freebsd-nq/share/man/man4/ipsec.4
George V. Neville-Neil 108b9d8319 Clean up some descriptions and remove ambiguities in the language.
Add explanations to the examples.

MFC after:	1 week
2006-02-14 13:02:00 +00:00

334 lines
9.7 KiB
Groff

.\" $KAME: ipsec.4,v 1.17 2001/06/27 15:25:10 itojun Exp $
.\"
.\" Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the project nor the names of its contributors
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd January 11, 2005
.Dt IPSEC 4
.Os
.Sh NAME
.Nm ipsec
.Nd IP security protocol
.Sh SYNOPSIS
.In sys/types.h
.In netinet/in.h
.In netinet6/ipsec.h
.Sh DESCRIPTION
.Nm
is a security protocol implemented within the Internet Protocol layer
of the TCP/IP stack.
.Nm
is defined for both IPv4 and IPv6
.Xr ( inet 4
and
.Xr inet6 4 ) .
.Nm
contains two protocols,
ESP, the encapsulated security payload protocol and
AH, the authentication header protocol.
ESP prevents unauthorized parties from reading the payload of an IP packet
by encrypting it using
secret key cryptography algorithms.
AH both authenticates guarantees the integrity of an IP packet
by attaching a cryptographic checksum computed using one-way hash functions.
.Nm
has operates in one of two modes: transport mode or tunnel mode.
Transport mode is used to protect peer-to-peer communication between end nodes.
Tunnel mode encapsulates IP packets within other IP packets
and is designed for security gateways such as VPN endpoints.
.\"
.Ss Kernel interface
.Nm
is controlled by a key management and policy engine,
that reside in the operating system kernel. Key management
is the process of associating keys with security associations, also
know as SAs. Policy management dictates when new security
associations created or destroyed.
.Pp
The key management engine can be accessed from userland by using
.Dv PF_KEY
sockets.
The
.Dv PF_KEY
socket API is defined in RFC2367.
.Pp
The policy engine is controlled by an extension to the
.Dv PF_KEY
API,
.Xr setsockopt 2
operations, and
.Xr sysctl 3
interface.
The kernel implements
an extended version of the
.Dv PF_KEY
interface, and allows the programmer to define IPsec policies
which are similar to the per-packet filters. The
.Xr setsockopt 2
interface is used to define per-socket behavior, and
.Xr sysctl 3
interface is used to define host-wide default behavior.
.Pp
The kernel code does not implement a dynamic encryption key exchange protocol
such as IKE
(Internet Key Exchange).
Key exchange protocols are beyond what is necessary in the kernel and
should be implemented as daemon processes which call the
.Nm APIs.
.\"
.Ss Policy management
IPSec policies can be managed in one of two ways, either by
configuring per-socket policies using the
.Xr setsockopt 2
system calls, or by configuring kernel level packet filter-based
policies using the
.Dv PF_KEY
interface, via the
.Xr setkey 8
command.
In either cases, IPsec policies must be specified using the syntax described in
.Xr ipsec_set_policy 3 .
Please refer to the
.Xr setkey 8
man page for instructionson its use.
.Pp
When setting policies using the
.Xr setkey 8
command the
.Dq Li default
policy is allowed for use with
.Xr setkey 8 .
By configuring policy to
.Li default ,
you can refer system-wide
.Xr sysctl 8
variable for default settings.
The following variables are available.
.Li 1
means
.Dq Li use ,
and
.Li 2
means
.Dq Li require
in the syntax.
.Bl -column net.inet6.ipsec6.esp_trans_deflev integerxxx
.It Sy "Name Type Changeable"
.It "net.inet.ipsec.esp_trans_deflev integer yes"
.It "net.inet.ipsec.esp_net_deflev integer yes"
.It "net.inet.ipsec.ah_trans_deflev integer yes"
.It "net.inet.ipsec.ah_net_deflev integer yes"
.It "net.inet6.ipsec6.esp_trans_deflev integer yes"
.It "net.inet6.ipsec6.esp_net_deflev integer yes"
.It "net.inet6.ipsec6.ah_trans_deflev integer yes"
.It "net.inet6.ipsec6.ah_net_deflev integer yes"
.El
.Pp
If kernel finds no matching policy system wide default value is applied.
System wide default is specified by the following
.Xr sysctl 8
variables.
.Li 0
means
.Dq Li discard
which asks the kernel to drop the packet.
.Li 1
means
.Dq Li none .
.Bl -column net.inet6.ipsec6.def_policy integerxxx
.It Sy "Name Type Changeable"
.It "net.inet.ipsec.def_policy integer yes"
.It "net.inet6.ipsec6.def_policy integer yes"
.El
.\"
.Ss Miscellaneous sysctl variables
The following variables are accessible via
.Xr sysctl 8 ,
for tweaking kernel IPsec behavior:
.Bl -column net.inet6.ipsec6.inbonud_call_ike integerxxx
.It Sy "Name Type Changeable"
.It "net.inet.ipsec.ah_cleartos integer yes"
.It "net.inet.ipsec.ah_offsetmask integer yes"
.It "net.inet.ipsec.dfbit integer yes"
.It "net.inet.ipsec.ecn integer yes"
.It "net.inet.ipsec.debug integer yes"
.It "net.inet6.ipsec6.ecn integer yes"
.It "net.inet6.ipsec6.debug integer yes"
.El
.Pp
The variables are interpreted as follows:
.Bl -tag -width 6n
.It Li ipsec.ah_cleartos
If set to non-zero, the kernel clears type-of-service field in the IPv4 header
during AH authentication data computation.
The variable is for tweaking AH behavior to interoperate with devices that
implement RFC1826 AH.
It should be set to non-zero
(clear the type-of-service field)
for RFC2402 conformance.
.It Li ipsec.ah_offsetmask
During AH authentication data computation, the kernel will include
16bit fragment offset field
(including flag bits)
in IPv4 header, after computing logical AND with the variable.
The variable is for tweaking AH behavior to interoperate with devices that
implement RFC1826 AH.
It should be set to zero
(clear the fragment offset field during computation)
for RFC2402 conformance.
.It Li ipsec.dfbit
The variable configures the kernel behavior on IPv4 IPsec tunnel encapsulation.
If set to 0, DF bit on the outer IPv4 header will be cleared.
1 means that the outer DF bit is set regardless from the inner DF bit.
2 means that the DF bit is copied from the inner header to the outer.
The variable is supplied to conform to RFC2401 chapter 6.1.
.It Li ipsec.ecn
If set to non-zero, IPv4 IPsec tunnel encapsulation/decapsulation behavior will
be friendly to ECN
(explicit congestion notification),
as documented in
.Li draft-ietf-ipsec-ecn-02.txt .
.Xr gif 4
talks more about the behavior.
.It Li ipsec.debug
If set to non-zero, debug messages will be generated via
.Xr syslog 3 .
.El
.Pp
Variables under
.Li net.inet6.ipsec6
tree has similar meaning as the
.Li net.inet.ipsec
counterpart.
.\"
.Sh PROTOCOLS
The
.Nm
protocol works like plug-in to
.Xr inet 4
and
.Xr inet6 4
protocols.
Therefore,
.Nm
supports most of the protocols defined upon those IP-layer protocols.
Some of the protocols, like
.Xr icmp 4
or
.Xr icmp6 4 ,
may behave differently with
.Nm .
This is because
.Nm
can prevent
.Xr icmp 4
or
.Xr icmp6 4
routines from looking into IP payload.
.\"
.Sh SEE ALSO
.Xr ioctl 2 ,
.Xr socket 2 ,
.Xr ipsec_set_policy 3 ,
.Xr icmp6 4 ,
.Xr intro 4 ,
.Xr ip6 4 ,
.Xr setkey 8 ,
.Xr sysctl 8
.\".Xr racoon 8
.Rs
.%A "S. Kent"
.%A "R. Atkinson"
.%T "IP Authentication Header"
.%O "RFC 2404"
.Re
.Rs
.%A "S. Kent"
.%A "R. Atkinson"
.%T "IP Encapsulating Security Payload (ESP)"
.%O "RFC 2406"
.Re
.Sh STANDARDS
.Rs
.%A Daniel L. McDonald
.%A Craig Metz
.%A Bao G. Phan
.%T "PF_KEY Key Management API, Version 2"
.%R RFC
.%N 2367
.Re
.Pp
.Rs
.%A "D. L. McDonald"
.%T "A Simple IP Security API Extension to BSD Sockets"
.%R internet draft
.%N "draft-mcdonald-simple-ipsec-api-03.txt"
.%O work in progress material
.Re
.Sh HISTORY
The implementation described herein appeared in WIDE/KAME IPv6/IPsec stack.
.Sh BUGS
The IPsec support is subject to change as the IPsec protocols develop.
.Pp
There is no single standard for policy engine API,
so the policy engine API described herein is just for KAME implementation.
.Pp
AH and tunnel mode encapsulation may not work as you might expect.
If you configure inbound
.Dq require
policy against AH tunnel or any IPsec encapsulating policy with AH
(like
.Dq Li esp/tunnel/A-B/use ah/transport/A-B/require ) ,
tunnelled packets will be rejected.
This is because we enforce policy check on inner packet on reception,
and AH authenticates encapsulating
(outer)
packet, not the encapsulated
(inner)
packet
(so for the receiving kernel there is no sign of authenticity).
The issue will be solved when we revamp our policy engine to keep all the
packet decapsulation history.
.Pp
Under certain condition,
truncated result may be raised from the kernel
against
.Dv SADB_DUMP
and
.Dv SADB_SPDDUMP
operation on
.Dv PF_KEY
socket.
This occurs if there are too many database entries in the kernel
and socket buffer for the
.Dv PF_KEY
socket is insufficient.
If you manipulate many IPsec key/policy database entries,
increase the size of socket buffer.