
}
}
/************************* Transfer Negotiation *******************************/
/*
* Allocate per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
{
struct ahd_tmode_tstate *master_tstate;
struct ahd_tmode_tstate *tstate;
int i;
master_tstate = ahd->enabled_targets[ahd->our_id];
if (ahd->enabled_targets[scsi_id] != NULL
&& ahd->enabled_targets[scsi_id] != master_tstate)
panic("%s: ahd_alloc_tstate - Target already allocated",
ahd_name(ahd));
tstate = malloc(sizeof(*tstate), M_DEVBUF, M_NOWAIT);
if (tstate == NULL)
return (NULL);
/*
* If we have allocated a master tstate, copy user settings from
* the master tstate (taken from SRAM or the EEPROM) for this
* channel, but reset our current and goal settings to async/narrow
* until an initiator talks to us.
*/
if (master_tstate != NULL) {
memcpy(tstate, master_tstate, sizeof(*tstate));
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
for (i = 0; i < 16; i++) {
memset(&tstate->transinfo[i].curr, 0,
sizeof(tstate->transinfo[i].curr));
memset(&tstate->transinfo[i].goal, 0,
sizeof(tstate->transinfo[i].goal));
}
} else
memset(tstate, 0, sizeof(*tstate));
ahd->enabled_targets[scsi_id] = tstate;
return (tstate);
}
#ifdef AHD_TARGET_MODE
/*
* Free per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static void
ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
{
struct ahd_tmode_tstate *tstate;
/*
* Don't clean up our "master" tstate.
* It has our default user settings.
*/
if (scsi_id == ahd->our_id
&& force == FALSE)
return;
tstate = ahd->enabled_targets[scsi_id];
if (tstate != NULL)
free(tstate, M_DEVBUF);
ahd->enabled_targets[scsi_id] = NULL;
}
#endif
/*
* Called when we have an active connection to a target on the bus,
* this function finds the nearest period to the input period limited
* by the capabilities of the bus connectivity of and sync settings for
* the target.
*/
void
ahd_devlimited_syncrate(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *tinfo,
u_int *period, u_int *ppr_options, role_t role)
{
struct ahd_transinfo *transinfo;
u_int maxsync;
if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
&& (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHD_SYNCRATE_PACED;
} else {
maxsync = AHD_SYNCRATE_ULTRA;
/* Can't do DT related options on an SE bus */
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
}
/*
* Never allow a value higher than our current goal
* period otherwise we may allow a target initiated
* negotiation to go above the limit as set by the
* user. In the case of an initiator initiated
* sync negotiation, we limit based on the user
* setting. This allows the system to still accept
* incoming negotiations even if target initiated
* negotiation is not performed.
*/
if (role == ROLE_TARGET)
transinfo = &tinfo->user;
else
transinfo = &tinfo->goal;
*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
maxsync = MAX(maxsync, AHD_SYNCRATE_ULTRA2);
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
}
if (transinfo->period == 0) {
*period = 0;
*ppr_options = 0;
} else {
*period = MAX(*period, transinfo->period);
ahd_find_syncrate(ahd, period, ppr_options, maxsync);
}
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
void
ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
u_int *ppr_options, u_int maxsync)
{
if (*period < maxsync)
*period = maxsync;
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
&& *period > AHD_SYNCRATE_MIN_DT)
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
if (*period > AHD_SYNCRATE_MIN)
*period = 0;
/* Honor PPR option conformance rules. */
if (*period > AHD_SYNCRATE_PACED)
*ppr_options &= ~MSG_EXT_PPR_RTI;
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
/* Skip all PACED only entries if IU is not available */
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
&& *period < AHD_SYNCRATE_DT)
*period = AHD_SYNCRATE_DT;
/* Skip all DT only entries if DT is not available */
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& *period < AHD_SYNCRATE_ULTRA2)
*period = AHD_SYNCRATE_ULTRA2;
}
/*
* Truncate the given synchronous offset to a value the
* current adapter type and syncrate are capable of.
*/
void
ahd_validate_offset(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *tinfo,
u_int period, u_int *offset, int wide,
role_t role)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (period == 0)
maxoffset = 0;
else if (period <= AHD_SYNCRATE_PACED) {
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
maxoffset = MAX_OFFSET_PACED_BUG;
else
maxoffset = MAX_OFFSET_PACED;
} else
maxoffset = MAX_OFFSET_NON_PACED;
*offset = MIN(*offset, maxoffset);
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*offset = MIN(*offset, tinfo->user.offset);
else
*offset = MIN(*offset, tinfo->goal.offset);
}
}
/*
* Truncate the given transfer width parameter to a value the
* current adapter type is capable of.
*/
void
ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
u_int *bus_width, role_t role)
{
switch (*bus_width) {
default:
if (ahd->features & AHD_WIDE) {
/* Respond Wide */
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*bus_width = MIN(tinfo->user.width, *bus_width);
else
*bus_width = MIN(tinfo->goal.width, *bus_width);
}
}
/*
* Update the bitmask of targets for which the controller should
* negotiate with at the next convenient oportunity. This currently
* means the next time we send the initial identify messages for
* a new transaction.
*/
int
ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct ahd_tmode_tstate *tstate,
struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
{
u_int auto_negotiate_orig;
auto_negotiate_orig = tstate->auto_negotiate;
if (neg_type == AHD_NEG_ALWAYS) {
/*
* Force our "current" settings to be
* unknown so that unless a bus reset
* occurs the need to renegotiate is
* recorded persistently.
*/
if ((ahd->features & AHD_WIDE) != 0)
tinfo->curr.width = AHD_WIDTH_UNKNOWN;
tinfo->curr.period = AHD_PERIOD_UNKNOWN;
tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
}
if (tinfo->curr.period != tinfo->goal.period
|| tinfo->curr.width != tinfo->goal.width
|| tinfo->curr.offset != tinfo->goal.offset
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|| (neg_type == AHD_NEG_IF_NON_ASYNC
&& (tinfo->goal.offset != 0
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|| tinfo->goal.ppr_options != 0)))
tstate->auto_negotiate |= devinfo->target_mask;
else
tstate->auto_negotiate &= ~devinfo->target_mask;
return (auto_negotiate_orig != tstate->auto_negotiate);
}
/*
* Update the user/goal/curr tables of synchronous negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset, u_int ppr_options,
u_int type, int paused)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int old_period;
u_int old_offset;
u_int old_ppr;
int active;
int update_needed;
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
update_needed = 0;
if (period == 0 || offset == 0) {
period = 0;
offset = 0;
}
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHD_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
tinfo->user.ppr_options = ppr_options;
}
if ((type & AHD_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
tinfo->goal.ppr_options = ppr_options;
}
old_period = tinfo->curr.period;
old_offset = tinfo->curr.offset;
old_ppr = tinfo->curr.ppr_options;
if ((type & AHD_TRANS_CUR) != 0
&& (old_period != period
|| old_offset != offset
|| old_ppr != ppr_options)) {
update_needed++;
tinfo->curr.period = period;
tinfo->curr.offset = offset;
tinfo->curr.ppr_options = ppr_options;
ahd_send_async(ahd, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
if (bootverbose) {
if (offset != 0) {
int options;
printf("%s: target %d synchronous with "
"period = 0x%x, offset = 0x%x",
ahd_name(ahd), devinfo->target,
period, offset);
options = 0;
if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
printf("(RDSTRM");
options++;
}
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
printf("%s", options ? "|DT" : "(DT");
options++;
}
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
printf("%s", options ? "|IU" : "(IU");
options++;
}
if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
printf("%s", options ? "|RTI" : "(RTI");
options++;
}
if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
printf("%s", options ? "|QAS" : "(QAS");
options++;
}
if (options != 0)
printf(")\n");
else
printf("\n");
} else {
printf("%s: target %d using "
"asynchronous transfers%s\n",
ahd_name(ahd), devinfo->target,
(ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
? "(QAS)" : "");
}
}
}
/*
* Always refresh the neg-table to handle the case of the
* sequencer setting the ENATNO bit for a MK_MESSAGE request.
* We will always renegotiate in that case if this is a
* packetized request. Also manage the busfree expected flag
* from this common routine so that we catch changes due to
* WDTR or SDTR messages.
*/
if ((type & AHD_TRANS_CUR) != 0) {
if (!paused)
ahd_pause(ahd);
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
if (!paused)
ahd_unpause(ahd);
if (ahd->msg_type != MSG_TYPE_NONE) {
if ((old_ppr & MSG_EXT_PPR_IU_REQ)
!= (ppr_options & MSG_EXT_PPR_IU_REQ)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, devinfo);
printf("Expecting IU Change busfree\n");
}
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
| MSG_FLAG_IU_REQ_CHANGED;
}
if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR with IU_REQ outstanding\n");
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
}
}
}
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_TO_GOAL);
if (update_needed && active)
ahd_update_pending_scbs(ahd);
}
/*
* Update the user/goal/curr tables of wide negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int width, u_int type, int paused)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int oldwidth;
int active;
int update_needed;
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
update_needed = 0;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHD_TRANS_USER) != 0)
tinfo->user.width = width;
if ((type & AHD_TRANS_GOAL) != 0)
tinfo->goal.width = width;
oldwidth = tinfo->curr.width;
if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
update_needed++;
tinfo->curr.width = width;
ahd_send_async(ahd, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
if (bootverbose) {
printf("%s: target %d using %dbit transfers\n",
ahd_name(ahd), devinfo->target,
8 * (0x01 << width));
}
}
if ((type & AHD_TRANS_CUR) != 0) {
if (!paused)
ahd_pause(ahd);
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
if (!paused)
ahd_unpause(ahd);
}
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_TO_GOAL);
if (update_needed && active)
ahd_update_pending_scbs(ahd);
}
/*
* Update the current state of tagged queuing for a given target.
*/
void
ahd_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
ahd_queue_alg alg)
{
ahd_platform_set_tags(ahd, devinfo, alg);
ahd_send_async(ahd, devinfo->channel, devinfo->target,
devinfo->lun, AC_TRANSFER_NEG, &alg);
}
static void
ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct ahd_transinfo *tinfo)
{
ahd_mode_state saved_modes;
u_int period;
u_int ppr_opts;
u_int con_opts;
u_int offset;
u_int saved_negoaddr;
uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_negoaddr = ahd_inb(ahd, NEGOADDR);
ahd_outb(ahd, NEGOADDR, devinfo->target);
period = tinfo->period;
offset = tinfo->offset;
memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
con_opts = 0;
if (period == 0)
period = AHD_SYNCRATE_ASYNC;
if (period == AHD_SYNCRATE_160) {
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
/*
* When the SPI4 spec was finalized, PACE transfers
* was not made a configurable option in the PPR
* message. Instead it is assumed to be enabled for
* any syncrate faster than 80MHz. Nevertheless,
* Harpoon2A4 allows this to be configurable.
*
* Harpoon2A4 also assumes at most 2 data bytes per
* negotiated REQ/ACK offset. Paced transfers take
* 4, so we must adjust our offset.
*/
ppr_opts |= PPROPT_PACE;
offset *= 2;
/*
* Harpoon2A assumed that there would be a
* fallback rate between 160MHz and 80Mhz,
* so 7 is used as the period factor rather
* than 8 for 160MHz.
*/
period = AHD_SYNCRATE_REVA_160;
}
if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
~AHD_PRECOMP_MASK;
} else {
/*
* Precomp should be disabled for non-paced transfers.
*/
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
&& (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
&& (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
/*
* Slow down our CRC interval to be
* compatible with non-packetized
* U160 devices that can't handle a
* CRC at full speed.
*/
con_opts |= ENSLOWCRC;
}
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
/*
* On H2A4, revert to a slower slewrate
* on non-paced transfers.
*/
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
~AHD_SLEWRATE_MASK;
}
}
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
ahd_outb(ahd, NEGPERIOD, period);
ahd_outb(ahd, NEGPPROPTS, ppr_opts);
ahd_outb(ahd, NEGOFFSET, offset);
if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
con_opts |= WIDEXFER;
/*
* During packetized transfers, the target will
* give us the oportunity to send command packets
* without us asserting attention.
*/
if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
con_opts |= ENAUTOATNO;
ahd_outb(ahd, NEGCONOPTS, con_opts);
ahd_outb(ahd, NEGOADDR, saved_negoaddr);
ahd_restore_modes(ahd, saved_modes);
}
/*
* When the transfer settings for a connection change, setup for
* negotiation in pending SCBs to effect the change as quickly as
* possible. We also cancel any negotiations that are scheduled
* for inflight SCBs that have not been started yet.
*/
static void
ahd_update_pending_scbs(struct ahd_softc *ahd)
{
struct scb *pending_scb;
int pending_scb_count;
int paused;
u_int saved_scbptr;
ahd_mode_state saved_modes;
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings. We can only safely
* clear the negotiation required flag (setting requires the
* execution queue to be modified) and this is only possible
* if we are not already attempting to select out for this
* SCB. For this reason, all callers only call this routine
* if we are changing the negotiation settings for the currently
* active transaction on the bus.
*/
pending_scb_count = 0;
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
ahd_scb_devinfo(ahd, &devinfo, pending_scb);
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
pending_scb->hscb->control &= ~MK_MESSAGE;
}
ahd_sync_scb(ahd, pending_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
pending_scb_count++;
}
if (pending_scb_count == 0)
return;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
/*
* Force the sequencer to reinitialize the selection for
* the command at the head of the execution queue if it
* has already been setup. The negotiation changes may
* effect whether we select-out with ATN. It is only
* safe to clear ENSELO when the bus is not free and no
* selection is in progres or completed.
*/
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
&& (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
saved_scbptr = ahd_get_scbptr(ahd);
/* Ensure that the hscbs down on the card match the new information */
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
u_int scb_tag;
u_int control;
scb_tag = SCB_GET_TAG(pending_scb);
ahd_set_scbptr(ahd, scb_tag);
control = ahd_inb_scbram(ahd, SCB_CONTROL);
control &= ~MK_MESSAGE;
control |= pending_scb->hscb->control & MK_MESSAGE;
ahd_outb(ahd, SCB_CONTROL, control);
}
ahd_set_scbptr(ahd, saved_scbptr);
ahd_restore_modes(ahd, saved_modes);
if (paused == 0)
ahd_unpause(ahd);
}
/**************************** Pathing Information *****************************/
static void
ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
ahd_mode_state saved_modes;
u_int saved_scsiid;
role_t role;
int our_id;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
if (ahd_inb(ahd, SSTAT0) & TARGET)
role = ROLE_TARGET;
else
role = ROLE_INITIATOR;
if (role == ROLE_TARGET
&& (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
/* We were selected, so pull our id from TARGIDIN */
our_id = ahd_inb(ahd, TARGIDIN) & OID;
} else if (role == ROLE_TARGET)
our_id = ahd_inb(ahd, TOWNID);
else
our_id = ahd_inb(ahd, IOWNID);
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
ahd_compile_devinfo(devinfo,
our_id,
SCSIID_TARGET(ahd, saved_scsiid),
ahd_inb(ahd, SAVED_LUN),
SCSIID_CHANNEL(ahd, saved_scsiid),
role);
ahd_restore_modes(ahd, saved_modes);
}
void
ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
printf("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
devinfo->target, devinfo->lun);
}
struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)
{
struct ahd_phase_table_entry *entry;
struct ahd_phase_table_entry *last_entry;
/*
* num_phases doesn't include the default entry which
* will be returned if the phase doesn't match.
*/
last_entry = &ahd_phase_table[num_phases];
for (entry = ahd_phase_table; entry < last_entry; entry++) {
if (phase == entry->phase)
break;
}
return (entry);
}
void
ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
u_int lun, char channel, role_t role)
{
devinfo->our_scsiid = our_id;
devinfo->target = target;
devinfo->lun = lun;
devinfo->target_offset = target;
devinfo->channel = channel;
devinfo->role = role;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
static void
ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
role_t role;
int our_id;
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
role = ROLE_INITIATOR;
if ((scb->hscb->control & TARGET_SCB) != 0)
role = ROLE_TARGET;
ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
}
/************************ Message Phase Processing ****************************/
/*
* When an initiator transaction with the MK_MESSAGE flag either reconnects
* or enters the initial message out phase, we are interrupted. Fill our
* outgoing message buffer with the appropriate message and beging handing
* the message phase(s) manually.
*/
static void
ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
if (ahd_currently_packetized(ahd))
ahd->msg_flags |= MSG_FLAG_PACKETIZED;
if (ahd->send_msg_perror
&& ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
ahd->msgout_len++;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Setting up for Parity Error delivery\n");
#endif
return;
} else if (scb == NULL) {
printf("%s: WARNING. No pending message for "
"I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
ahd->msgout_len++;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
return;
}
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& (scb->flags & SCB_PACKETIZED) == 0
&& ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
u_int identify_msg;
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
if ((scb->hscb->control & DISCENB) != 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
ahd->msgout_len++;
if ((scb->hscb->control & TAG_ENB) != 0) {
ahd->msgout_buf[ahd->msgout_index++] =
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
ahd->msgout_len += 2;
}
}
if (scb->flags & SCB_DEVICE_RESET) {
ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
ahd->msgout_len++;
ahd_print_path(ahd, scb);
printf("Bus Device Reset Message Sent\n");
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else if ((scb->flags & SCB_ABORT) != 0) {
if ((scb->hscb->control & TAG_ENB) != 0) {
ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
} else {
ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
}
ahd->msgout_len++;
ahd_print_path(ahd, scb);
printf("Abort%s Message Sent\n",
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
ahd_build_transfer_msg(ahd, devinfo);
/*
* Clear our selection hardware in advance of potential
* PPR IU status change busfree. We may have an entry in
* the waiting Q for this target, and we don't want to go
* about selecting while we handle the busfree and blow
* it away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else {
printf("ahd_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message\n");
printf("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
devinfo->target_mask);
panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
"SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
scb->flags);
}
/*
* Clear the MK_MESSAGE flag from the SCB so we aren't
* asked to send this message again.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
scb->hscb->control &= ~MK_MESSAGE;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}
/*
* Build an appropriate transfer negotiation message for the
* currently active target.
*/
static void
ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
/*
* We need to initiate transfer negotiations.
* If our current and goal settings are identical,
* we want to renegotiate due to a check condition.
*/
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
int dowide;
int dosync;
int doppr;
u_int period;
u_int ppr_options;
u_int offset;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
/*
* Filter our period based on the current connection.
* If we can't perform DT transfers on this segment (not in LVD
* mode for instance), then our decision to issue a PPR message
* may change.
*/
period = tinfo->goal.period;
offset = tinfo->goal.offset;
ppr_options = tinfo->goal.ppr_options;
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
ppr_options = 0;
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
dowide = tinfo->curr.width != tinfo->goal.width;
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
/*
* Only use PPR if we have options that need it, even if the device
* claims to support it. There might be an expander in the way
* that doesn't.
*/
doppr = ppr_options != 0;
if (!dowide && !dosync && !doppr) {
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
dosync = tinfo->goal.offset != 0;
}
if (!dowide && !dosync && !doppr) {
/*
* Force async with a WDTR message if we have a wide bus,
* or just issue an SDTR with a 0 offset.
*/
if ((ahd->features & AHD_WIDE) != 0)
dowide = 1;
else
dosync = 1;
if (bootverbose) {
ahd_print_devinfo(ahd, devinfo);
printf("Ensuring async\n");
}
}
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
doppr = 0;
/*
* Both the PPR message and SDTR message require the
* goal syncrate to be limited to what the target device
* is capable of handling (based on whether an LVD->SE
* expander is on the bus), so combine these two cases.
* Regardless, guarantee that if we are using WDTR and SDTR
* messages that WDTR comes first.
*/
if (doppr || (dosync && !dowide)) {
offset = tinfo->goal.offset;
ahd_validate_offset(ahd, tinfo, period, &offset,
doppr ? tinfo->goal.width
: tinfo->curr.width,
devinfo->role);
if (doppr) {
ahd_construct_ppr(ahd, devinfo, period, offset,
tinfo->goal.width, ppr_options);
} else {
ahd_construct_sdtr(ahd, devinfo, period, offset);
}
} else {
ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
}
}
/*
* Build a synchronous negotiation message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset)
{
if (offset == 0)
period = AHD_ASYNC_XFER_PERIOD;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR;
ahd->msgout_buf[ahd->msgout_index++] = period;
ahd->msgout_buf[ahd->msgout_index++] = offset;
ahd->msgout_len += 5;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, period, offset);
}
}
/*
* Build a wide negotiateion message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int bus_width)
{
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR;
ahd->msgout_buf[ahd->msgout_index++] = bus_width;
ahd->msgout_len += 4;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending WDTR %x\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, bus_width);
}
}
/*
* Build a parallel protocol request message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset, u_int bus_width,
u_int ppr_options)
{
/*
* Always request precompensation from
* the other target if we are running
* at paced syncrates.
*/
if (period <= AHD_SYNCRATE_PACED)
ppr_options |= MSG_EXT_PPR_PCOMP_EN;
if (offset == 0)
period = AHD_ASYNC_XFER_PERIOD;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR;
ahd->msgout_buf[ahd->msgout_index++] = period;
ahd->msgout_buf[ahd->msgout_index++] = 0;
ahd->msgout_buf[ahd->msgout_index++] = offset;
ahd->msgout_buf[ahd->msgout_index++] = bus_width;
ahd->msgout_buf[ahd->msgout_index++] = ppr_options;
ahd->msgout_len += 8;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
"offset %x, ppr_options %x\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun,
bus_width, period, offset, ppr_options);
}
}
/*
* Clear any active message state.
*/
static void
ahd_clear_msg_state(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd->send_msg_perror = 0;
ahd->msg_flags = MSG_FLAG_NONE;
ahd->msgout_len = 0;
ahd->msgin_index = 0;
ahd->msg_type = MSG_TYPE_NONE;
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
/*
* The target didn't care to respond to our
* message request, so clear ATN.
*/
ahd_outb(ahd, CLRSINT1, CLRATNO);
}
ahd_outb(ahd, MSG_OUT, MSG_NOOP);
ahd_outb(ahd, SEQ_FLAGS2,
ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
ahd_restore_modes(ahd, saved_modes);
}
/*
* Manual message loop handler.
*/
static void
ahd_handle_message_phase(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
u_int bus_phase;
int end_session;
ahd_fetch_devinfo(ahd, &devinfo);
end_session = FALSE;
bus_phase = ahd_inb(ahd, LASTPHASE);
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
printf("LQIRETRY for LQIPHASE_OUTPKT\n");
ahd_outb(ahd, LQCTL2, LQIRETRY);
}
reswitch:
switch (ahd->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
int msgdone;
if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
panic("HOST_MSG_LOOP interrupt with no active message");
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("INITIATOR_MSG_OUT");
}
#endif
phasemis = bus_phase != P_MESGOUT;
if (phasemis) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
printf(" PHASEMIS %s\n",
ahd_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
if (bus_phase == P_MESGIN) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahd_outb(ahd, CLRSINT1, CLRATNO);
ahd->send_msg_perror = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahd->msgin_index = 0;
goto reswitch;
}
end_session = TRUE;
break;
}
if (ahd->send_msg_perror) {
ahd_outb(ahd, CLRSINT1, CLRATNO);
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n", ahd->send_msg_perror);
#endif
/*
* If we are notifying the target of a CRC error
* during packetized operations, the target is
* within its rights to acknowledge our message
* with a busfree.
*/
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
&& ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
break;
}
msgdone = ahd->msgout_index == ahd->msgout_len;
if (msgdone) {
/*
* The target has requested a retry.
* Re-assert ATN, reset our message index to
* 0, and try again.
*/
ahd->msgout_index = 0;
ahd_assert_atn(ahd);
}
lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
if (lastbyte) {
/* Last byte is signified by dropping ATN */
ahd_outb(ahd, CLRSINT1, CLRATNO);
}
/*
* Clear our interrupt status and present
* the next byte on the bus.
*/
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n",
ahd->msgout_buf[ahd->msgout_index]);
#endif
ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int message_done;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("INITIATOR_MSG_IN");
}
#endif
phasemis = bus_phase != P_MESGIN;
if (phasemis) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
printf(" PHASEMIS %s\n",
ahd_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
ahd->msgin_index = 0;
if (bus_phase == P_MESGOUT
&& (ahd->send_msg_perror != 0
|| (ahd->msgout_len != 0
&& ahd->msgout_index == 0))) {
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
goto reswitch;
}
end_session = TRUE;
break;
}
/* Pull the byte in without acking it */
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n",
ahd->msgin_buf[ahd->msgin_index]);
#endif
message_done = ahd_parse_msg(ahd, &devinfo);
if (message_done) {
/*
* Clear our incoming message buffer in case there
* is another message following this one.
*/
ahd->msgin_index = 0;
/*
* If this message illicited a response,
* assert ATN so the target takes us to the
* message out phase.
*/
if (ahd->msgout_len != 0) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("Asserting ATN for response\n");
}
#endif
ahd_assert_atn(ahd);
}
} else
ahd->msgin_index++;
if (message_done == MSGLOOP_TERMINATED) {
end_session = TRUE;
} else {
/* Ack the byte */
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
}
break;
}
case MSG_TYPE_TARGET_MSGIN:
{
int msgdone;
int msgout_request;
/*
* By default, the message loop will continue.
*/
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
if (ahd->msgout_len == 0)
panic("Target MSGIN with no active message");
/*
* If we interrupted a mesgout session, the initiator
* will not know this until our first REQ. So, we
* only honor mesgout requests after we've sent our
* first byte.
*/
if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
&& ahd->msgout_index > 0)
msgout_request = TRUE;
else
msgout_request = FALSE;
if (msgout_request) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
ahd->msgin_index = 0;
/* Dummy read to REQ for first byte */
ahd_inb(ahd, SCSIDAT);
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
break;
}
msgdone = ahd->msgout_index == ahd->msgout_len;
if (msgdone) {
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
end_session = TRUE;
break;
}
/*
* Present the next byte on the bus.
*/
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
break;
}
case MSG_TYPE_TARGET_MSGOUT:
{
int lastbyte;
int msgdone;
/*
* By default, the message loop will continue.
*/
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
/*
* The initiator signals that this is
* the last byte by dropping ATN.
*/
lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
/*
* Read the latched byte, but turn off SPIOEN first
* so that we don't inadvertently cause a REQ for the
* next byte.
*/
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
msgdone = ahd_parse_msg(ahd, &devinfo);
if (msgdone == MSGLOOP_TERMINATED) {
/*
* The message is *really* done in that it caused
* us to go to bus free. The sequencer has already
* been reset at this point, so pull the ejection
* handle.
*/
return;
}
ahd->msgin_index++;
/*
* XXX Read spec about initiator dropping ATN too soon
* and use msgdone to detect it.
*/
if (msgdone == MSGLOOP_MSGCOMPLETE) {
ahd->msgin_index = 0;
/*
* If this message illicited a response, transition
* to the Message in phase and send it.
*/
if (ahd->msgout_len != 0) {
ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
ahd->msgin_index = 0;
break;
}
}
if (lastbyte)
end_session = TRUE;
else {
/* Ask for the next byte. */
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
if (end_session) {
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
printf("%s: Returning to Idle Loop\n",
ahd_name(ahd));
ahd_clear_msg_state(ahd);
/*
* Perform the equivalent of a clear_target_state.
*/
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
} else {
ahd_clear_msg_state(ahd);
ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
}
}
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, return true only if the target saw the full
* message. If "full" is false, return true if the target saw at
* least the first byte of the message.
*/
static int
ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
{
int found;
u_int index;
found = FALSE;
index = 0;
while (index < ahd->msgout_len) {
if (ahd->msgout_buf[index] == MSG_EXTENDED) {
u_int end_index;
end_index = index + 1 + ahd->msgout_buf[index + 1];
if (ahd->msgout_buf[index+2] == msgval
&& type == AHDMSG_EXT) {
if (full) {
if (ahd->msgout_index > end_index)
found = TRUE;
} else if (ahd->msgout_index > index)
found = TRUE;
}
index = end_index;
} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
/* Skip tag type and tag id or residue param*/
index += 2;
} else {
/* Single byte message */
if (type == AHDMSG_1B
&& ahd->msgout_index > index
&& (ahd->msgout_buf[index] == msgval
|| ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
&& msgval == MSG_IDENTIFYFLAG)))
found = TRUE;
index++;
}
if (found)
break;
}
return (found);
}
/*
* Wait for a complete incoming message, parse it, and respond accordingly.
*/
static int
ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
int reject;
int done;
int response;
done = MSGLOOP_IN_PROG;
response = FALSE;
reject = FALSE;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
/*
* Parse as much of the message as is available,
* rejecting it if we don't support it. When
* the entire message is available and has been
* handled, return MSGLOOP_MSGCOMPLETE, indicating
* that we have parsed an entire message.
*
* In the case of extended messages, we accept the length
* byte outright and perform more checking once we know the
* extended message type.
*/
switch (ahd->msgin_buf[0]) {
case MSG_DISCONNECT:
case MSG_SAVEDATAPOINTER:
case MSG_CMDCOMPLETE:
case MSG_RESTOREPOINTERS:
case MSG_IGN_WIDE_RESIDUE:
/*
* End our message loop as these are messages
* the sequencer handles on its own.
*/
done = MSGLOOP_TERMINATED;
break;
case MSG_MESSAGE_REJECT:
response = ahd_handle_msg_reject(ahd, devinfo);
/* FALLTHROUGH */
case MSG_NOOP:
done = MSGLOOP_MSGCOMPLETE;
break;
case MSG_EXTENDED:
{
/* Wait for enough of the message to begin validation */
if (ahd->msgin_index < 2)
break;
switch (ahd->msgin_buf[2]) {
case MSG_EXT_SDTR:
{
u_int period;
u_int ppr_options;
u_int offset;
u_int saved_offset;
if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = ahd->msgin_buf[3];
ppr_options = 0;
saved_offset = offset = ahd->msgin_buf[4];
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
ahd_validate_offset(ahd, tinfo, period, &offset,
tinfo->curr.width, devinfo->role);
if (bootverbose) {
printf("(%s:%c:%d:%d): Received "
"SDTR period %x, offset %x\n\t"
"Filtered to period %x, offset %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
ahd->msgin_buf[3], saved_offset,
period, offset);
}
ahd_set_syncrate(ahd, devinfo, period,
offset, ppr_options,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printf("(%s:%c:%d:%d): Target "
"Initiated SDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_sdtr(ahd, devinfo,
period, offset);
ahd->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case MSG_EXT_WDTR:
{
u_int bus_width;
u_int saved_width;
u_int sending_reply;
sending_reply = FALSE;
if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*
* Add one to MSG_EXT_WDTR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
break;
bus_width = ahd->msgin_buf[3];
saved_width = bus_width;
ahd_validate_width(ahd, tinfo, &bus_width,
devinfo->role);
if (bootverbose) {
printf("(%s:%c:%d:%d): Received WDTR "
"%x filtered to %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, bus_width);
}
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
* If the width went higher than our
* request, reject it.
*/
if (saved_width > bus_width) {
reject = TRUE;
printf("(%s:%c:%d:%d): requested %dBit "
"transfers. Rejecting...\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
8 * (0x01 << bus_width));
bus_width = 0;
}
} else {
/*
* Send our own WDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printf("(%s:%c:%d:%d): Target "
"Initiated WDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_wdtr(ahd, devinfo, bus_width);
ahd->msgout_index = 0;
response = TRUE;
sending_reply = TRUE;
}
/*
* After a wide message, we are async, but
* some devices don't seem to honor this portion
* of the spec. Force a renegotiation of the
* sync component of our transfer agreement even
* if our goal is async. By updating our width
* after forcing the negotiation, we avoid
* renegotiating for width.
*/
ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_ALWAYS);
ahd_set_width(ahd, devinfo, bus_width,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
if (sending_reply == FALSE && reject == FALSE) {
/*
* We will always have an SDTR to send.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case MSG_EXT_PPR:
{
u_int period;
u_int offset;
u_int bus_width;
u_int ppr_options;
u_int saved_width;
u_int saved_offset;
u_int saved_ppr_options;
if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have all args before validating
* and acting on this message.
*
* Add one to MSG_EXT_PPR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
break;
period = ahd->msgin_buf[3];
offset = ahd->msgin_buf[5];
bus_width = ahd->msgin_buf[6];
saved_width = bus_width;
ppr_options = ahd->msgin_buf[7];
/*
* According to the spec, a DT only
* period factor with no DT option
* set implies async.
*/
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& period <= 9)
offset = 0;
saved_ppr_options = ppr_options;
saved_offset = offset;
/*
* Transfer options are only available if we
* are negotiating wide.
*/
if (bus_width == 0)
ppr_options &= MSG_EXT_PPR_QAS_REQ;
ahd_validate_width(ahd, tinfo, &bus_width,
devinfo->role);
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
ahd_validate_offset(ahd, tinfo, period, &offset,
bus_width, devinfo->role);
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
/*
* If we are unable to do any of the
* requested options (we went too low),
* then we'll have to reject the message.
*/
if (saved_width > bus_width
|| saved_offset != offset
|| saved_ppr_options != ppr_options) {
reject = TRUE;
period = 0;
offset = 0;
bus_width = 0;
ppr_options = 0;
}
} else {
if (devinfo->role != ROLE_TARGET)
printf("(%s:%c:%d:%d): Target "
"Initiated PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
else
printf("(%s:%c:%d:%d): Initiator "
"Initiated PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_ppr(ahd, devinfo, period, offset,
bus_width, ppr_options);
ahd->msgout_index = 0;
response = TRUE;
}
if (bootverbose) {
printf("(%s:%c:%d:%d): Received PPR width %x, "
"period %x, offset %x,options %x\n"
"\tFiltered to width %x, period %x, "
"offset %x, options %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, ahd->msgin_buf[3],
saved_offset, saved_ppr_options,
bus_width, period, offset, ppr_options);
}
ahd_set_width(ahd, devinfo, bus_width,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
ahd_set_syncrate(ahd, devinfo, period,
offset, ppr_options,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
done = MSGLOOP_MSGCOMPLETE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
break;
}
#ifdef AHD_TARGET_MODE
case MSG_BUS_DEV_RESET:
ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
CAM_BDR_SENT,
"Bus Device Reset Received",
/*verbose_level*/0);
ahd_restart(ahd);
done = MSGLOOP_TERMINATED;
break;
case MSG_ABORT_TAG:
case MSG_ABORT:
case MSG_CLEAR_QUEUE:
{
int tag;
/* Target mode messages */
if (devinfo->role != ROLE_TARGET) {
reject = TRUE;
break;
}
tag = SCB_LIST_NULL;
if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
tag = ahd_inb(ahd, INITIATOR_TAG);
ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
devinfo->lun, tag, ROLE_TARGET,
CAM_REQ_ABORTED);
tstate = ahd->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[devinfo->lun];
if (lstate != NULL) {
ahd_queue_lstate_event(ahd, lstate,
devinfo->our_scsiid,
ahd->msgin_buf[0],
/*arg*/tag);
ahd_send_lstate_events(ahd, lstate);
}
}
ahd_restart(ahd);
done = MSGLOOP_TERMINATED;
break;
}
#endif
case MSG_QAS_REQUEST:
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("%s: QAS request. SCSISIGI == 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
/* FALLTHROUGH */
case MSG_TERM_IO_PROC:
default:
reject = TRUE;
break;
}
if (reject) {
/*
* Setup to reject the message.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 1;
ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
done = MSGLOOP_MSGCOMPLETE;
response = TRUE;
}
if (done != MSGLOOP_IN_PROG && !response)
/* Clear the outgoing message buffer */
ahd->msgout_len = 0;
return (done);
}
/*
* Process a message reject message.
*/
static int
ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
struct scb *scb;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int scb_index;
u_int last_msg;
int response = 0;
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
/* Might be necessary */
last_msg = ahd_inb(ahd, LAST_MSG);
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
&& tinfo->goal.period <= AHD_SYNCRATE_PACED) {
/*
* Target may not like our SPI-4 PPR Options.
* Attempt to negotiate 80MHz which will turn
* off these options.
*/
if (bootverbose) {
printf("(%s:%c:%d:%d): PPR Rejected. "
"Trying simple U160 PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
tinfo->goal.period = AHD_SYNCRATE_DT;
tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
| MSG_EXT_PPR_QAS_REQ
| MSG_EXT_PPR_DT_REQ;
} else {
/*
* Target does not support the PPR message.
* Attempt to negotiate SPI-2 style.
*/
if (bootverbose) {
printf("(%s:%c:%d:%d): PPR Rejected. "
"Trying WDTR/SDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
tinfo->goal.ppr_options = 0;
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
/* note 8bit xfers */
printf("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
"8bit transfers\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun);
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* No need to clear the sync rate. If the target
* did not accept the command, our syncrate is
* unaffected. If the target started the negotiation,
* but rejected our response, we already cleared the
* sync rate before sending our WDTR.
*/
if (tinfo->goal.offset != tinfo->curr.offset) {
/* Start the sync negotiation */
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
}
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
ahd_set_syncrate(ahd, devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
printf("(%s:%c:%d:%d): refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
int tag_type;
int mask;
tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
if (tag_type == MSG_SIMPLE_TASK) {
printf("(%s:%c:%d:%d): refuses tagged commands. "
"Performing non-tagged I/O\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun);
ahd_set_tags(ahd, devinfo, AHD_QUEUE_NONE);
mask = ~0x23;
} else {
printf("(%s:%c:%d:%d): refuses %s tagged commands. "
"Performing simple queue tagged I/O only\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, tag_type == MSG_ORDERED_TASK
? "ordered" : "head of queue");
ahd_set_tags(ahd, devinfo, AHD_QUEUE_BASIC);
mask = ~0x03;
}
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
scb->hscb->control &= mask;
aic_set_transaction_tag(scb, /*enabled*/FALSE,
/*type*/MSG_SIMPLE_TASK);
ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
ahd_assert_atn(ahd);
ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
SCB_GET_TAG(scb));
/*
* Requeue all tagged commands for this target
* currently in our posession so they can be
* converted to untagged commands.
*/
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
/*
* Most likely the device believes that we had
* previously negotiated packetized.
*/
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
| MSG_FLAG_IU_REQ_CHANGED;
ahd_force_renegotiation(ahd, devinfo);
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
} else {
/*
* Otherwise, we ignore it.
*/
printf("%s:%c:%d: Message reject for %x -- ignored\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
last_msg);
}
return (response);
}
/*
* Process an ingnore wide residue message.
*/
static void
ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
u_int scb_index;
struct scb *scb;
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
/*
* XXX Actually check data direction in the sequencer?
* Perhaps add datadir to some spare bits in the hscb?
*/
if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
|| aic_get_transfer_dir(scb) != CAM_DIR_IN) {
/*
* Ignore the message if we haven't
* seen an appropriate data phase yet.
*/
} else {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing. Otherwise, subtract a byte
* and update the residual count accordingly.
*/
uint32_t sgptr;
sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
if ((sgptr & SG_LIST_NULL) != 0
&& (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
& SCB_XFERLEN_ODD) != 0) {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing.
*/
} else {
uint32_t data_cnt;
uint64_t data_addr;
uint32_t sglen;
/* Pull in the rest of the sgptr */
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
if ((sgptr & SG_LIST_NULL) != 0) {
/*
* The residual data count is not updated
* for the command run to completion case.
* Explicitly zero the count.
*/
data_cnt &= ~AHD_SG_LEN_MASK;
}
data_addr = ahd_inq(ahd, SHADDR);
data_cnt += 1;
data_addr -= 1;
sgptr &= SG_PTR_MASK;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/*
* The residual sg ptr points to the next S/G
* to load so we must go back one.
*/
sg--;
sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
if (sg != scb->sg_list
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
sg--;
sglen = aic_le32toh(sg->len);
/*
* Preserve High Address and SG_LIST
* bits while setting the count to 1.
*/
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
data_addr = aic_le64toh(sg->addr)
+ (sglen & AHD_SG_LEN_MASK)
- 1;
/*
* Increment sg so it points to the
* "next" sg.
*/
sg++;
sgptr = ahd_sg_virt_to_bus(ahd, scb,
sg);
}
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/*
* The residual sg ptr points to the next S/G
* to load so we must go back one.
*/
sg--;
sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
if (sg != scb->sg_list
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
sg--;
sglen = aic_le32toh(sg->len);
/*
* Preserve High Address and SG_LIST
* bits while setting the count to 1.
*/
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
data_addr = aic_le32toh(sg->addr)
+ (sglen & AHD_SG_LEN_MASK)
- 1;
/*
* Increment sg so it points to the
* "next" sg.
*/
sg++;
sgptr = ahd_sg_virt_to_bus(ahd, scb,
sg);
}
}
/*
* Toggle the "oddness" of the transfer length
* to handle this mid-transfer ignore wide
* residue. This ensures that the oddness is
* correct for subsequent data transfers.
*/
ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
^ SCB_XFERLEN_ODD);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
/*
* The FIFO's pointers will be updated if/when the
* sequencer re-enters a data phase.
*/
}
}
}
/*
* Reinitialize the data pointers for the active transfer
* based on its current residual.
*/
static void
ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int scb_index;
u_int wait;
uint32_t sgptr;
uint32_t resid;
uint64_t dataptr;
AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
/*
* Release and reacquire the FIFO so we
* have a clean slate.
*/
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
wait = 1000;
while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
aic_delay(100);
if (wait == 0) {
ahd_print_path(ahd, scb);
printf("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
}
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, DFFSTAT,
ahd_inb(ahd, DFFSTAT)
| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
/*
* Determine initial values for data_addr and data_cnt
* for resuming the data phase.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
sgptr &= SG_PTR_MASK;
resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
| (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
| ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/* The residual sg_ptr always points to the next sg */
sg--;
dataptr = aic_le64toh(sg->addr)
+ (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
- resid;
ahd_outl(ahd, HADDR + 4, dataptr >> 32);
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/* The residual sg_ptr always points to the next sg */
sg--;
dataptr = aic_le32toh(sg->addr)
+ (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
- resid;
ahd_outb(ahd, HADDR + 4,
(aic_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
}
ahd_outl(ahd, HADDR, dataptr);
ahd_outb(ahd, HCNT + 2, resid >> 16);
ahd_outb(ahd, HCNT + 1, resid >> 8);
ahd_outb(ahd, HCNT, resid);
}
/*
* Handle the effects of issuing a bus device reset message.
*/
static void
ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int lun, cam_status status, char *message,
int verbose_level)
{
#ifdef AHD_TARGET_MODE
struct ahd_tmode_tstate* tstate;
#endif
int found;
found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
lun, SCB_LIST_NULL, devinfo->role,
status);
#ifdef AHD_TARGET_MODE
/*
* Send an immediate notify ccb to all target mord peripheral
* drivers affected by this action.
*/
tstate = ahd->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
u_int cur_lun;
u_int max_lun;
if (lun != CAM_LUN_WILDCARD) {
cur_lun = 0;
max_lun = AHD_NUM_LUNS - 1;
} else {
cur_lun = lun;
max_lun = lun;
}
for (cur_lun <= max_lun; cur_lun++) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[cur_lun];
if (lstate == NULL)
continue;
ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
MSG_BUS_DEV_RESET, /*arg*/0);
ahd_send_lstate_events(ahd, lstate);
}
}
#endif
/*
* Go back to async/narrow transfers and renegotiate.
*/
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR, /*paused*/TRUE);
ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR,
/*paused*/TRUE);
if (status != CAM_SEL_TIMEOUT)
ahd_send_async(ahd, devinfo->channel, devinfo->target,
lun, AC_SENT_BDR, NULL);
if (message != NULL
&& (verbose_level <= bootverbose))
printf("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
message, devinfo->channel, devinfo->target, found);
}
#ifdef AHD_TARGET_MODE
static void
ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
ahd_build_transfer_msg(ahd, devinfo);
else
panic("ahd_intr: AWAITING target message with no message");
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
}
#endif
/**************************** Initialization **********************************/
static u_int
ahd_sglist_size(struct ahd_softc *ahd)
{
bus_size_t list_size;
list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
return (list_size);
}
/*
* Calculate the optimum S/G List allocation size. S/G elements used
* for a given transaction must be physically contiguous. Assume the
* OS will allocate full pages to us, so it doesn't make sense to request
* less than a page.
*/
static u_int
ahd_sglist_allocsize(struct ahd_softc *ahd)
{
bus_size_t sg_list_increment;
bus_size_t sg_list_size;
bus_size_t max_list_size;
bus_size_t best_list_size;
/* Start out with the minimum required for AHD_NSEG. */
sg_list_increment = ahd_sglist_size(ahd);
sg_list_size = sg_list_increment;
/* Get us as close as possible to a page in size. */
while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
sg_list_size += sg_list_increment;
/*
* Try to reduce the amount of wastage by allocating
* multiple pages.
*/
best_list_size = sg_list_size;
max_list_size = roundup(sg_list_increment, PAGE_SIZE);
if (max_list_size < 4 * PAGE_SIZE)
max_list_size = 4 * PAGE_SIZE;
if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
while ((sg_list_size + sg_list_increment) <= max_list_size
&& (sg_list_size % PAGE_SIZE) != 0) {
bus_size_t new_mod;
bus_size_t best_mod;
sg_list_size += sg_list_increment;
new_mod = sg_list_size % PAGE_SIZE;
best_mod = best_list_size % PAGE_SIZE;
if (new_mod > best_mod || new_mod == 0) {
best_list_size = sg_list_size;
}
}
return (best_list_size);
}
/*
* Allocate a controller structure for a new device
* and perform initial initializion.
*/
struct ahd_softc *
ahd_alloc(void *platform_arg, char *name)
{
struct ahd_softc *ahd;
#ifndef __FreeBSD__
ahd = malloc(sizeof(*ahd), M_DEVBUF, M_NOWAIT);
if (!ahd) {
printf("aic7xxx: cannot malloc softc!\n");
free(name, M_DEVBUF);
return NULL;
}
#else
ahd = device_get_softc((device_t)platform_arg);
#endif
memset(ahd, 0, sizeof(*ahd));
ahd->seep_config = malloc(sizeof(*ahd->seep_config),
M_DEVBUF, M_NOWAIT);
if (ahd->seep_config == NULL) {
#ifndef __FreeBSD__
free(ahd, M_DEVBUF);
#endif
free(name, M_DEVBUF);
return (NULL);
}
LIST_INIT(&ahd->pending_scbs);
LIST_INIT(&ahd->timedout_scbs);
/* We don't know our unit number until the OSM sets it */
ahd->name = name;
ahd->unit = -1;
ahd->description = NULL;
ahd->bus_description = NULL;
ahd->channel = 'A';
ahd->chip = AHD_NONE;
ahd->features = AHD_FENONE;
ahd->bugs = AHD_BUGNONE;
ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
| AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
aic_timer_init(&ahd->reset_timer);
aic_timer_init(&ahd->stat_timer);
ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
ahd->int_coalescing_stop_threshold =
AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
if (ahd_platform_alloc(ahd, platform_arg) != 0) {
ahd_free(ahd);
ahd = NULL;
}
ahd_lockinit(ahd);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
printf("%s: scb size = 0x%x, hscb size = 0x%x\n",
ahd_name(ahd), (u_int)sizeof(struct scb),
(u_int)sizeof(struct hardware_scb));
}
#endif
return (ahd);
}
int
ahd_softc_init(struct ahd_softc *ahd)
{
ahd->unpause = 0;
ahd->pause = PAUSE;
return (0);
}
void
ahd_softc_insert(struct ahd_softc *ahd)
{
struct ahd_softc *list_ahd;
#if AIC_PCI_CONFIG > 0
/*
* Second Function PCI devices need to inherit some
* settings from function 0.
*/
if ((ahd->features & AHD_MULTI_FUNC) != 0) {
TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
aic_dev_softc_t list_pci;
aic_dev_softc_t pci;
list_pci = list_ahd->dev_softc;
pci = ahd->dev_softc;
if (aic_get_pci_slot(list_pci) == aic_get_pci_slot(pci)
&& aic_get_pci_bus(list_pci) == aic_get_pci_bus(pci)) {
struct ahd_softc *master;
struct ahd_softc *slave;
if (aic_get_pci_function(list_pci) == 0) {
master = list_ahd;
slave = ahd;
} else {
master = ahd;
slave = list_ahd;
}
slave->flags &= ~AHD_BIOS_ENABLED;
slave->flags |=
master->flags & AHD_BIOS_ENABLED;
break;
}
}
}
#endif
/*
* Insertion sort into our list of softcs.
*/
list_ahd = TAILQ_FIRST(&ahd_tailq);
while (list_ahd != NULL
&& ahd_softc_comp(ahd, list_ahd) <= 0)
list_ahd = TAILQ_NEXT(list_ahd, links);
if (list_ahd != NULL)
TAILQ_INSERT_BEFORE(list_ahd, ahd, links);
else
TAILQ_INSERT_TAIL(&ahd_tailq, ahd, links);
ahd->init_level++;
}
void
ahd_set_unit(struct ahd_softc *ahd, int unit)
{
ahd->unit = unit;
}
void
ahd_set_name(struct ahd_softc *ahd, char *name)
{
if (ahd->name != NULL)
free(ahd->name, M_DEVBUF);
ahd->name = name;
}
void
ahd_free(struct ahd_softc *ahd)
{
int i;
ahd_terminate_recovery_thread(ahd);
switch (ahd->init_level) {
default:
case 5:
ahd_shutdown(ahd);
/* FALLTHROUGH */
case 4:
aic_dmamap_unload(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap);
/* FALLTHROUGH */
case 3:
aic_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
ahd->shared_data_map.dmamap);
aic_dmamap_destroy(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap);
/* FALLTHROUGH */
case 2:
aic_dma_tag_destroy(ahd, ahd->shared_data_dmat);
case 1:
#ifndef __linux__
aic_dma_tag_destroy(ahd, ahd->buffer_dmat);
#endif
break;
case 0:
break;
}
#ifndef __linux__
aic_dma_tag_destroy(ahd, ahd->parent_dmat);
#endif
ahd_platform_free(ahd);
ahd_fini_scbdata(ahd);
for (i = 0; i < AHD_NUM_TARGETS; i++) {
struct ahd_tmode_tstate *tstate;
tstate = ahd->enabled_targets[i];
if (tstate != NULL) {
#ifdef AHD_TARGET_MODE
int j;
for (j = 0; j < AHD_NUM_LUNS; j++) {
struct ahd_tmode_lstate *lstate;
lstate = tstate->enabled_luns[j];
if (lstate != NULL) {
xpt_free_path(lstate->path);
free(lstate, M_DEVBUF);
}
}
#endif
free(tstate, M_DEVBUF);
}
}
#ifdef AHD_TARGET_MODE
if (ahd->black_hole != NULL) {
xpt_free_path(ahd->black_hole->path);
free(ahd->black_hole, M_DEVBUF);
}
#endif
if (ahd->name != NULL)
free(ahd->name, M_DEVBUF);
if (ahd->seep_config != NULL)
free(ahd->seep_config, M_DEVBUF);
if (ahd->saved_stack != NULL)
free(ahd->saved_stack, M_DEVBUF);
#ifndef __FreeBSD__
free(ahd, M_DEVBUF);
#endif
return;
}
void
ahd_shutdown(void *arg)
{
struct ahd_softc *ahd;
ahd = (struct ahd_softc *)arg;
/*
* Stop periodic timer callbacks.
*/
aic_timer_stop(&ahd->reset_timer);
aic_timer_stop(&ahd->stat_timer);
/* This will reset most registers to 0, but not all */
ahd_reset(ahd, /*reinit*/FALSE);
}
/*
* Reset the controller and record some information about it
* that is only available just after a reset. If "reinit" is
* non-zero, this reset occured after initial configuration
* and the caller requests that the chip be fully reinitialized
* to a runable state. Chip interrupts are *not* enabled after
* a reinitialization. The caller must enable interrupts via
* ahd_intr_enable().
*/
int
ahd_reset(struct ahd_softc *ahd, int reinit)
{
u_int sxfrctl1;
int wait;
uint32_t cmd;
/*
* Preserve the value of the SXFRCTL1 register for all channels.
* It contains settings that affect termination and we don't want
* to disturb the integrity of the bus.
*/
ahd_pause(ahd);
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
cmd = aic_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
uint32_t mod_cmd;
/*
* A4 Razor #632
* During the assertion of CHIPRST, the chip
* does not disable its parity logic prior to
* the start of the reset. This may cause a
* parity error to be detected and thus a
* spurious SERR or PERR assertion. Disble
* PERR and SERR responses during the CHIPRST.
*/
mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
mod_cmd, /*bytes*/2);
}
ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
/*
* Ensure that the reset has finished. We delay 1000us
* prior to reading the register to make sure the chip
* has sufficiently completed its reset to handle register
* accesses.
*/
wait = 1000;
do {
aic_delay(1000);
} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
if (wait == 0) {
printf("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahd_name(ahd));
}
ahd_outb(ahd, HCNTRL, ahd->pause);
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
/*
* Clear any latched PCI error status and restore
* previous SERR and PERR response enables.
*/
aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
0xFF, /*bytes*/1);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
cmd, /*bytes*/2);
}
/*
* Mode should be SCSI after a chip reset, but lets
* set it just to be safe. We touch the MODE_PTR
* register directly so as to bypass the lazy update
* code in ahd_set_modes().
*/
ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, MODE_PTR,
ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
/*
* Restore SXFRCTL1.
*
* We must always initialize STPWEN to 1 before we
* restore the saved values. STPWEN is initialized
* to a tri-state condition which can only be cleared
* by turning it on.
*/
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
/* Determine chip configuration */
ahd->features &= ~AHD_WIDE;
if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
ahd->features |= AHD_WIDE;
/*
* If a recovery action has forced a chip reset,
* re-initialize the chip to our liking.
*/
if (reinit != 0)
ahd_chip_init(ahd);
return (0);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahd_probe_scbs(struct ahd_softc *ahd) {
int i;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
for (i = 0; i < AHD_SCB_MAX; i++) {
int j;
ahd_set_scbptr(ahd, i);
ahd_outw(ahd, SCB_BASE, i);
for (j = 2; j < 64; j++)
ahd_outb(ahd, SCB_BASE+j, 0);
/* Start out life as unallocated (needing an abort) */
ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
if (ahd_inw_scbram(ahd, SCB_BASE) != i)
break;
ahd_set_scbptr(ahd, 0);
if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
break;
}
return (i);
}
static void
ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
baddr = (bus_addr_t *)arg;
*baddr = segs->ds_addr;
}
static void
ahd_initialize_hscbs(struct ahd_softc *ahd)
{
int i;
for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
ahd_set_scbptr(ahd, i);
/* Clear the control byte. */
ahd_outb(ahd, SCB_CONTROL, 0);
/* Set the next pointer */
ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
}
}
static int
ahd_init_scbdata(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
int i;
scb_data = &ahd->scb_data;
TAILQ_INIT(&scb_data->free_scbs);
for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
LIST_INIT(&scb_data->free_scb_lists[i]);
LIST_INIT(&scb_data->any_dev_free_scb_list);
SLIST_INIT(&scb_data->hscb_maps);
SLIST_INIT(&scb_data->sg_maps);
SLIST_INIT(&scb_data->sense_maps);
/* Determine the number of hardware SCBs and initialize them */
scb_data->maxhscbs = ahd_probe_scbs(ahd);
if (scb_data->maxhscbs == 0) {
printf("%s: No SCB space found\n", ahd_name(ahd));
return (ENXIO);
}
ahd_initialize_hscbs(ahd);
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*/
/* DMA tag for our hardware scb structures */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->hscb_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* DMA tag for our S/G structures. */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
ahd_sglist_allocsize(ahd), /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sg_dmat) != 0) {
goto error_exit;
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
printf("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
ahd_sglist_allocsize(ahd));
#endif
scb_data->init_level++;
/* DMA tag for our sense buffers. We allocate in page sized chunks */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sense_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* Perform initial CCB allocation */
while (ahd_alloc_scbs(ahd) != 0)
;
if (scb_data->numscbs == 0) {
printf("%s: ahd_init_scbdata - "
"Unable to allocate initial scbs\n",
ahd_name(ahd));
goto error_exit;
}
/*
* Note that we were successfull
*/
return (0);
error_exit:
return (ENOMEM);
}
static struct scb *
ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
{
struct scb *scb;
/*
* Look on the pending list.
*/
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
if (SCB_GET_TAG(scb) == tag)
return (scb);
}
/*
* Then on all of the collision free lists.
*/
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
struct scb *list_scb;
list_scb = scb;
do {
if (SCB_GET_TAG(list_scb) == tag)
return (list_scb);
list_scb = LIST_NEXT(list_scb, collision_links);
} while (list_scb);
}
/*
* And finally on the generic free list.
*/
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
if (SCB_GET_TAG(scb) == tag)
return (scb);
}
return (NULL);
}
static void
ahd_fini_scbdata(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
scb_data = &ahd->scb_data;
if (scb_data == NULL)
return;
switch (scb_data->init_level) {
default:
case 7:
{
struct map_node *sns_map;
while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
aic_dmamap_unload(ahd, scb_data->sense_dmat,
sns_map->dmamap);
aic_dmamem_free(ahd, scb_data->sense_dmat,
sns_map->vaddr, sns_map->dmamap);
free(sns_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->sense_dmat);
/* FALLTHROUGH */
}
case 6:
{
struct map_node *sg_map;
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
aic_dmamap_unload(ahd, scb_data->sg_dmat,
sg_map->dmamap);
aic_dmamem_free(ahd, scb_data->sg_dmat,
sg_map->vaddr, sg_map->dmamap);
free(sg_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->sg_dmat);
/* FALLTHROUGH */
}
case 5:
{
struct map_node *hscb_map;
while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
aic_dmamap_unload(ahd, scb_data->hscb_dmat,
hscb_map->dmamap);
aic_dmamem_free(ahd, scb_data->hscb_dmat,
hscb_map->vaddr, hscb_map->dmamap);
free(hscb_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->hscb_dmat);
/* FALLTHROUGH */
}
case 4:
case 3:
case 2:
case 1:
case 0:
break;
}
}
/*
* DSP filter Bypass must be enabled until the first selection
* after a change in bus mode (Razor #491 and #493).
*/
static void
ahd_setup_iocell_workaround(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
| BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Setting up iocell workaround\n", ahd_name(ahd));
#endif
ahd_restore_modes(ahd, saved_modes);
ahd->flags &= ~AHD_HAD_FIRST_SEL;
}
static void
ahd_iocell_first_selection(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
u_int sblkctl;
if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
return;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
sblkctl = ahd_inb(ahd, SBLKCTL);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: iocell first selection\n", ahd_name(ahd));
#endif
if ((sblkctl & ENAB40) != 0) {
ahd_outb(ahd, DSPDATACTL,
ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: BYPASS now disabled\n", ahd_name(ahd));
#endif
}
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_restore_modes(ahd, saved_modes);
ahd->flags |= AHD_HAD_FIRST_SEL;
}
/*************************** SCB Management ***********************************/
static void
ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
{
struct scb_list *free_list;
struct scb_tailq *free_tailq;
struct scb *first_scb;
scb->flags |= SCB_ON_COL_LIST;
AHD_SET_SCB_COL_IDX(scb, col_idx);
free_list = &ahd->scb_data.free_scb_lists[col_idx];
free_tailq = &ahd->scb_data.free_scbs;
first_scb = LIST_FIRST(free_list);
if (first_scb != NULL) {
LIST_INSERT_AFTER(first_scb, scb, collision_links);
} else {
LIST_INSERT_HEAD(free_list, scb, collision_links);
TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
}
}
static void
ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
{
struct scb_list *free_list;
struct scb_tailq *free_tailq;
struct scb *first_scb;
u_int col_idx;
scb->flags &= ~SCB_ON_COL_LIST;
col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
free_list = &ahd->scb_data.free_scb_lists[col_idx];
free_tailq = &ahd->scb_data.free_scbs;
first_scb = LIST_FIRST(free_list);
if (first_scb == scb) {
struct scb *next_scb;
/*
* Maintain order in the collision free
* lists for fairness if this device has
* other colliding tags active.
*/
next_scb = LIST_NEXT(scb, collision_links);
if (next_scb != NULL) {
TAILQ_INSERT_AFTER(free_tailq, scb,
next_scb, links.tqe);
}
TAILQ_REMOVE(free_tailq, scb, links.tqe);
}
LIST_REMOVE(scb, collision_links);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
struct scb *
ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
{
struct scb *scb;
int tries;
tries = 0;
look_again:
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
ahd_rem_col_list(ahd, scb);
goto found;
}
}
if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
if (tries++ != 0)
return (NULL);
if (ahd_alloc_scbs(ahd) == 0)
return (NULL);
goto look_again;
}
LIST_REMOVE(scb, links.le);
if (col_idx != AHD_NEVER_COL_IDX
&& (scb->col_scb != NULL)
&& (scb->col_scb->flags & SCB_ACTIVE) == 0) {
LIST_REMOVE(scb->col_scb, links.le);
ahd_add_col_list(ahd, scb->col_scb, col_idx);
}
found:
scb->flags |= SCB_ACTIVE;
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
void
ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
{
/* Clean up for the next user */
scb->flags = SCB_FLAG_NONE;
scb->hscb->control = 0;
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
if (scb->col_scb == NULL) {
/*
* No collision possible. Just free normally.
*/
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
/*
* The SCB we might have collided with is on
* a free collision list. Put both SCBs on
* the generic list.
*/
ahd_rem_col_list(ahd, scb->col_scb);
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb->col_scb, links.le);
} else if ((scb->col_scb->flags
& (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
/*
* The SCB we might collide with on the next allocation
* is still active in a non-packetized, tagged, context.
* Put us on the SCB collision list.
*/
ahd_add_col_list(ahd, scb,
AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
} else {
/*
* The SCB we might collide with on the next allocation
* is either active in a packetized context, or free.
* Since we can't collide, put this SCB on the generic
* free list.
*/
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
}
aic_platform_scb_free(ahd, scb);
}
int
ahd_alloc_scbs(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
struct scb *next_scb;
struct hardware_scb *hscb;
struct map_node *hscb_map;
struct map_node *sg_map;
struct map_node *sense_map;
uint8_t *segs;
uint8_t *sense_data;
bus_addr_t hscb_busaddr;
bus_addr_t sg_busaddr;
bus_addr_t sense_busaddr;
int newcount;
int i;
scb_data = &ahd->scb_data;
if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
/* Can't allocate any more */
return (0);
if (scb_data->scbs_left != 0) {
int offset;
offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
hscb_busaddr = hscb_map->busaddr + (offset * sizeof(*hscb));
} else {
hscb_map = malloc(sizeof(*hscb_map), M_DEVBUF, M_NOWAIT);
if (hscb_map == NULL)
return (0);
/* Allocate the next batch of hardware SCBs */
if (aic_dmamem_alloc(ahd, scb_data->hscb_dmat,
(void **)&hscb_map->vaddr,
BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
free(hscb_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
aic_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
&hscb_map->busaddr, /*flags*/0);
hscb = (struct hardware_scb *)hscb_map->vaddr;
hscb_busaddr = hscb_map->busaddr;
scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
}
if (scb_data->sgs_left != 0) {
int offset;
offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
- scb_data->sgs_left) * ahd_sglist_size(ahd);
sg_map = SLIST_FIRST(&scb_data->sg_maps);
segs = sg_map->vaddr + offset;
sg_busaddr = sg_map->busaddr + offset;
} else {
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return (0);
/* Allocate the next batch of S/G lists */
if (aic_dmamem_alloc(ahd, scb_data->sg_dmat,
(void **)&sg_map->vaddr,
BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
free(sg_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
aic_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
sg_map->vaddr, ahd_sglist_allocsize(ahd),
ahd_dmamap_cb, &sg_map->busaddr, /*flags*/0);
segs = sg_map->vaddr;
sg_busaddr = sg_map->busaddr;
scb_data->sgs_left =
ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_MEMORY)
printf("Mapped SG data\n");
#endif
}
if (scb_data->sense_left != 0) {
int offset;
offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
sense_map = SLIST_FIRST(&scb_data->sense_maps);
sense_data = sense_map->vaddr + offset;
sense_busaddr = sense_map->busaddr + offset;
} else {
sense_map = malloc(sizeof(*sense_map), M_DEVBUF, M_NOWAIT);
if (sense_map == NULL)
return (0);
/* Allocate the next batch of sense buffers */
if (aic_dmamem_alloc(ahd, scb_data->sense_dmat,
(void **)&sense_map->vaddr,
BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
free(sense_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
aic_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
&sense_map->busaddr, /*flags*/0);
sense_data = sense_map->vaddr;
sense_busaddr = sense_map->busaddr;
scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_MEMORY)
printf("Mapped sense data\n");
#endif
}
newcount = MIN(scb_data->sense_left, scb_data->scbs_left);
newcount = MIN(newcount, scb_data->sgs_left);
newcount = MIN(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
scb_data->sense_left -= newcount;
scb_data->scbs_left -= newcount;
scb_data->sgs_left -= newcount;
for (i = 0; i < newcount; i++) {
struct scb_platform_data *pdata;
u_int col_tag;
#ifndef __linux__
int error;
#endif
next_scb = (struct scb *)malloc(sizeof(*next_scb),
M_DEVBUF, M_NOWAIT);
if (next_scb == NULL)
break;
pdata = (struct scb_platform_data *)malloc(sizeof(*pdata),
M_DEVBUF, M_NOWAIT);
if (pdata == NULL) {
free(next_scb, M_DEVBUF);
break;
}
next_scb->platform_data = pdata;
next_scb->hscb_map = hscb_map;
next_scb->sg_map = sg_map;
next_scb->sense_map = sense_map;
next_scb->sg_list = segs;
next_scb->sense_data = sense_data;
next_scb->sense_busaddr = sense_busaddr;
memset(hscb, 0, sizeof(*hscb));
next_scb->hscb = hscb;
hscb->hscb_busaddr = aic_htole32(hscb_busaddr);
/*
* The sequencer always starts with the second entry.
* The first entry is embedded in the scb.
*/
next_scb->sg_list_busaddr = sg_busaddr;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
next_scb->sg_list_busaddr
+= sizeof(struct ahd_dma64_seg);
else
next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
next_scb->ahd_softc = ahd;
next_scb->flags = SCB_FLAG_NONE;
#ifndef __linux__
error = aic_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
&next_scb->dmamap);
if (error != 0) {
free(next_scb, M_DEVBUF);
free(pdata, M_DEVBUF);
break;
}
#endif
next_scb->hscb->tag = aic_htole16(scb_data->numscbs);
col_tag = scb_data->numscbs ^ 0x100;
next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
if (next_scb->col_scb != NULL)
next_scb->col_scb->col_scb = next_scb;
aic_timer_init(&next_scb->io_timer);
ahd_free_scb(ahd, next_scb);
hscb++;
hscb_busaddr += sizeof(*hscb);
segs += ahd_sglist_size(ahd);
sg_busaddr += ahd_sglist_size(ahd);
sense_data += AHD_SENSE_BUFSIZE;
sense_busaddr += AHD_SENSE_BUFSIZE;
scb_data->numscbs++;
}
return (i);
}
void
ahd_controller_info(struct ahd_softc *ahd, char *buf)
{
const char *speed;
const char *type;
int len;
len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
buf += len;
speed = "Ultra320 ";
if ((ahd->features & AHD_WIDE) != 0) {
type = "Wide ";
} else {
type = "Single ";
}
len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
speed, type, ahd->channel, ahd->our_id);
buf += len;
sprintf(buf, "%s, %d SCBs", ahd->bus_description,
ahd->scb_data.maxhscbs);
}
static const char *channel_strings[] = {
"Primary Low",
"Primary High",
"Secondary Low",
"Secondary High"
};
static const char *termstat_strings[] = {
"Terminated Correctly",
"Over Terminated",
"Under Terminated",
"Not Configured"
};
/*
* Start the board, ready for normal operation
*/
int
ahd_init(struct ahd_softc *ahd)
{
uint8_t *next_vaddr;
bus_addr_t next_baddr;
size_t driver_data_size;
int i;
int error;
u_int warn_user;
uint8_t current_sensing;
uint8_t fstat;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd->stack_size = ahd_probe_stack_size(ahd);
ahd->saved_stack = malloc(ahd->stack_size * sizeof(uint16_t),
M_DEVBUF, M_NOWAIT);
if (ahd->saved_stack == NULL)
return (ENOMEM);
/*
* Verify that the compiler hasn't over-agressively
* padded important structures.
*/
if (sizeof(struct hardware_scb) != 64)
panic("Hardware SCB size is incorrect");
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
ahd->flags |= AHD_SEQUENCER_DEBUG;
#endif
/*
* Default to allowing initiator operations.
*/
ahd->flags |= AHD_INITIATORROLE;
/*
* Only allow target mode features if this unit has them enabled.
*/
if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
ahd->features &= ~AHD_TARGETMODE;
#ifndef __linux__
/* DMA tag for mapping buffers into device visible space. */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
? (bus_addr_t)0x7FFFFFFFFFULL
: BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
/*nsegments*/AHD_NSEG,
/*maxsegsz*/AHD_MAXTRANSFER_SIZE,
/*flags*/BUS_DMA_ALLOCNOW,
&ahd->buffer_dmat) != 0) {
return (ENOMEM);
}
#endif
ahd->init_level++;
/*
* DMA tag for our command fifos and other data in system memory
* the card's sequencer must be able to access. For initiator
* roles, we need to allocate space for the qoutfifo. When providing
* for the target mode role, we must additionally provide space for
* the incoming target command fifo.
*/
driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
+ sizeof(struct hardware_scb);
if ((ahd->features & AHD_TARGETMODE) != 0)
driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
driver_data_size += PKT_OVERRUN_BUFSIZE;
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
driver_data_size,
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &ahd->shared_data_dmat) != 0) {
return (ENOMEM);
}
ahd->init_level++;
/* Allocation of driver data */
if (aic_dmamem_alloc(ahd, ahd->shared_data_dmat,
(void **)&ahd->shared_data_map.vaddr,
BUS_DMA_NOWAIT,
&ahd->shared_data_map.dmamap) != 0) {
return (ENOMEM);
}
ahd->init_level++;
/* And permanently map it in */
aic_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
ahd->shared_data_map.vaddr, driver_data_size,
ahd_dmamap_cb, &ahd->shared_data_map.busaddr,
/*flags*/0);
ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
next_baddr = ahd->shared_data_map.busaddr
+ AHD_QOUT_SIZE*sizeof(struct ahd_completion);
if ((ahd->features & AHD_TARGETMODE) != 0) {
ahd->targetcmds = (struct target_cmd *)next_vaddr;
next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
}
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
ahd->overrun_buf = next_vaddr;
next_vaddr += PKT_OVERRUN_BUFSIZE;
next_baddr += PKT_OVERRUN_BUFSIZE;
}
/*
* We need one SCB to serve as the "next SCB". Since the
* tag identifier in this SCB will never be used, there is
* no point in using a valid HSCB tag from an SCB pulled from
* the standard free pool. So, we allocate this "sentinel"
* specially from the DMA safe memory chunk used for the QOUTFIFO.
*/
ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
ahd->next_queued_hscb_map = &ahd->shared_data_map;
ahd->next_queued_hscb->hscb_busaddr = aic_htole32(next_baddr);
ahd->init_level++;
/* Allocate SCB data now that buffer_dmat is initialized */
if (ahd_init_scbdata(ahd) != 0)
return (ENOMEM);
if ((ahd->flags & AHD_INITIATORROLE) == 0)
ahd->flags &= ~AHD_RESET_BUS_A;
/*
* Before committing these settings to the chip, give
* the OSM one last chance to modify our configuration.
*/
ahd_platform_init(ahd);
/* Bring up the chip. */
ahd_chip_init(ahd);
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
goto init_done;
/*
* Verify termination based on current draw and
* warn user if the bus is over/under terminated.
*/
error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
CURSENSE_ENB);
if (error != 0) {
printf("%s: current sensing timeout 1\n", ahd_name(ahd));
goto init_done;
}
for (i = 20, fstat = FLX_FSTAT_BUSY;
(fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
if (error != 0) {
printf("%s: current sensing timeout 2\n",
ahd_name(ahd));
goto init_done;
}
}
if (i == 0) {
printf("%s: Timedout during current-sensing test\n",
ahd_name(ahd));
goto init_done;
}
/* Latch Current Sensing status. */
error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
if (error != 0) {
printf("%s: current sensing timeout 3\n", ahd_name(ahd));
goto init_done;
}
/* Diable current sensing. */
ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
printf("%s: current_sensing == 0x%x\n",
ahd_name(ahd), current_sensing);
}
#endif
warn_user = 0;
for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
u_int term_stat;
term_stat = (current_sensing & FLX_CSTAT_MASK);
switch (term_stat) {
case FLX_CSTAT_OVER:
case FLX_CSTAT_UNDER:
warn_user++;
case FLX_CSTAT_INVALID:
case FLX_CSTAT_OKAY:
if (warn_user == 0 && bootverbose == 0)
break;
printf("%s: %s Channel %s\n", ahd_name(ahd),
channel_strings[i], termstat_strings[term_stat]);
break;
}
}
if (warn_user) {
printf("%s: WARNING. Termination is not configured correctly.\n"
"%s: WARNING. SCSI bus operations may FAIL.\n",
ahd_name(ahd), ahd_name(ahd));
}
init_done:
ahd_restart(ahd);
aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
ahd_stat_timer, ahd);
return (0);
}
/*
* (Re)initialize chip state after a chip reset.
*/
static void
ahd_chip_init(struct ahd_softc *ahd)
{
uint32_t busaddr;
u_int sxfrctl1;
u_int scsiseq_template;
u_int wait;
u_int i;
u_int target;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/*
* Take the LED out of diagnostic mode
*/
ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
/*
* Return HS_MAILBOX to its default value.
*/
ahd->hs_mailbox = 0;
ahd_outb(ahd, HS_MAILBOX, 0);
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
ahd_outb(ahd, IOWNID, ahd->our_id);
ahd_outb(ahd, TOWNID, ahd->our_id);
sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
&& (ahd->seltime != STIMESEL_MIN)) {
/*
* The selection timer duration is twice as long
* as it should be. Halve it by adding "1" to
* the user specified setting.
*/
sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
} else {
sxfrctl1 |= ahd->seltime;
}
ahd_outb(ahd, SXFRCTL0, DFON);
ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
/*
* Now that termination is set, wait for up
* to 500ms for our transceivers to settle. If
* the adapter does not have a cable attached,
* the transceivers may never settle, so don't
* complain if we fail here.
*/
for (wait = 10000;
(ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
wait--)
aic_delay(100);
/* Clear any false bus resets due to the transceivers settling */
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
/* Initialize mode specific S/G state. */
for (i = 0; i < 2; i++) {
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SG_STATE, 0);
ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
ahd_outb(ahd, SEQIMODE,
ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
}
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
} else {
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
}
ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
/*
* Do not issue a target abort when a split completion
* error occurs. Let our PCIX interrupt handler deal
* with it instead. H2A4 Razor #625
*/
ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
/*
* Tweak IOCELL settings.
*/
if ((ahd->flags & AHD_HP_BOARD) != 0) {
for (i = 0; i < NUMDSPS; i++) {
ahd_outb(ahd, DSPSELECT, i);
ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
WRTBIASCTL_HP_DEFAULT);
#endif
}
ahd_setup_iocell_workaround(ahd);
/*
* Enable LQI Manager interrupts.
*/
ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
| ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
| ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
/*
* We choose to have the sequencer catch LQOPHCHGINPKT errors
* manually for the command phase at the start of a packetized
* selection case. ENLQOBUSFREE should be made redundant by
* the BUSFREE interrupt, but it seems that some LQOBUSFREE
* events fail to assert the BUSFREE interrupt so we must
* also enable LQOBUSFREE interrupts.
*/
ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
/*
* Setup sequencer interrupt handlers.
*/
ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
/*
* Setup SCB Offset registers.
*/
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
pkt_long_lun));
} else {
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
}
ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
shared_data.idata.cdb));
ahd_outb(ahd, QNEXTPTR,
offsetof(struct hardware_scb, next_hscb_busaddr));
ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
ahd_outb(ahd, LUNLEN,
sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
} else {
ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
}
ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
ahd_outb(ahd, MAXCMD, 0xFF);
ahd_outb(ahd, SCBAUTOPTR,
AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
/* We haven't been enabled for target mode yet. */
ahd_outb(ahd, MULTARGID, 0);
ahd_outb(ahd, MULTARGID + 1, 0);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* Initialize the negotiation table. */
if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
/*
* Clear the spare bytes in the neg table to avoid
* spurious parity errors.
*/
for (target = 0; target < AHD_NUM_TARGETS; target++) {
ahd_outb(ahd, NEGOADDR, target);
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
ahd_outb(ahd, ANNEXDAT, 0);
}
}
for (target = 0; target < AHD_NUM_TARGETS; target++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
target, &tstate);
ahd_compile_devinfo(&devinfo, ahd->our_id,
target, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
}
ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
#ifdef NEEDS_MORE_TESTING
/*
* Always enable abort on incoming L_Qs if this feature is
* supported. We use this to catch invalid SCB references.
*/
if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
ahd_outb(ahd, LQCTL1, ABORTPENDING);
else
#endif
ahd_outb(ahd, LQCTL1, 0);
/* All of our queues are empty */
ahd->qoutfifonext = 0;
ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
for (i = 0; i < AHD_QOUT_SIZE; i++)
ahd->qoutfifo[i].valid_tag = 0;
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
ahd->qinfifonext = 0;
for (i = 0; i < AHD_QIN_SIZE; i++)
ahd->qinfifo[i] = SCB_LIST_NULL;
if ((ahd->features & AHD_TARGETMODE) != 0) {
/* All target command blocks start out invalid. */
for (i = 0; i < AHD_TMODE_CMDS; i++)
ahd->targetcmds[i].cmd_valid = 0;
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
ahd->tqinfifonext = 1;
ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
}
/* Initialize Scratch Ram. */
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_outb(ahd, SEQ_FLAGS2, 0);
/* We don't have any waiting selections */
ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
for (i = 0; i < AHD_NUM_TARGETS; i++)
ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
/*
* Nobody is waiting to be DMAed into the QOUTFIFO.
*/
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
/*
* The Freeze Count is 0.
*/
ahd->qfreeze_cnt = 0;
ahd_outw(ahd, QFREEZE_COUNT, 0);
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
/*
* Tell the sequencer where it can find our arrays in memory.
*/
busaddr = ahd->shared_data_map.busaddr;
ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
/*
* Setup the allowed SCSI Sequences based on operational mode.
* If we are a target, we'll enable select in operations once
* we've had a lun enabled.
*/
scsiseq_template = ENAUTOATNP;
if ((ahd->flags & AHD_INITIATORROLE) != 0)
scsiseq_template |= ENRSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
/* There are no busy SCBs yet. */
for (target = 0; target < AHD_NUM_TARGETS; target++) {
int lun;
for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
}
/*
* Initialize the group code to command length table.
* Vendor Unique codes are set to 0 so we only capture
* the first byte of the cdb. These can be overridden
* when target mode is enabled.
*/
ahd_outb(ahd, CMDSIZE_TABLE, 5);
ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
/* Tell the sequencer of our initial queue positions */
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
ahd->qinfifonext = 0;
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
ahd_set_hescb_qoff(ahd, 0);
ahd_set_snscb_qoff(ahd, 0);
ahd_set_sescb_qoff(ahd, 0);
ahd_set_sdscb_qoff(ahd, 0);
/*
* Tell the sequencer which SCB will be the next one it receives.
*/
busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
/*
* Default to coalescing disabled.
*/
ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
ahd_outw(ahd, CMDS_PENDING, 0);
ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
ahd->int_coalescing_maxcmds,
ahd->int_coalescing_mincmds);
ahd_enable_coalescing(ahd, FALSE);
ahd_loadseq(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
/*
* Setup default device and controller settings.
* This should only be called if our probe has
* determined that no configuration data is available.
*/
int
ahd_default_config(struct ahd_softc *ahd)
{
int targ;
ahd->our_id = 7;
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
printf("%s: unable to allocate ahd_tmode_tstate. "
"Failing attach\n", ahd_name(ahd));
return (ENOMEM);
}
for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t target_mask;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
targ, &tstate);
/*
* We support SPC2 and SPI4.
*/
tinfo->user.protocol_version = 4;
tinfo->user.transport_version = 4;
target_mask = 0x01 << targ;
ahd->user_discenable |= target_mask;
tstate->discenable |= target_mask;
ahd->user_tagenable |= target_mask;
#ifdef AHD_FORCE_160
tinfo->user.period = AHD_SYNCRATE_DT;
#else
tinfo->user.period = AHD_SYNCRATE_160;
#endif
tinfo->user.offset = MAX_OFFSET;
tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
| MSG_EXT_PPR_WR_FLOW
| MSG_EXT_PPR_HOLD_MCS
| MSG_EXT_PPR_IU_REQ
| MSG_EXT_PPR_QAS_REQ
| MSG_EXT_PPR_DT_REQ;
if ((ahd->features & AHD_RTI) != 0)
tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* Start out Async/Narrow/Untagged and with
* conservative protocol support.
*/
tinfo->goal.protocol_version = 2;
tinfo->goal.transport_version = 2;
tinfo->curr.protocol_version = 2;
tinfo->curr.transport_version = 2;
ahd_compile_devinfo(&devinfo, ahd->our_id,
targ, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
tstate->tagenable &= ~target_mask;
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
}
return (0);
}
/*
* Parse device configuration information.
*/
int
ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
{
int targ;
int max_targ;
max_targ = sc->max_targets & CFMAXTARG;
ahd->our_id = sc->brtime_id & CFSCSIID;
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
printf("%s: unable to allocate ahd_tmode_tstate. "
"Failing attach\n", ahd_name(ahd));
return (ENOMEM);
}
for (targ = 0; targ < max_targ; targ++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_transinfo *user_tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t target_mask;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
targ, &tstate);
user_tinfo = &tinfo->user;
/*
* We support SPC2 and SPI4.
*/
tinfo->user.protocol_version = 4;
tinfo->user.transport_version = 4;
target_mask = 0x01 << targ;
ahd->user_discenable &= ~target_mask;
tstate->discenable &= ~target_mask;
ahd->user_tagenable &= ~target_mask;
if (sc->device_flags[targ] & CFDISC) {
tstate->discenable |= target_mask;
ahd->user_discenable |= target_mask;
ahd->user_tagenable |= target_mask;
} else {
/*
* Cannot be packetized without disconnection.
*/
sc->device_flags[targ] &= ~CFPACKETIZED;
}
user_tinfo->ppr_options = 0;
user_tinfo->period = (sc->device_flags[targ] & CFXFER);
if (user_tinfo->period < CFXFER_ASYNC) {
if (user_tinfo->period <= AHD_PERIOD_10MHz)
user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
user_tinfo->offset = MAX_OFFSET;
} else {
user_tinfo->offset = 0;
user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
}
#ifdef AHD_FORCE_160
if (user_tinfo->period <= AHD_SYNCRATE_160)
user_tinfo->period = AHD_SYNCRATE_DT;
#endif
if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
| MSG_EXT_PPR_WR_FLOW
| MSG_EXT_PPR_HOLD_MCS
| MSG_EXT_PPR_IU_REQ;
if ((ahd->features & AHD_RTI) != 0)
user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
}
if ((sc->device_flags[targ] & CFQAS) != 0)
user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
if ((sc->device_flags[targ] & CFWIDEB) != 0)
user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
else
user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
user_tinfo->period, user_tinfo->offset,
user_tinfo->ppr_options);
#endif
/*
* Start out Async/Narrow/Untagged and with
* conservative protocol support.
*/
tstate->tagenable &= ~target_mask;
tinfo->goal.protocol_version = 2;
tinfo->goal.transport_version = 2;
tinfo->curr.protocol_version = 2;
tinfo->curr.transport_version = 2;
ahd_compile_devinfo(&devinfo, ahd->our_id,
targ, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
}
ahd->flags &= ~AHD_SPCHK_ENB_A;
if (sc->bios_control & CFSPARITY)
ahd->flags |= AHD_SPCHK_ENB_A;
ahd->flags &= ~AHD_RESET_BUS_A;
if (sc->bios_control & CFRESETB)
ahd->flags |= AHD_RESET_BUS_A;
ahd->flags &= ~AHD_EXTENDED_TRANS_A;
if (sc->bios_control & CFEXTEND)
ahd->flags |= AHD_EXTENDED_TRANS_A;
ahd->flags &= ~AHD_BIOS_ENABLED;
if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
ahd->flags |= AHD_BIOS_ENABLED;
ahd->flags &= ~AHD_STPWLEVEL_A;
if ((sc->adapter_control & CFSTPWLEVEL) != 0)
ahd->flags |= AHD_STPWLEVEL_A;
return (0);
}
/*
* Parse device configuration information.
*/
int
ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
{
int error;
error = ahd_verify_vpd_cksum(vpd);
if (error == 0)
return (EINVAL);
if ((vpd->bios_flags & VPDBOOTHOST) != 0)
ahd->flags |= AHD_BOOT_CHANNEL;
return (0);
}
void
ahd_intr_enable(struct ahd_softc *ahd, int enable)
{
u_int hcntrl;
hcntrl = ahd_inb(ahd, HCNTRL);
hcntrl &= ~INTEN;
ahd->pause &= ~INTEN;
ahd->unpause &= ~INTEN;
if (enable) {
hcntrl |= INTEN;
ahd->pause |= INTEN;
ahd->unpause |= INTEN;
}
ahd_outb(ahd, HCNTRL, hcntrl);
}
void
ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
u_int mincmds)
{
if (timer > AHD_TIMER_MAX_US)
timer = AHD_TIMER_MAX_US;
ahd->int_coalescing_timer = timer;
if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
ahd->int_coalescing_maxcmds = maxcmds;
ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
}
void
ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
{
ahd->hs_mailbox &= ~ENINT_COALESCE;
if (enable)
ahd->hs_mailbox |= ENINT_COALESCE;
ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
ahd_flush_device_writes(ahd);
ahd_run_qoutfifo(ahd);
}
/*
* Ensure that the card is paused in a location
* outside of all critical sections and that all
* pending work is completed prior to returning.
* This routine should only be called from outside
* an interrupt context.
*/
void
ahd_pause_and_flushwork(struct ahd_softc *ahd)
{
u_int intstat;
u_int maxloops;
maxloops = 1000;
ahd->flags |= AHD_ALL_INTERRUPTS;
ahd_pause(ahd);
/*
* Freeze the outgoing selections. We do this only
* until we are safely paused without further selections
* pending.
*/
ahd->qfreeze_cnt--;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
do {
ahd_unpause(ahd);
/*
* Give the sequencer some time to service
* any active selections.
*/
aic_delay(500);
ahd_intr(ahd);
ahd_pause(ahd);
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0) {
ahd_clear_critical_section(ahd);
intstat = ahd_inb(ahd, INTSTAT);
}
} while (--maxloops
&& (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
&& ((intstat & INT_PEND) != 0
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
|| (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
if (maxloops == 0) {
printf("Infinite interrupt loop, INTSTAT = %x",
ahd_inb(ahd, INTSTAT));
}
ahd->qfreeze_cnt++;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
ahd_flush_qoutfifo(ahd);
ahd_platform_flushwork(ahd);
ahd->flags &= ~AHD_ALL_INTERRUPTS;
}
int
ahd_suspend(struct ahd_softc *ahd)
{
ahd_pause_and_flushwork(ahd);
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
ahd_unpause(ahd);
return (EBUSY);
}
ahd_shutdown(ahd);
return (0);
}
int
ahd_resume(struct ahd_softc *ahd)
{
ahd_reset(ahd, /*reinit*/TRUE);
ahd_intr_enable(ahd, TRUE);
ahd_restart(ahd);
return (0);
}
/************************** Busy Target Table *********************************/
/*
* Set SCBPTR to the SCB that contains the busy
* table entry for TCL. Return the offset into
* the SCB that contains the entry for TCL.
* saved_scbid is dereferenced and set to the
* scbid that should be restored once manipualtion
* of the TCL entry is complete.
*/
static __inline u_int
ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
{
/*
* Index to the SCB that contains the busy entry.
*/
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
*saved_scbid = ahd_get_scbptr(ahd);
ahd_set_scbptr(ahd, TCL_LUN(tcl)
| ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
/*
* And now calculate the SCB offset to the entry.
* Each entry is 2 bytes wide, hence the
* multiplication by 2.
*/
return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
}
/*
* Return the untagged transaction id for a given target/channel lun.
*/
u_int
ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
{
u_int scbid;
u_int scb_offset;
u_int saved_scbptr;
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
scbid = ahd_inw_scbram(ahd, scb_offset);
ahd_set_scbptr(ahd, saved_scbptr);
return (scbid);
}
void
ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
{
u_int scb_offset;
u_int saved_scbptr;
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
ahd_outw(ahd, scb_offset, scbid);
ahd_set_scbptr(ahd, saved_scbptr);
}
/************************** SCB and SCB queue management **********************/
int
ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
char channel, int lun, u_int tag, role_t role)
{
int targ = SCB_GET_TARGET(ahd, scb);
char chan = SCB_GET_CHANNEL(ahd, scb);
int slun = SCB_GET_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
if (match != 0)
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
if (match != 0) {
#ifdef AHD_TARGET_MODE
int group;
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
if (role == ROLE_INITIATOR) {
match = (group != XPT_FC_GROUP_TMODE)
&& ((tag == SCB_GET_TAG(scb))
|| (tag == SCB_LIST_NULL));
} else if (role == ROLE_TARGET) {
match = (group == XPT_FC_GROUP_TMODE)
&& ((tag == scb->io_ctx->csio.tag_id)
|| (tag == SCB_LIST_NULL));
}
#else /* !AHD_TARGET_MODE */
match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
#endif /* AHD_TARGET_MODE */
}
return match;
}
void
ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
{
int target;
char channel;
int lun;
target = SCB_GET_TARGET(ahd, scb);
lun = SCB_GET_LUN(scb);
channel = SCB_GET_CHANNEL(ahd, scb);
ahd_search_qinfifo(ahd, target, channel, lun,
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahd_platform_freeze_devq(ahd, scb);
}
void
ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
{
struct scb *prev_scb;
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
prev_scb = NULL;
if (ahd_qinfifo_count(ahd) != 0) {
u_int prev_tag;
u_int prev_pos;
prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
prev_tag = ahd->qinfifo[prev_pos];
prev_scb = ahd_lookup_scb(ahd, prev_tag);
}
ahd_qinfifo_requeue(ahd, prev_scb, scb);
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
ahd_restore_modes(ahd, saved_modes);
}
static void
ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
struct scb *scb)
{
if (prev_scb == NULL) {
uint32_t busaddr;
busaddr = aic_le32toh(scb->hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
} else {
prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
ahd_sync_scb(ahd, prev_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
static int
ahd_qinfifo_count(struct ahd_softc *ahd)
{
u_int qinpos;
u_int wrap_qinpos;
u_int wrap_qinfifonext;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
qinpos = ahd_get_snscb_qoff(ahd);
wrap_qinpos = AHD_QIN_WRAP(qinpos);
wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
if (wrap_qinfifonext >= wrap_qinpos)
return (wrap_qinfifonext - wrap_qinpos);
else
return (wrap_qinfifonext
+ NUM_ELEMENTS(ahd->qinfifo) - wrap_qinpos);
}
void
ahd_reset_cmds_pending(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int pending_cmds;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Don't count any commands as outstanding that the
* sequencer has already marked for completion.
*/
ahd_flush_qoutfifo(ahd);
pending_cmds = 0;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
pending_cmds++;
}
ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
ahd_restore_modes(ahd, saved_modes);
ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
}
void
ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
{
cam_status ostat;
cam_status cstat;
ostat = aic_get_transaction_status(scb);
if (ostat == CAM_REQ_INPROG)
aic_set_transaction_status(scb, status);
cstat = aic_get_transaction_status(scb);
if (cstat != CAM_REQ_CMP)
aic_freeze_scb(scb);
ahd_done(ahd, scb);
}
int
ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status,
ahd_search_action action)
{
struct scb *scb;
struct scb *mk_msg_scb;
struct scb *prev_scb;
ahd_mode_state saved_modes;
u_int qinstart;
u_int qinpos;
u_int qintail;
u_int tid_next;
u_int tid_prev;
u_int scbid;
u_int seq_flags2;
u_int savedscbptr;
uint32_t busaddr;
int found;
int targets;
/* Must be in CCHAN mode */
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Halt any pending SCB DMA. The sequencer will reinitiate
* this dma if the qinfifo is not empty once we unpause.
*/
if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
== (CCARREN|CCSCBEN|CCSCBDIR)) {
ahd_outb(ahd, CCSCBCTL,
ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
;
}
/* Determine sequencer's position in the qinfifo. */
qintail = AHD_QIN_WRAP(ahd->qinfifonext);
qinstart = ahd_get_snscb_qoff(ahd);
qinpos = AHD_QIN_WRAP(qinstart);
found = 0;
prev_scb = NULL;
if (action == SEARCH_PRINT) {
printf("qinstart = %d qinfifonext = %d\nQINFIFO:",
qinstart, ahd->qinfifonext);
}
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahd->qinfifonext = qinstart;
busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
while (qinpos != qintail) {
scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
if (scb == NULL) {
printf("qinpos = %d, SCB index = %d\n",
qinpos, ahd->qinfifo[qinpos]);
panic("Loop 1\n");
}
if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB in qinfifo\n");
ahd_done_with_status(ahd, scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
break;
case SEARCH_PRINT:
printf(" 0x%x", ahd->qinfifo[qinpos]);
/* FALLTHROUGH */
case SEARCH_COUNT:
ahd_qinfifo_requeue(ahd, prev_scb, scb);
prev_scb = scb;
break;
}
} else {
ahd_qinfifo_requeue(ahd, prev_scb, scb);
prev_scb = scb;
}
qinpos = AHD_QIN_WRAP(qinpos+1);
}
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
if (action == SEARCH_PRINT)
printf("\nWAITING_TID_QUEUES:\n");
/*
* Search waiting for selection lists. We traverse the
* list of "their ids" waiting for selection and, if
* appropriate, traverse the SCBs of each "their id"
* looking for matches.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
mk_msg_scb = ahd_lookup_scb(ahd, scbid);
} else
mk_msg_scb = NULL;
savedscbptr = ahd_get_scbptr(ahd);
tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
tid_prev = SCB_LIST_NULL;
targets = 0;
for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
u_int tid_head;
u_int tid_tail;
targets++;
if (targets > AHD_NUM_TARGETS)
panic("TID LIST LOOP");
if (scbid >= ahd->scb_data.numscbs) {
printf("%s: Waiting TID List inconsistency. "
"SCB index == 0x%x, yet numscbs == 0x%x.",
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
ahd_dump_card_state(ahd);
panic("for safety");
}
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: SCB = 0x%x Not Active!\n",
ahd_name(ahd), scbid);
panic("Waiting TID List traversal\n");
}
ahd_set_scbptr(ahd, scbid);
tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
tid_prev = scbid;
continue;
}
/*
* We found a list of scbs that needs to be searched.
*/
if (action == SEARCH_PRINT)
printf(" %d ( ", SCB_GET_TARGET(ahd, scb));
tid_head = scbid;
found += ahd_search_scb_list(ahd, target, channel,
lun, tag, role, status,
action, &tid_head, &tid_tail,
SCB_GET_TARGET(ahd, scb));
/*
* Check any MK_MESSAGE SCB that is still waiting to
* enter this target's waiting for selection queue.
*/
if (mk_msg_scb != NULL
&& ahd_match_scb(ahd, mk_msg_scb, target, channel,
lun, tag, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB pending MK_MSG\n");
ahd_done_with_status(ahd, mk_msg_scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
{
u_int tail_offset;
printf("Removing MK_MSG scb\n");
/*
* Reset our tail to the tail of the
* main per-target list.
*/
tail_offset = WAITING_SCB_TAILS
+ (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
ahd_outw(ahd, tail_offset, tid_tail);
seq_flags2 &= ~PENDING_MK_MESSAGE;
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
ahd_outw(ahd, CMDS_PENDING,
ahd_inw(ahd, CMDS_PENDING)-1);
mk_msg_scb = NULL;
break;
}
case SEARCH_PRINT:
printf(" 0x%x", SCB_GET_TAG(scb));
/* FALLTHROUGH */
case SEARCH_COUNT:
break;
}
}
if (mk_msg_scb != NULL
&& SCBID_IS_NULL(tid_head)
&& ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
SCB_LIST_NULL, ROLE_UNKNOWN)) {
/*
* When removing the last SCB for a target
* queue with a pending MK_MESSAGE scb, we
* must queue the MK_MESSAGE scb.
*/
printf("Queueing mk_msg_scb\n");
tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
seq_flags2 &= ~PENDING_MK_MESSAGE;
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
mk_msg_scb = NULL;
}
if (tid_head != scbid)
ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
if (!SCBID_IS_NULL(tid_head))
tid_prev = tid_head;
if (action == SEARCH_PRINT)
printf(")\n");
}
/* Restore saved state. */
ahd_set_scbptr(ahd, savedscbptr);
ahd_restore_modes(ahd, saved_modes);
return (found);
}
static int
ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status,
ahd_search_action action, u_int *list_head,
u_int *list_tail, u_int tid)
{
struct scb *scb;
u_int scbid;
u_int next;
u_int prev;
int found;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
found = 0;
prev = SCB_LIST_NULL;
next = *list_head;
*list_tail = SCB_LIST_NULL;
for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
if (scbid >= ahd->scb_data.numscbs) {
printf("%s:SCB List inconsistency. "
"SCB == 0x%x, yet numscbs == 0x%x.",
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
ahd_dump_card_state(ahd);
panic("for safety");
}
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: SCB = %d Not Active!\n",
ahd_name(ahd), scbid);
panic("Waiting List traversal\n");
}
ahd_set_scbptr(ahd, scbid);
*list_tail = scbid;
next = ahd_inw_scbram(ahd, SCB_NEXT);
if (ahd_match_scb(ahd, scb, target, channel,
lun, SCB_LIST_NULL, role) == 0) {
prev = scbid;
continue;
}
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB in Waiting List\n");
ahd_done_with_status(ahd, scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
ahd_rem_wscb(ahd, scbid, prev, next, tid);
*list_tail = prev;
if (SCBID_IS_NULL(prev))
*list_head = next;
break;
case SEARCH_PRINT:
printf("0x%x ", scbid);
case SEARCH_COUNT:
prev = scbid;
break;
}
if (found > AHD_SCB_MAX)
panic("SCB LIST LOOP");
}
if (action == SEARCH_COMPLETE
|| action == SEARCH_REMOVE)
ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
return (found);
}
static void
ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
u_int tid_cur, u_int tid_next)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (SCBID_IS_NULL(tid_cur)) {
/* Bypass current TID list */
if (SCBID_IS_NULL(tid_prev)) {
ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
} else {
ahd_set_scbptr(ahd, tid_prev);
ahd_outw(ahd, SCB_NEXT2, tid_next);
}
if (SCBID_IS_NULL(tid_next))
ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
} else {
/* Stitch through tid_cur */
if (SCBID_IS_NULL(tid_prev)) {
ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
} else {
ahd_set_scbptr(ahd, tid_prev);
ahd_outw(ahd, SCB_NEXT2, tid_cur);
}
ahd_set_scbptr(ahd, tid_cur);
ahd_outw(ahd, SCB_NEXT2, tid_next);
if (SCBID_IS_NULL(tid_next))
ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
}
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int
ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
u_int prev, u_int next, u_int tid)
{
u_int tail_offset;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (!SCBID_IS_NULL(prev)) {
ahd_set_scbptr(ahd, prev);
ahd_outw(ahd, SCB_NEXT, next);
}
/*
* SCBs that have MK_MESSAGE set in them may
* cause the tail pointer to be updated without
* setting the next pointer of the previous tail.
* Only clear the tail if the removed SCB was
* the tail.
*/
tail_offset = WAITING_SCB_TAILS + (2 * tid);
if (SCBID_IS_NULL(next)
&& ahd_inw(ahd, tail_offset) == scbid)
ahd_outw(ahd, tail_offset, prev);
ahd_add_scb_to_free_list(ahd, scbid);
return (next);
}
/*
* Add the SCB as selected by SCBPTR onto the on chip list of
* free hardware SCBs. This list is empty/unused if we are not
* performing SCB paging.
*/
static void
ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
{
/* XXX Need some other mechanism to designate "free". */
/*
* Invalidate the tag so that our abort
* routines don't think it's active.
ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
*/
}
/******************************** Error Handling ******************************/
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
int
ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status)
{
struct scb *scbp;
struct scb *scbp_next;
u_int i, j;
u_int maxtarget;
u_int minlun;
u_int maxlun;
int found;
ahd_mode_state saved_modes;
/* restore this when we're done */
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
/*
* Clean out the busy target table for any untagged commands.
*/
i = 0;
maxtarget = 16;
if (target != CAM_TARGET_WILDCARD) {
i = target;
if (channel == 'B')
i += 8;
maxtarget = i + 1;
}
if (lun == CAM_LUN_WILDCARD) {
minlun = 0;
maxlun = AHD_NUM_LUNS_NONPKT;
} else if (lun >= AHD_NUM_LUNS_NONPKT) {
minlun = maxlun = 0;
} else {
minlun = lun;
maxlun = lun + 1;
}
if (role != ROLE_TARGET) {
for (;i < maxtarget; i++) {
for (j = minlun;j < maxlun; j++) {
u_int scbid;
u_int tcl;
tcl = BUILD_TCL_RAW(i, 'A', j);
scbid = ahd_find_busy_tcl(ahd, tcl);
scbp = ahd_lookup_scb(ahd, scbid);
if (scbp == NULL
|| ahd_match_scb(ahd, scbp, target, channel,
lun, tag, role) == 0)
continue;
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
}
}
}
/*
* Don't abort commands that have already completed,
* but haven't quite made it up to the host yet.
*/
ahd_flush_qoutfifo(ahd);
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occurred.
*/
scbp_next = LIST_FIRST(&ahd->pending_scbs);
while (scbp_next != NULL) {
scbp = scbp_next;
scbp_next = LIST_NEXT(scbp, pending_links);
if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
cam_status ostat;
ostat = aic_get_transaction_status(scbp);
if (ostat == CAM_REQ_INPROG)
aic_set_transaction_status(scbp, status);
if (aic_get_transaction_status(scbp) != CAM_REQ_CMP)
aic_freeze_scb(scbp);
if ((scbp->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB on pending list\n");
ahd_done(ahd, scbp);
found++;
}
}
ahd_restore_modes(ahd, saved_modes);
ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
ahd->flags |= AHD_UPDATE_PEND_CMDS;
return found;
}
static void
ahd_reset_current_bus(struct ahd_softc *ahd)
{
uint8_t scsiseq;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
ahd_flush_device_writes(ahd);
aic_delay(AHD_BUSRESET_DELAY);
/* Turn off the bus reset */
ahd_outb(ahd, SCSISEQ0, scsiseq);
ahd_flush_device_writes(ahd);
aic_delay(AHD_BUSRESET_DELAY);
if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
/*
* 2A Razor #474
* Certain chip state is not cleared for
* SCSI bus resets that we initiate, so
* we must reset the chip.
*/
ahd_reset(ahd, /*reinit*/TRUE);
ahd_intr_enable(ahd, /*enable*/TRUE);
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
}
ahd_clear_intstat(ahd);
}
int
ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
{
struct ahd_devinfo devinfo;
u_int initiator;
u_int target;
u_int max_scsiid;
int found;
u_int fifo;
u_int next_fifo;
ahd->pending_device = NULL;
ahd_compile_devinfo(&devinfo,
CAM_TARGET_WILDCARD,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahd_pause(ahd);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
ahd_run_tqinfifo(ahd, /*paused*/TRUE);
}
#endif
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/*
* Disable selections so no automatic hardware
* functions will modify chip state.
*/
ahd_outb(ahd, SCSISEQ0, 0);
ahd_outb(ahd, SCSISEQ1, 0);
/*
* Safely shut down our DMA engines. Always start with
* the FIFO that is not currently active (if any are
* actively connected).
*/
next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
if (next_fifo > CURRFIFO_1)
/* If disconneced, arbitrarily start with FIFO1. */
next_fifo = fifo = 0;
do {
next_fifo ^= CURRFIFO_1;
ahd_set_modes(ahd, next_fifo, next_fifo);
ahd_outb(ahd, DFCNTRL,
ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
aic_delay(10);
/*
* Set CURRFIFO to the now inactive channel.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, DFFSTAT, next_fifo);
} while (next_fifo != fifo);
/*
* Reset the bus if we are initiating this reset
*/
ahd_clear_msg_state(ahd);
ahd_outb(ahd, SIMODE1,
ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
if (initiate_reset)
ahd_reset_current_bus(ahd);
ahd_clear_intstat(ahd);
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
/*
* Cleanup anything left in the FIFOs.
*/
ahd_clear_fifo(ahd, 0);
ahd_clear_fifo(ahd, 1);
/*
* Revert to async/narrow transfers until we renegotiate.
*/
max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
for (target = 0; target <= max_scsiid; target++) {
if (ahd->enabled_targets[target] == NULL)
continue;
for (initiator = 0; initiator <= max_scsiid; initiator++) {
struct ahd_devinfo devinfo;
ahd_compile_devinfo(&devinfo, target, initiator,
CAM_LUN_WILDCARD,
'A', ROLE_UNKNOWN);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_CUR, /*paused*/TRUE);
}
}
#ifdef AHD_TARGET_MODE
max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
/*
* Send an immediate notify ccb to all target more peripheral
* drivers affected by this action.
*/
for (target = 0; target <= max_scsiid; target++) {
struct ahd_tmode_tstate* tstate;
u_int lun;
tstate = ahd->enabled_targets[target];
if (tstate == NULL)
continue;
for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[lun];
if (lstate == NULL)
continue;
ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
EVENT_TYPE_BUS_RESET, /*arg*/0);
ahd_send_lstate_events(ahd, lstate);
}
}
#endif
/* Notify the XPT that a bus reset occurred */
ahd_send_async(ahd, devinfo.channel, CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD, AC_BUS_RESET, NULL);
ahd_restart(ahd);
/*
* Freeze the SIMQ until our poller can determine that
* the bus reset has really gone away. We set the initial
* timer to 0 to have the check performed as soon as possible
* from the timer context.
*/
if ((ahd->flags & AHD_RESET_POLL_ACTIVE) == 0) {
ahd->flags |= AHD_RESET_POLL_ACTIVE;
aic_freeze_simq(ahd);
aic_timer_reset(&ahd->reset_timer, 0, ahd_reset_poll, ahd);
}
return (found);
}
#define AHD_RESET_POLL_MS 1
static void
ahd_reset_poll(void *arg)
{
struct ahd_softc *ahd = (struct ahd_softc *)arg;
u_int scsiseq1;
ahd_lock(ahd);
ahd_pause(ahd);
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
if ((ahd_inb(ahd, SSTAT1) & SCSIRSTI) != 0) {
aic_timer_reset(&ahd->reset_timer, AHD_RESET_POLL_MS,
ahd_reset_poll, ahd);
ahd_unpause(ahd);
ahd_unlock(ahd);
return;
}
/* Reset is now low. Complete chip reinitialization. */
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
ahd_outb(ahd, SCSISEQ1, scsiseq1 & (ENSELI|ENRSELI|ENAUTOATNP));
ahd_unpause(ahd);
ahd->flags &= ~AHD_RESET_POLL_ACTIVE;
aic_release_simq(ahd);
ahd_unlock(ahd);
}
/**************************** Statistics Processing ***************************/
static void
ahd_stat_timer(void *arg)
{
struct ahd_softc *ahd = (struct ahd_softc *)arg;
int enint_coal;
ahd_lock(ahd);
enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
enint_coal |= ENINT_COALESCE;
else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
enint_coal &= ~ENINT_COALESCE;
if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
ahd_enable_coalescing(ahd, enint_coal);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
printf("%s: Interrupt coalescing "
"now %sabled. Cmds %d\n",
ahd_name(ahd),
(enint_coal & ENINT_COALESCE) ? "en" : "dis",
ahd->cmdcmplt_total);
#endif
}
ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
ahd_stat_timer, ahd);
ahd_unlock(ahd);
}
/****************************** Status Processing *****************************/
void
ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
{
if (scb->hscb->shared_data.istatus.scsi_status != 0) {
ahd_handle_scsi_status(ahd, scb);
} else {
ahd_calc_residual(ahd, scb);
ahd_done(ahd, scb);
}
}
void
ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *hscb;
int paused;
/*
* The sequencer freezes its select-out queue
* anytime a SCSI status error occurs. We must
* handle the error and increment our qfreeze count
* to allow the sequencer to continue. We don't
* bother clearing critical sections here since all
* operations are on data structures that the sequencer
* is not touching once the queue is frozen.
*/
hscb = scb->hscb;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
/* Freeze the queue until the client sees the error. */
ahd_freeze_devq(ahd, scb);
aic_freeze_scb(scb);
ahd->qfreeze_cnt++;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
if (paused == 0)
ahd_unpause(ahd);
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and perform
* a normal command completion.
*/
scb->flags &= ~SCB_SENSE;
aic_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
ahd_done(ahd, scb);
return;
}
aic_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
aic_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
switch (hscb->shared_data.istatus.scsi_status) {
case STATUS_PKT_SENSE:
{
struct scsi_status_iu_header *siu;
ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
siu = (struct scsi_status_iu_header *)scb->sense_data;
aic_set_scsi_status(scb, siu->status);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
ahd_print_path(ahd, scb);
printf("SCB 0x%x Received PKT Status of 0x%x\n",
SCB_GET_TAG(scb), siu->status);
printf("\tflags = 0x%x, sense len = 0x%x, "
"pktfail = 0x%x\n",
siu->flags, scsi_4btoul(siu->sense_length),
scsi_4btoul(siu->pkt_failures_length));
}
#endif
if ((siu->flags & SIU_RSPVALID) != 0) {
ahd_print_path(ahd, scb);
if (scsi_4btoul(siu->pkt_failures_length) < 4) {
printf("Unable to parse pkt_failures\n");
} else {
switch (SIU_PKTFAIL_CODE(siu)) {
case SIU_PFC_NONE:
printf("No packet failure found\n");
break;
case SIU_PFC_CIU_FIELDS_INVALID:
printf("Invalid Command IU Field\n");
break;
case SIU_PFC_TMF_NOT_SUPPORTED:
printf("TMF not supportd\n");
break;
case SIU_PFC_TMF_FAILED:
printf("TMF failed\n");
break;
case SIU_PFC_INVALID_TYPE_CODE:
printf("Invalid L_Q Type code\n");
break;
case SIU_PFC_ILLEGAL_REQUEST:
printf("Illegal request\n");
default:
break;
}
}
if (siu->status == SCSI_STATUS_OK)
aic_set_transaction_status(scb,
CAM_REQ_CMP_ERR);
}
if ((siu->flags & SIU_SNSVALID) != 0) {
scb->flags |= SCB_PKT_SENSE;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SENSE) != 0)
printf("Sense data available\n");
#endif
}
ahd_done(ahd, scb);
break;
}
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
{
struct ahd_devinfo devinfo;
struct ahd_dma_seg *sg;
struct scsi_sense *sc;
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
struct ahd_transinfo *tinfo;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_SENSE) {
ahd_print_path(ahd, scb);
printf("SCB %d: requests Check Status\n",
SCB_GET_TAG(scb));
}
#endif
if (aic_perform_autosense(scb) == 0)
break;
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb),
SCB_GET_CHANNEL(ahd, scb),
ROLE_INITIATOR);
targ_info = ahd_fetch_transinfo(ahd,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
tinfo = &targ_info->curr;
sg = scb->sg_list;
sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
/*
* Save off the residual if there is one.
*/
ahd_update_residual(ahd, scb);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_SENSE) {
ahd_print_path(ahd, scb);
printf("Sending Sense\n");
}
#endif
scb->sg_count = 0;
sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
aic_get_sense_bufsize(ahd, scb),
/*last*/TRUE);
sc->opcode = REQUEST_SENSE;
sc->byte2 = 0;
if (tinfo->protocol_version <= SCSI_REV_2
&& SCB_GET_LUN(scb) < 8)
sc->byte2 = SCB_GET_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = aic_get_sense_bufsize(ahd, scb);
sc->control = 0;
/*
* We can't allow the target to disconnect.
* This will be an untagged transaction and
* having the target disconnect will make this
* transaction indestinguishable from outstanding
* tagged transactions.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate. Unit attention
* errors will be reported before any data
* phases occur.
*/
if (aic_get_residual(scb) == aic_get_transfer_length(scb)) {
ahd_update_neg_request(ahd, &devinfo,
tstate, targ_info,
AHD_NEG_IF_NON_ASYNC);
}
if (tstate->auto_negotiate & devinfo.target_mask) {
hscb->control |= MK_MESSAGE;
scb->flags &=
~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
scb->flags |= SCB_AUTO_NEGOTIATE;
}
hscb->cdb_len = sizeof(*sc);
ahd_setup_data_scb(ahd, scb);
scb->flags |= SCB_SENSE;
ahd_queue_scb(ahd, scb);
/*
* Ensure we have enough time to actually
* retrieve the sense, but only schedule
* the timer if we are not in recovery or
* this is a recovery SCB that is allowed
* to have an active timer.
*/
if (ahd->scb_data.recovery_scbs == 0
|| (scb->flags & SCB_RECOVERY_SCB) != 0)
aic_scb_timer_reset(scb, 5 * 1000);
break;
}
case SCSI_STATUS_OK:
printf("%s: Interrupted for staus of 0???\n",
ahd_name(ahd));
/* FALLTHROUGH */
default:
ahd_done(ahd, scb);
break;
}
}
/*
* Calculate the residual for a just completed SCB.
*/
void
ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *hscb;
struct initiator_status *spkt;
uint32_t sgptr;
uint32_t resid_sgptr;
uint32_t resid;
/*
* 5 cases.
* 1) No residual.
* SG_STATUS_VALID clear in sgptr.
* 2) Transferless command
* 3) Never performed any transfers.
* sgptr has SG_FULL_RESID set.
* 4) No residual but target did not
* save data pointers after the
* last transfer, so sgptr was
* never updated.
* 5) We have a partial residual.
* Use residual_sgptr to determine
* where we are.
*/
hscb = scb->hscb;
sgptr = aic_le32toh(hscb->sgptr);
if ((sgptr & SG_STATUS_VALID) == 0)
/* Case 1 */
return;
sgptr &= ~SG_STATUS_VALID;
if ((sgptr & SG_LIST_NULL) != 0)
/* Case 2 */
return;
/*
* Residual fields are the same in both
* target and initiator status packets,
* so we can always use the initiator fields
* regardless of the role for this SCB.
*/
spkt = &hscb->shared_data.istatus;
resid_sgptr = aic_le32toh(spkt->residual_sgptr);
if ((sgptr & SG_FULL_RESID) != 0) {
/* Case 3 */
resid = aic_get_transfer_length(scb);
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
/* Case 4 */
return;
} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
ahd_print_path(ahd, scb);
printf("data overrun detected Tag == 0x%x.\n",
SCB_GET_TAG(scb));
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
aic_freeze_scb(scb);
return;
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
/* NOTREACHED */
} else {
struct ahd_dma_seg *sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = aic_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
/* The residual sg_ptr always points to the next sg */
sg--;
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
while ((aic_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
sg++;
resid += aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
}
}
if ((scb->flags & SCB_SENSE) == 0)
aic_set_residual(scb, resid);
else
aic_set_sense_residual(scb, resid);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0) {
ahd_print_path(ahd, scb);
printf("Handled %sResidual of %d bytes\n",
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
}
#endif
}
/******************************* Target Mode **********************************/
#ifdef AHD_TARGET_MODE
/*
* Add a target mode event to this lun's queue
*/
static void
ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
u_int initiator_id, u_int event_type, u_int event_arg)
{
struct ahd_tmode_event *event;
int pending;
xpt_freeze_devq(lstate->path, /*count*/1);
if (lstate->event_w_idx >= lstate->event_r_idx)
pending = lstate->event_w_idx - lstate->event_r_idx;
else
pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
- (lstate->event_r_idx - lstate->event_w_idx);
if (event_type == EVENT_TYPE_BUS_RESET
|| event_type == MSG_BUS_DEV_RESET) {
/*
* Any earlier events are irrelevant, so reset our buffer.
* This has the effect of allowing us to deal with reset
* floods (an external device holding down the reset line)
* without losing the event that is really interesting.
*/
lstate->event_r_idx = 0;
lstate->event_w_idx = 0;
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
}
if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
xpt_print_path(lstate->path);
printf("immediate event %x:%x lost\n",
lstate->event_buffer[lstate->event_r_idx].event_type,
lstate->event_buffer[lstate->event_r_idx].event_arg);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
}
event = &lstate->event_buffer[lstate->event_w_idx];
event->initiator_id = initiator_id;
event->event_type = event_type;
event->event_arg = event_arg;
lstate->event_w_idx++;
if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_w_idx = 0;
}
/*
* Send any target mode events queued up waiting
* for immediate notify resources.
*/
void
ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
{
struct ccb_hdr *ccbh;
struct ccb_immed_notify *inot;
while (lstate->event_r_idx != lstate->event_w_idx
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
struct ahd_tmode_event *event;
event = &lstate->event_buffer[lstate->event_r_idx];
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
inot = (struct ccb_immed_notify *)ccbh;
switch (event->event_type) {
case EVENT_TYPE_BUS_RESET:
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
break;
default:
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
inot->message_args[0] = event->event_type;
inot->message_args[1] = event->event_arg;
break;
}
inot->initiator_id = event->initiator_id;
inot->sense_len = 0;
xpt_done((union ccb *)inot);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
}
}
#endif
/******************** Sequencer Program Patching/Download *********************/
#ifdef AHD_DUMP_SEQ
void
ahd_dumpseq(struct ahd_softc* ahd)
{
int i;
int max_prog;
max_prog = 2048;
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahd_outw(ahd, PRGMCNT, 0);
for (i = 0; i < max_prog; i++) {
uint8_t ins_bytes[4];
ahd_insb(ahd, SEQRAM, ins_bytes, 4);
printf("0x%08x\n", ins_bytes[0] << 24
| ins_bytes[1] << 16
| ins_bytes[2] << 8
| ins_bytes[3]);
}
}
#endif
static void
ahd_loadseq(struct ahd_softc *ahd)
{
struct cs cs_table[num_critical_sections];
u_int begin_set[num_critical_sections];
u_int end_set[num_critical_sections];
struct patch *cur_patch;
u_int cs_count;
u_int cur_cs;
u_int i;
int downloaded;
u_int skip_addr;
u_int sg_prefetch_cnt;
u_int sg_prefetch_cnt_limit;
u_int sg_prefetch_align;
u_int sg_size;
u_int cacheline_mask;
uint8_t download_consts[DOWNLOAD_CONST_COUNT];
if (bootverbose)
printf("%s: Downloading Sequencer Program...",
ahd_name(ahd));
#if DOWNLOAD_CONST_COUNT != 8
#error "Download Const Mismatch"
#endif
/*
* Start out with 0 critical sections
* that apply to this firmware load.
*/
cs_count = 0;
cur_cs = 0;
memset(begin_set, 0, sizeof(begin_set));
memset(end_set, 0, sizeof(end_set));
/*
* Setup downloadable constant table.
*
* The computation for the S/G prefetch variables is
* a bit complicated. We would like to always fetch
* in terms of cachelined sized increments. However,
* if the cacheline is not an even multiple of the
* SG element size or is larger than our SG RAM, using
* just the cache size might leave us with only a portion
* of an SG element at the tail of a prefetch. If the
* cacheline is larger than our S/G prefetch buffer less
* the size of an SG element, we may round down to a cacheline
* that doesn't contain any or all of the S/G of interest
* within the bounds of our S/G ram. Provide variables to
* the sequencer that will allow it to handle these edge
* cases.
*/
/* Start by aligning to the nearest cacheline. */
sg_prefetch_align = ahd->pci_cachesize;
if (sg_prefetch_align == 0)
sg_prefetch_align = 8;
/* Round down to the nearest power of 2. */
while (powerof2(sg_prefetch_align) == 0)
sg_prefetch_align--;
cacheline_mask = sg_prefetch_align - 1;
/*
* If the cacheline boundary is greater than half our prefetch RAM
* we risk not being able to fetch even a single complete S/G
* segment if we align to that boundary.
*/
if (sg_prefetch_align > CCSGADDR_MAX/2)
sg_prefetch_align = CCSGADDR_MAX/2;
/* Start by fetching a single cacheline. */
sg_prefetch_cnt = sg_prefetch_align;
/*
* Increment the prefetch count by cachelines until
* at least one S/G element will fit.
*/
sg_size = sizeof(struct ahd_dma_seg);
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
sg_size = sizeof(struct ahd_dma64_seg);
while (sg_prefetch_cnt < sg_size)
sg_prefetch_cnt += sg_prefetch_align;
/*
* If the cacheline is not an even multiple of
* the S/G size, we may only get a partial S/G when
* we align. Add a cacheline if this is the case.
*/
if ((sg_prefetch_align % sg_size) != 0
&& (sg_prefetch_cnt < CCSGADDR_MAX))
sg_prefetch_cnt += sg_prefetch_align;
/*
* Lastly, compute a value that the sequencer can use
* to determine if the remainder of the CCSGRAM buffer
* has a full S/G element in it.
*/
sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
download_consts[SG_SIZEOF] = sg_size;
download_consts[PKT_OVERRUN_BUFOFFSET] =
(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
download_consts[CACHELINE_MASK] = cacheline_mask;
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahd_outw(ahd, PRGMCNT, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
/*
* Move through the CS table until we find a CS
* that might apply to this instruction.
*/
for (; cur_cs < num_critical_sections; cur_cs++) {
if (critical_sections[cur_cs].end <= i) {
if (begin_set[cs_count] == TRUE
&& end_set[cs_count] == FALSE) {
cs_table[cs_count].end = downloaded;
end_set[cs_count] = TRUE;
cs_count++;
}
continue;
}
if (critical_sections[cur_cs].begin <= i
&& begin_set[cs_count] == FALSE) {
cs_table[cs_count].begin = downloaded;
begin_set[cs_count] = TRUE;
}
break;
}
ahd_download_instr(ahd, i, download_consts);
downloaded++;
}
ahd->num_critical_sections = cs_count;
if (cs_count != 0) {
cs_count *= sizeof(struct cs);
ahd->critical_sections = malloc(cs_count, M_DEVBUF, M_NOWAIT);
if (ahd->critical_sections == NULL)
panic("ahd_loadseq: Could not malloc");
memcpy(ahd->critical_sections, cs_table, cs_count);
}
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
if (bootverbose) {
printf(" %d instructions downloaded\n", downloaded);
printf("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
}
}
static int
ahd_check_patch(struct ahd_softc *ahd, struct patch **start_patch,
u_int start_instr, u_int *skip_addr)
{
struct patch *cur_patch;
struct patch *last_patch;
u_int num_patches;
num_patches = sizeof(patches)/sizeof(struct patch);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahd) == 0) {
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our intruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static u_int
ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
{
struct patch *cur_patch;
int address_offset;
u_int skip_addr;
u_int i;
address_offset = 0;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = MIN(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
return (address - address_offset);
}
static void
ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
u_int opcode;
/*
* The firmware is always compiled into a little endian format.
*/
instr.integer = aic_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
fmt3_ins = &instr.format3;
fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
/* FALLTHROUGH */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* FALLTHROUGH */
case AIC_OP_ROL:
{
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
uint32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
/* The sequencer is a little endian cpu */
instr.integer = aic_htole32(instr.integer);
ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
break;
}
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
static int
ahd_probe_stack_size(struct ahd_softc *ahd)
{
int last_probe;
last_probe = 0;
while (1) {
int i;
/*
* We avoid using 0 as a pattern to avoid
* confusion if the stack implementation
* "back-fills" with zeros when "poping'
* entries.
*/
for (i = 1; i <= last_probe+1; i++) {
ahd_outb(ahd, STACK, i & 0xFF);
ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
}
/* Verify */
for (i = last_probe+1; i > 0; i--) {
u_int stack_entry;
stack_entry = ahd_inb(ahd, STACK)
|(ahd_inb(ahd, STACK) << 8);
if (stack_entry != i)
goto sized;
}
last_probe++;
}
sized:
return (last_probe);
}
void
ahd_dump_all_cards_state(void)
{
struct ahd_softc *list_ahd;
TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
ahd_dump_card_state(list_ahd);
}
}
int
ahd_print_register(ahd_reg_parse_entry_t *table, u_int num_entries,
const char *name, u_int address, u_int value,
u_int *cur_column, u_int wrap_point)
{
int printed;
u_int printed_mask;
u_int dummy_column;
if (cur_column == NULL) {
dummy_column = 0;
cur_column = &dummy_column;
}
if (cur_column != NULL && *cur_column >= wrap_point) {
printf("\n");
*cur_column = 0;
}
printed = printf("%s[0x%x]", name, value);
if (table == NULL) {
printed += printf(" ");
*cur_column += printed;
return (printed);
}
printed_mask = 0;
while (printed_mask != 0xFF) {
int entry;
for (entry = 0; entry < num_entries; entry++) {
if (((value & table[entry].mask)
!= table[entry].value)
|| ((printed_mask & table[entry].mask)
== table[entry].mask))
continue;
printed += printf("%s%s",
printed_mask == 0 ? ":(" : "|",
table[entry].name);
printed_mask |= table[entry].mask;
break;
}
if (entry >= num_entries)
break;
}
if (printed_mask != 0)
printed += printf(") ");
else
printed += printf(" ");
*cur_column += printed;
return (printed);
}
void
ahd_dump_card_state(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int dffstat;
int paused;
u_int scb_index;
u_int saved_scb_index;
u_int cur_col;
int i;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
printf(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
"%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
ahd_name(ahd),
ahd_inw(ahd, CURADDR),
ahd_build_mode_state(ahd, ahd->saved_src_mode,
ahd->saved_dst_mode));
if (paused)
printf("Card was paused\n");
if (ahd_check_cmdcmpltqueues(ahd))
printf("Completions are pending\n");
/*
* Mode independent registers.
*/
cur_col = 0;
ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
&cur_col, 50);
ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
&cur_col, 50);
ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
printf("\n");
printf("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
"CURRSCB 0x%x NEXTSCB 0x%x\n",
ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
ahd_inw(ahd, NEXTSCB));
cur_col = 0;
/* QINFIFO */
ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
saved_scb_index = ahd_get_scbptr(ahd);
printf("Pending list:");
i = 0;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
if (i++ > AHD_SCB_MAX)
break;
cur_col = printf("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
&cur_col, 60);
ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
&cur_col, 60);
}
printf("\nTotal %d\n", i);
printf("Kernel Free SCB lists: ");
i = 0;
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
struct scb *list_scb;
printf("\n COLIDX[%d]: ", AHD_GET_SCB_COL_IDX(ahd, scb));
list_scb = scb;
do {
printf("%d ", SCB_GET_TAG(list_scb));
list_scb = LIST_NEXT(list_scb, collision_links);
} while (list_scb && i++ < AHD_SCB_MAX);
}
printf("\n Any Device: ");
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
if (i++ > AHD_SCB_MAX)
break;
printf("%d ", SCB_GET_TAG(scb));
}
printf("\n");
printf("Sequencer Complete DMA-inprog list: ");
scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer DMA-Up and Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer On QFreeze and Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
ahd_set_scbptr(ahd, saved_scb_index);
dffstat = ahd_inb(ahd, DFFSTAT);
for (i = 0; i < 2; i++) {
#ifdef AHD_DEBUG
struct scb *fifo_scb;
#endif
u_int fifo_scbptr;
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
fifo_scbptr = ahd_get_scbptr(ahd);
printf("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
ahd_name(ahd), i,
(dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
cur_col = 0;
ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
&cur_col, 50);
ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
if (cur_col > 50) {
printf("\n");
cur_col = 0;
}
cur_col += printf("SHADDR = 0x%x%x, SHCNT = 0x%x ",
ahd_inl(ahd, SHADDR+4),
ahd_inl(ahd, SHADDR),
(ahd_inb(ahd, SHCNT)
| (ahd_inb(ahd, SHCNT + 1) << 8)
| (ahd_inb(ahd, SHCNT + 2) << 16)));
if (cur_col > 50) {
printf("\n");
cur_col = 0;
}
cur_col += printf("HADDR = 0x%x%x, HCNT = 0x%x ",
ahd_inl(ahd, HADDR+4),
ahd_inl(ahd, HADDR),
(ahd_inb(ahd, HCNT)
| (ahd_inb(ahd, HCNT + 1) << 8)
| (ahd_inb(ahd, HCNT + 2) << 16)));
ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SG) != 0) {
fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
if (fifo_scb != NULL)
ahd_dump_sglist(fifo_scb);
}
#endif
}
printf("\nLQIN: ");
for (i = 0; i < 20; i++)
printf("0x%x ", ahd_inb(ahd, LQIN + i));
printf("\n");
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
printf("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
ahd_inb(ahd, OPTIONMODE));
printf("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
ahd_inb(ahd, MAXCMDCNT));
printf("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
ahd_inb(ahd, SAVED_LUN));
ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
printf("\n");
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
cur_col = 0;
ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
printf("\n");
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
printf("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
ahd_inw(ahd, DINDEX));
printf("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
ahd_name(ahd), ahd_get_scbptr(ahd),
ahd_inw_scbram(ahd, SCB_NEXT),
ahd_inw_scbram(ahd, SCB_NEXT2));
printf("CDB %x %x %x %x %x %x\n",
ahd_inb_scbram(ahd, SCB_CDB_STORE),
ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
printf("STACK:");
for (i = 0; i < ahd->stack_size; i++) {
ahd->saved_stack[i] =
ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
printf(" 0x%x", ahd->saved_stack[i]);
}
for (i = ahd->stack_size-1; i >= 0; i--) {
ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
}
printf("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
ahd_platform_dump_card_state(ahd);
ahd_restore_modes(ahd, saved_modes);
if (paused == 0)
ahd_unpause(ahd);
}
void
ahd_dump_scbs(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
u_int saved_scb_index;
int i;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_scb_index = ahd_get_scbptr(ahd);
for (i = 0; i < AHD_SCB_MAX; i++) {
ahd_set_scbptr(ahd, i);
printf("%3d", i);
printf("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
ahd_inb_scbram(ahd, SCB_CONTROL),
ahd_inb_scbram(ahd, SCB_SCSIID),
ahd_inw_scbram(ahd, SCB_NEXT),
ahd_inw_scbram(ahd, SCB_NEXT2),
ahd_inl_scbram(ahd, SCB_SGPTR),
ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
}
printf("\n");
ahd_set_scbptr(ahd, saved_scb_index);
ahd_restore_modes(ahd, saved_modes);
}
/*************************** Timeout Handling *********************************/
void
ahd_timeout(struct scb *scb)
{
struct ahd_softc *ahd;
ahd = scb->ahd_softc;
if ((scb->flags & SCB_ACTIVE) != 0) {
if ((scb->flags & SCB_TIMEDOUT) == 0) {
LIST_INSERT_HEAD(&ahd->timedout_scbs, scb,
timedout_links);
scb->flags |= SCB_TIMEDOUT;
}
ahd_wakeup_recovery_thread(ahd);
}
}
/*
* ahd_recover_commands determines if any of the commands that have currently
* timedout are the root cause for this timeout. Innocent commands are given
* a new timeout while we wait for the command executing on the bus to timeout.
* This routine is invoked from a thread context so we are allowed to sleep.
* Our lock is not held on entry.
*/
void
ahd_recover_commands(struct ahd_softc *ahd)
{
struct scb *scb;
struct scb *active_scb;
int found;
int was_paused;
u_int active_scbptr;
u_int last_phase;
/*
* Pause the controller and manually flush any
* commands that have just completed but that our
* interrupt handler has yet to see.
*/
was_paused = ahd_is_paused(ahd);
printf("%s: Recovery Initiated - Card was %spaused\n", ahd_name(ahd),
was_paused ? "" : "not ");
ahd_dump_card_state(ahd);
ahd_pause_and_flushwork(ahd);
if (LIST_EMPTY(&ahd->timedout_scbs) != 0) {
/*
* The timedout commands have already
* completed. This typically means
* that either the timeout value was on
* the hairy edge of what the device
* requires or - more likely - interrupts
* are not happening.
*/
printf("%s: Timedout SCBs already complete. "
"Interrupts may not be functioning.\n", ahd_name(ahd));
ahd_unpause(ahd);
return;
}
/*
* Determine identity of SCB acting on the bus.
* This test only catches non-packetized transactions.
* Due to the fleeting nature of packetized operations,
* we can't easily determine that a packetized operation
* is on the bus.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
last_phase = ahd_inb(ahd, LASTPHASE);
active_scbptr = ahd_get_scbptr(ahd);
active_scb = NULL;
if (last_phase != P_BUSFREE
|| (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0)
active_scb = ahd_lookup_scb(ahd, active_scbptr);
while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
int target;
int lun;
char channel;
target = SCB_GET_TARGET(ahd, scb);
channel = SCB_GET_CHANNEL(ahd, scb);
lun = SCB_GET_LUN(scb);
ahd_print_path(ahd, scb);
printf("SCB %d - timed out\n", SCB_GET_TAG(scb));
if (scb->flags & (SCB_DEVICE_RESET|SCB_ABORT)) {
/*
* Been down this road before.
* Do a full bus reset.
*/
aic_set_transaction_status(scb, CAM_CMD_TIMEOUT);
bus_reset:
found = ahd_reset_channel(ahd, channel,
/*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahd_name(ahd), channel,
found);
continue;
}
/*
* Remove the command from the timedout list in
* preparation for requeing it.
*/
LIST_REMOVE(scb, timedout_links);
scb->flags &= ~SCB_TIMEDOUT;
if (active_scb != NULL) {
if (active_scb != scb) {
/*
* If the active SCB is not us, assume that
* the active SCB has a longer timeout than
* the timedout SCB, and wait for the active
* SCB to timeout. As a safeguard, only
* allow this deferral to continue if some
* untimed-out command is outstanding.
*/
if (ahd_other_scb_timeout(ahd, scb,
active_scb) == 0)
goto bus_reset;
continue;
}
/*
* We're active on the bus, so assert ATN
* and hope that the target responds.
*/
ahd_set_recoveryscb(ahd, active_scb);
active_scb->flags |= SCB_RECOVERY_SCB|SCB_DEVICE_RESET;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
ahd_print_path(ahd, active_scb);
printf("BDR message in message buffer\n");
aic_scb_timer_reset(scb, 2 * 1000);
break;
} else if (last_phase != P_BUSFREE
&& ahd_inb(ahd, SCSIPHASE) == 0) {
/*
* SCB is not identified, there
* is no pending REQ, and the sequencer
* has not seen a busfree. Looks like
* a stuck connection waiting to
* go busfree. Reset the bus.
*/
printf("%s: Connection stuck awaiting busfree or "
"Identify Msg.\n", ahd_name(ahd));
goto bus_reset;
} else if (ahd_search_qinfifo(ahd, target, channel, lun,
SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_COUNT) > 0) {
/*
* We haven't even gone out on the bus
* yet, so the timeout must be due to
* some other command. Reset the timer
* and go on.
*/
if (ahd_other_scb_timeout(ahd, scb, NULL) == 0)
goto bus_reset;
} else {
/*
* This SCB is for a disconnected transaction
* and we haven't found a better candidate on
* the bus to explain this timeout.
*/
ahd_set_recoveryscb(ahd, scb);
/*
* Actually re-queue this SCB in an attempt
* to select the device before it reconnects.
* In either case (selection or reselection),
* we will now issue a target reset to the
* timed-out device.
*/
scb->flags |= SCB_DEVICE_RESET;
scb->hscb->cdb_len = 0;
scb->hscb->task_attribute = 0;
scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
if ((scb->flags & SCB_PACKETIZED) != 0) {
/*
* Mark the SCB has having an outstanding
* task management function. Should the command
* complete normally before the task management
* function can be sent, the host will be
* notified to abort our requeued SCB.
*/
ahd_outb(ahd, SCB_TASK_MANAGEMENT,
scb->hscb->task_management);
} else {
/*
* If non-packetized, set the MK_MESSAGE control
* bit indicating that we desire to send a
* message. We also set the disconnected flag
* since there is no guarantee that our SCB
* control byte matches the version on the
* card. We don't want the sequencer to abort
* the command thinking an unsolicited
* reselection occurred.
*/
scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
/*
* The sequencer will never re-reference the
* in-core SCB. To make sure we are notified
* during reslection, set the MK_MESSAGE flag in
* the card's copy of the SCB.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
}
/*
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahd_search_qinfifo(ahd, target, channel, lun,
SCB_LIST_NULL, ROLE_INITIATOR,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahd_qinfifo_requeue_tail(ahd, scb);
ahd_set_scbptr(ahd, active_scbptr);
ahd_print_path(ahd, scb);
printf("Queuing a BDR SCB\n");
aic_scb_timer_reset(scb, 2 * 1000);
break;
}
}
/*
* Any remaining SCBs were not the "culprit", so remove
* them from the timeout list. The timer for these commands
* will be reset once the recovery SCB completes.
*/
while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
LIST_REMOVE(scb, timedout_links);
scb->flags &= ~SCB_TIMEDOUT;
}
ahd_unpause(ahd);
}
/*
* Re-schedule a timeout for the passed in SCB if we determine that some
* other SCB is in the process of recovery or an SCB with a longer
* timeout is still pending. Limit our search to just "other_scb"
* if it is non-NULL.
*/
static int
ahd_other_scb_timeout(struct ahd_softc *ahd, struct scb *scb,
struct scb *other_scb)
{
u_int newtimeout;
int found;
ahd_print_path(ahd, scb);
printf("Other SCB Timeout%s",
(scb->flags & SCB_OTHERTCL_TIMEOUT) != 0
? " again\n" : "\n");
newtimeout = aic_get_timeout(scb);
scb->flags |= SCB_OTHERTCL_TIMEOUT;
found = 0;
if (other_scb != NULL) {
if ((other_scb->flags
& (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
|| (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
found++;
newtimeout = MAX(aic_get_timeout(other_scb),
newtimeout);
}
} else {
LIST_FOREACH(other_scb, &ahd->pending_scbs, pending_links) {
if ((other_scb->flags
& (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
|| (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
found++;
newtimeout = MAX(aic_get_timeout(other_scb),
newtimeout);
}
}
}
if (found != 0)
aic_scb_timer_reset(scb, newtimeout);
else {
ahd_print_path(ahd, scb);
printf("No other SCB worth waiting for...\n");
}
return (found != 0);
}
/**************************** Flexport Logic **********************************/
/*
* Read count 16bit words from 16bit word address start_addr from the
* SEEPROM attached to the controller, into buf, using the controller's
* SEEPROM reading state machine. Optionally treat the data as a byte
* stream in terms of byte order.
*/
int
ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
u_int start_addr, u_int count, int bytestream)
{
u_int cur_addr;
u_int end_addr;
int error;
/*
* If we never make it through the loop even once,
* we were passed invalid arguments.
*/
error = EINVAL;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
end_addr = start_addr + count;
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
ahd_outb(ahd, SEEADR, cur_addr);
ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
break;
if (bytestream != 0) {
uint8_t *bytestream_ptr;
bytestream_ptr = (uint8_t *)buf;
*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
} else {
/*
* ahd_inw() already handles machine byte order.
*/
*buf = ahd_inw(ahd, SEEDAT);
}
buf++;
}
return (error);
}
/*
* Write count 16bit words from buf, into SEEPROM attache to the
* controller starting at 16bit word address start_addr, using the
* controller's SEEPROM writing state machine.
*/
int
ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
u_int start_addr, u_int count)
{
u_int cur_addr;
u_int end_addr;
int error;
int retval;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
error = ENOENT;
/* Place the chip into write-enable mode */
ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
return (error);
/*
* Write the data. If we don't get throught the loop at
* least once, the arguments were invalid.
*/
retval = EINVAL;
end_addr = start_addr + count;
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
ahd_outw(ahd, SEEDAT, *buf++);
ahd_outb(ahd, SEEADR, cur_addr);
ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
retval = ahd_wait_seeprom(ahd);
if (retval)
break;
}
/*
* Disable writes.
*/
ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
return (error);
return (retval);
}
/*
* Wait ~100us for the serial eeprom to satisfy our request.
*/
int
ahd_wait_seeprom(struct ahd_softc *ahd)
{
int cnt;
cnt = 5000;
while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
aic_delay(5);
if (cnt == 0)
return (ETIMEDOUT);
return (0);
}
/*
* Validate the two checksums in the per_channel
* vital product data struct.
*/
int
ahd_verify_vpd_cksum(struct vpd_config *vpd)
{
int i;
int maxaddr;
uint32_t checksum;
uint8_t *vpdarray;
vpdarray = (uint8_t *)vpd;
maxaddr = offsetof(struct vpd_config, vpd_checksum);
checksum = 0;
for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
checksum = checksum + vpdarray[i];
if (checksum == 0
|| (-checksum & 0xFF) != vpd->vpd_checksum)
return (0);
checksum = 0;
maxaddr = offsetof(struct vpd_config, checksum);
for (i = offsetof(struct vpd_config, default_target_flags);
i < maxaddr; i++)
checksum = checksum + vpdarray[i];
if (checksum == 0
|| (-checksum & 0xFF) != vpd->checksum)
return (0);
return (1);
}
int
ahd_verify_cksum(struct seeprom_config *sc)
{
int i;
int maxaddr;
uint32_t checksum;
uint16_t *scarray;
maxaddr = (sizeof(*sc)/2) - 1;
checksum = 0;
scarray = (uint16_t *)sc;
for (i = 0; i < maxaddr; i++)
checksum = checksum + scarray[i];
if (checksum == 0
|| (checksum & 0xFFFF) != sc->checksum) {
return (0);
} else {
return (1);
}
}
int
ahd_acquire_seeprom(struct ahd_softc *ahd)
{
/*
* We should be able to determine the SEEPROM type
* from the flexport logic, but unfortunately not
* all implementations have this logic and there is
* no programatic method for determining if the logic
* is present.
*/
return (1);
#if 0
uint8_t seetype;
int error;
error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
if (error != 0
|| ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
return (0);
return (1);
#endif
}
void
ahd_release_seeprom(struct ahd_softc *ahd)
{
/* Currently a no-op */
}
int
ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
{
int error;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (addr > 7)
panic("ahd_write_flexport: address out of range");
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
error = ahd_wait_flexport(ahd);
if (error != 0)
return (error);
ahd_outb(ahd, BRDDAT, value);
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, 0);
ahd_flush_device_writes(ahd);
return (0);
}
int
ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
{
int error;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (addr > 7)
panic("ahd_read_flexport: address out of range");
ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
error = ahd_wait_flexport(ahd);
if (error != 0)
return (error);
*value = ahd_inb(ahd, BRDDAT);
ahd_outb(ahd, BRDCTL, 0);
ahd_flush_device_writes(ahd);
return (0);
}
/*
* Wait at most 2 seconds for flexport arbitration to succeed.
*/
int
ahd_wait_flexport(struct ahd_softc *ahd)
{
int cnt;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
cnt = 1000000 * 2 / 5;
while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
aic_delay(5);
if (cnt == 0)
return (ETIMEDOUT);
return (0);
}
/************************* Target Mode ****************************************/
#ifdef AHD_TARGET_MODE
cam_status
ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
struct ahd_tmode_tstate **tstate,
struct ahd_tmode_lstate **lstate,
int notfound_failure)
{
if ((ahd->features & AHD_TARGETMODE) == 0)
return (CAM_REQ_INVALID);
/*
* Handle the 'black hole' device that sucks up
* requests to unattached luns on enabled targets.
*/
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
*tstate = NULL;
*lstate = ahd->black_hole;
} else {
u_int max_id;
max_id = (ahd->features & AHD_WIDE) ? 15 : 7;
if (ccb->ccb_h.target_id > max_id)
return (CAM_TID_INVALID);
if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
return (CAM_LUN_INVALID);
*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
*lstate = NULL;
if (*tstate != NULL)
*lstate =
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
}
if (notfound_failure != 0 && *lstate == NULL)
return (CAM_PATH_INVALID);
return (CAM_REQ_CMP);
}
void
ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
{
#if NOT_YET
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
struct ccb_en_lun *cel;
cam_status status;
u_int target;
u_int lun;
u_int target_mask;
u_long s;
char channel;
status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
/*notfound_failure*/FALSE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
if ((ahd->features & AHD_MULTIROLE) != 0) {
u_int our_id;
our_id = ahd->our_id;
if (ccb->ccb_h.target_id != our_id) {
if ((ahd->features & AHD_MULTI_TID) != 0
&& (ahd->flags & AHD_INITIATORROLE) != 0) {
/*
* Only allow additional targets if
* the initiator role is disabled.
* The hardware cannot handle a re-select-in
* on the initiator id during a re-select-out
* on a different target id.
*/
status = CAM_TID_INVALID;
} else if ((ahd->flags & AHD_INITIATORROLE) != 0
|| ahd->enabled_luns > 0) {
/*
* Only allow our target id to change
* if the initiator role is not configured
* and there are no enabled luns which
* are attached to the currently registered
* scsi id.
*/
status = CAM_TID_INVALID;
}
}
}
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
/*
* We now have an id that is valid.
* If we aren't in target mode, switch modes.
*/
if ((ahd->flags & AHD_TARGETROLE) == 0
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
printf("Configuring Target Mode\n");
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
ccb->ccb_h.status = CAM_BUSY;
return;
}
ahd->flags |= AHD_TARGETROLE;
if ((ahd->features & AHD_MULTIROLE) == 0)
ahd->flags &= ~AHD_INITIATORROLE;
ahd_pause(ahd);
ahd_loadseq(ahd);
ahd_restart(ahd);
}
cel = &ccb->cel;
target = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
channel = SIM_CHANNEL(ahd, sim);
target_mask = 0x01 << target;
if (channel == 'B')
target_mask <<= 8;
if (cel->enable != 0) {
u_int scsiseq1;
/* Are we already enabled?? */
if (lstate != NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Lun already enabled\n");
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
return;
}
if (cel->grp6_len != 0
|| cel->grp7_len != 0) {
/*
* Don't (yet?) support vendor
* specific commands.
*/
ccb->ccb_h.status = CAM_REQ_INVALID;
printf("Non-zero Group Codes\n");
return;
}
/*
* Seems to be okay.
* Setup our data structures.
*/
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
tstate = ahd_alloc_tstate(ahd, target, channel);
if (tstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate tstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
}
lstate = malloc(sizeof(*lstate), M_DEVBUF, M_NOWAIT);
if (lstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate lstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
memset(lstate, 0, sizeof(*lstate));
status = xpt_create_path(&lstate->path, /*periph*/NULL,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path));
if (status != CAM_REQ_CMP) {
free(lstate, M_DEVBUF);
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate path\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
SLIST_INIT(&lstate->accept_tios);
SLIST_INIT(&lstate->immed_notifies);
ahd_pause(ahd);
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = lstate;
ahd->enabled_luns++;
if ((ahd->features & AHD_MULTI_TID) != 0) {
u_int targid_mask;
targid_mask = ahd_inw(ahd, TARGID);
targid_mask |= target_mask;
ahd_outw(ahd, TARGID, targid_mask);
ahd_update_scsiid(ahd, targid_mask);
} else {
u_int our_id;
char channel;
channel = SIM_CHANNEL(ahd, sim);
our_id = SIM_SCSI_ID(ahd, sim);
/*
* This can only happen if selections
* are not enabled
*/
if (target != our_id) {
u_int sblkctl;
char cur_channel;
int swap;
sblkctl = ahd_inb(ahd, SBLKCTL);
cur_channel = (sblkctl & SELBUSB)
? 'B' : 'A';
if ((ahd->features & AHD_TWIN) == 0)
cur_channel = 'A';
swap = cur_channel != channel;
ahd->our_id = target;
if (swap)
ahd_outb(ahd, SBLKCTL,
sblkctl ^ SELBUSB);
ahd_outb(ahd, SCSIID, target);
if (swap)
ahd_outb(ahd, SBLKCTL, sblkctl);
}
}
} else
ahd->black_hole = lstate;
/* Allow select-in operations */
if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
scsiseq1 |= ENSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
scsiseq1 |= ENSELI;
ahd_outb(ahd, SCSISEQ1, scsiseq1);
}
ahd_unpause(ahd);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print_path(ccb->ccb_h.path);
printf("Lun now enabled for target mode\n");
} else {
struct scb *scb;
int i, empty;
if (lstate == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
return;
}
ccb->ccb_h.status = CAM_REQ_CMP;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
struct ccb_hdr *ccbh;
ccbh = &scb->io_ctx->ccb_h;
if (ccbh->func_code == XPT_CONT_TARGET_IO
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
printf("CTIO pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
return;
}
}
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
printf("ATIOs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
printf("INOTs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
return;
}
xpt_print_path(ccb->ccb_h.path);
printf("Target mode disabled\n");
xpt_free_path(lstate->path);
free(lstate, M_DEVBUF);
ahd_pause(ahd);
/* Can we clean up the target too? */
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = NULL;
ahd->enabled_luns--;
for (empty = 1, i = 0; i < 8; i++)
if (tstate->enabled_luns[i] != NULL) {
empty = 0;
break;
}
if (empty) {
ahd_free_tstate(ahd, target, channel,
/*force*/FALSE);
if (ahd->features & AHD_MULTI_TID) {
u_int targid_mask;
targid_mask = ahd_inw(ahd, TARGID);
targid_mask &= ~target_mask;
ahd_outw(ahd, TARGID, targid_mask);
ahd_update_scsiid(ahd, targid_mask);
}
}
} else {
ahd->black_hole = NULL;
/*
* We can't allow selections without
* our black hole device.
*/
empty = TRUE;
}
if (ahd->enabled_luns == 0) {
/* Disallow select-in */
u_int scsiseq1;
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
scsiseq1 &= ~ENSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
scsiseq1 &= ~ENSELI;
ahd_outb(ahd, SCSISEQ1, scsiseq1);
if ((ahd->features & AHD_MULTIROLE) == 0) {
printf("Configuring Initiator Mode\n");
ahd->flags &= ~AHD_TARGETROLE;
ahd->flags |= AHD_INITIATORROLE;
ahd_pause(ahd);
ahd_loadseq(ahd);
ahd_restart(ahd);
/*
* Unpaused. The extra unpause
* that follows is harmless.
*/
}
}
ahd_unpause(ahd);
}
#endif
}
static void
ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
{
#if NOT_YET
u_int scsiid_mask;
u_int scsiid;
if ((ahd->features & AHD_MULTI_TID) == 0)
panic("ahd_update_scsiid called on non-multitid unit\n");
/*
* Since we will rely on the TARGID mask
* for selection enables, ensure that OID
* in SCSIID is not set to some other ID
* that we don't want to allow selections on.
*/
if ((ahd->features & AHD_ULTRA2) != 0)
scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
else
scsiid = ahd_inb(ahd, SCSIID);
scsiid_mask = 0x1 << (scsiid & OID);
if ((targid_mask & scsiid_mask) == 0) {
u_int our_id;
/* ffs counts from 1 */
our_id = ffs(targid_mask);
if (our_id == 0)
our_id = ahd->our_id;
else
our_id--;
scsiid &= TID;
scsiid |= our_id;
}
if ((ahd->features & AHD_ULTRA2) != 0)
ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
else
ahd_outb(ahd, SCSIID, scsiid);
#endif
}
void
ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
{
struct target_cmd *cmd;
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
/*
* Only advance through the queue if we
* have the resources to process the command.
*/
if (ahd_handle_target_cmd(ahd, cmd) != 0)
break;
cmd->cmd_valid = 0;
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
sizeof(struct target_cmd),
BUS_DMASYNC_PREREAD);
ahd->tqinfifonext++;
/*
* Lazily update our position in the target mode incoming
* command queue as seen by the sequencer.
*/
if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
u_int hs_mailbox;
hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
hs_mailbox &= ~HOST_TQINPOS;
hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
}
}
}
static int
ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
{
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
struct ccb_accept_tio *atio;
uint8_t *byte;
int initiator;
int target;
int lun;
initiator = SCSIID_TARGET(ahd, cmd->scsiid);
target = SCSIID_OUR_ID(cmd->scsiid);
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
byte = cmd->bytes;
tstate = ahd->enabled_targets[target];
lstate = NULL;
if (tstate != NULL)
lstate = tstate->enabled_luns[lun];
/*
* Commands for disabled luns go to the black hole driver.
*/
if (lstate == NULL)
lstate = ahd->black_hole;
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
if (atio == NULL) {
ahd->flags |= AHD_TQINFIFO_BLOCKED;
/*
* Wait for more ATIOs from the peripheral driver for this lun.
*/
return (1);
} else
ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
printf("Incoming command from %d for %d:%d%s\n",
initiator, target, lun,
lstate == ahd->black_hole ? "(Black Holed)" : "");
#endif
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
if (lstate == ahd->black_hole) {
/* Fill in the wildcards */
atio->ccb_h.target_id = target;
atio->ccb_h.target_lun = lun;
}
/*
* Package it up and send it off to
* whomever has this lun enabled.
*/
atio->sense_len = 0;
atio->init_id = initiator;
if (byte[0] != 0xFF) {
/* Tag was included */
atio->tag_action = *byte++;
atio->tag_id = *byte++;
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
} else {
atio->ccb_h.flags = 0;
}
byte++;
/* Okay. Now determine the cdb size based on the command code */
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
case 0:
atio->cdb_len = 6;
break;
case 1:
case 2:
atio->cdb_len = 10;
break;
case 4:
atio->cdb_len = 16;
break;
case 5:
atio->cdb_len = 12;
break;
case 3:
default:
/* Only copy the opcode. */
atio->cdb_len = 1;
printf("Reserved or VU command code type encountered\n");
break;
}
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
atio->ccb_h.status |= CAM_CDB_RECVD;
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
/*
* We weren't allowed to disconnect.
* We're hanging on the bus until a
* continue target I/O comes in response
* to this accept tio.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
printf("Received Immediate Command %d:%d:%d - %p\n",
initiator, target, lun, ahd->pending_device);
#endif
ahd->pending_device = lstate;
ahd_freeze_ccb((union ccb *)atio);
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
}
xpt_done((union ccb*)atio);
return (0);
}
#endif