freebsd-nq/sys/conf/ldscript.powerpcspe
Justin Hibbits dc9b124d66 Create a new MACHINE_ARCH for Freescale PowerPC e500v2
Summary:
The Freescale e500v2 PowerPC core does not use a standard FPU.
Instead, it uses a Signal Processing Engine (SPE)--a DSP-style vector processor
unit, which doubles as a FPU.  The PowerPC SPE ABI is incompatible with the
stock powerpc ABI, so a new MACHINE_ARCH was created to deal with this.
Additionaly, the SPE opcodes overlap with Altivec, so these are mutually
exclusive.  Taking advantage of this fact, a new file, powerpc/booke/spe.c, was
created with the same function set as in powerpc/powerpc/altivec.c, so it
becomes effectively a drop-in replacement.  setjmp/longjmp were modified to save
the upper 32-bits of the now-64-bit GPRs (upper 32-bits are only accessible by
the SPE).

Note: This does _not_ support the SPE in the e500v1, as the e500v1 SPE does not
support double-precision floating point.

Also, without a new MACHINE_ARCH it would be impossible to provide binary
packages which utilize the SPE.

Additionally, no work has been done to support ports, work is needed for this.
This also means no newer gcc can yet be used.  However, gcc's powerpc support
has been refactored which would make adding a powerpcspe-freebsd target very
easy.

Test Plan:
This was lightly tested on a RouterBoard RB800 and an AmigaOne A1222
(P1022-based) board, compiled against the new ABI.  Base system utilities
(/bin/sh, /bin/ls, etc) still function appropriately, the system is able to boot
multiuser.

Reviewed By:	bdrewery, imp
Relnotes:	yes
Differential Revision:	https://reviews.freebsd.org/D5683
2016-10-22 01:57:15 +00:00

145 lines
4.4 KiB
Plaintext

/* $FreeBSD$ */
OUTPUT_FORMAT("elf32-powerpc-freebsd", "elf32-powerpc-freebsd",
"elf32-powerpc-freebsd")
OUTPUT_ARCH(powerpc)
ENTRY(__start)
SEARCH_DIR(/usr/lib);
PROVIDE (__stack = 0);
SECTIONS
{
/* Read-only sections, merged into text segment: */
. = kernbase + SIZEOF_HEADERS;
PROVIDE (begin = . - SIZEOF_HEADERS);
.text :
{
*(.text)
*(.stub)
/* .gnu.warning sections are handled specially by elf32.em. */
*(.gnu.warning)
*(.gnu.linkonce.t*)
} =0
_etext = .;
PROVIDE (etext = .);
.interp : { *(.interp) }
.hash : { *(.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rela.text :
{ *(.rela.text) *(.rela.gnu.linkonce.t*) }
.rela.data :
{ *(.rela.data) *(.rela.gnu.linkonce.d*) }
.rela.rodata :
{ *(.rela.rodata) *(.rela.gnu.linkonce.r*) }
.rela.got : { *(.rela.got) }
.rela.got1 : { *(.rela.got1) }
.rela.got2 : { *(.rela.got2) }
.rela.ctors : { *(.rela.ctors) }
.rela.dtors : { *(.rela.dtors) }
.rela.init : { *(.rela.init) }
.rela.fini : { *(.rela.fini) }
.rela.bss : { *(.rela.bss) }
.rela.plt : { *(.rela.plt) }
.rela.sdata : { *(.rela.sdata) }
.rela.sbss : { *(.rela.sbss) }
.rela.sdata2 : { *(.rela.sdata2) }
.rela.sbss2 : { *(.rela.sbss2) }
.init : { *(.init) } =0
.fini : { *(.fini) } =0
.rodata : { *(.rodata) *(.gnu.linkonce.r*) }
.rodata1 : { *(.rodata1) }
.sdata2 : { *(.sdata2) }
.sbss2 : { *(.sbss2) }
/* Adjust the address for the data segment to the next page up. */
. = ((. + 0x1000) & ~(0x1000 - 1));
.data :
{
*(.data)
*(.gnu.linkonce.d*)
CONSTRUCTORS
}
.data1 : { *(.data1) }
.got1 : { *(.got1) }
.dynamic : { *(.dynamic) }
/* Put .ctors and .dtors next to the .got2 section, so that the pointers
get relocated with -mrelocatable. Also put in the .fixup pointers.
The current compiler no longer needs this, but keep it around for 2.7.2 */
PROVIDE (_GOT2_START_ = .);
.got2 : { *(.got2) }
PROVIDE (__CTOR_LIST__ = .);
.ctors : { *(.ctors) }
PROVIDE (__CTOR_END__ = .);
PROVIDE (__DTOR_LIST__ = .);
.dtors : { *(.dtors) }
PROVIDE (__DTOR_END__ = .);
PROVIDE (_FIXUP_START_ = .);
.fixup : { *(.fixup) }
PROVIDE (_FIXUP_END_ = .);
PROVIDE (_GOT2_END_ = .);
PROVIDE (_GOT_START_ = .);
.got : { *(.got) }
.got.plt : { *(.got.plt) }
PROVIDE (_GOT_END_ = .);
/* We want the small data sections together, so single-instruction offsets
can access them all, and initialized data all before uninitialized, so
we can shorten the on-disk segment size. */
.sdata : { *(.sdata) }
_edata = .;
PROVIDE (edata = .);
.sbss :
{
PROVIDE (__sbss_start = .);
*(.sbss)
*(.scommon)
*(.dynsbss)
PROVIDE (__sbss_end = .);
}
.plt : { *(.plt) }
.bss :
{
PROVIDE (__bss_start = .);
*(.dynbss)
*(.bss)
*(COMMON)
}
_end = . ;
PROVIDE (end = .);
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* These must appear regardless of . */
}