freebsd-nq/sys/i386/xen/pmap.c
2009-04-01 17:06:28 +00:00

4277 lines
104 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
* Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
*/
/*-
* Copyright (c) 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Jake Burkholder,
* Safeport Network Services, and Network Associates Laboratories, the
* Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this
* module is called upon to provide software-use-only
* maps which may or may not be stored in the same
* form as hardware maps. These pseudo-maps are
* used to store intermediate results from copy
* operations to and from address spaces.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#define PMAP_DIAGNOSTIC
#include "opt_cpu.h"
#include "opt_pmap.h"
#include "opt_msgbuf.h"
#include "opt_smp.h"
#include "opt_xbox.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sx.h>
#include <sys/vmmeter.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#ifdef SMP
#include <sys/smp.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#ifdef XBOX
#include <machine/xbox.h>
#endif
#include <xen/interface/xen.h>
#include <xen/hypervisor.h>
#include <machine/xen/hypercall.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenfunc.h>
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
#define CPU_ENABLE_SSE
#endif
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#if defined(DIAGNOSTIC)
#define PMAP_DIAGNOSTIC
#endif
#if !defined(PMAP_DIAGNOSTIC)
#define PMAP_INLINE __gnu89_inline
#else
#define PMAP_INLINE
#endif
#define PV_STATS
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#else
#define PV_STAT(x) do { } while (0)
#endif
#define pa_index(pa) ((pa) >> PDRSHIFT)
#define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
/*
* Get PDEs and PTEs for user/kernel address space
*/
#define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
#define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
#define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
#define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
#define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
#define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
struct pmap kernel_pmap_store;
LIST_HEAD(pmaplist, pmap);
static struct pmaplist allpmaps;
static struct mtx allpmaps_lock;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
int pgeflag = 0; /* PG_G or-in */
int pseflag = 0; /* PG_PS or-in */
int nkpt;
vm_offset_t kernel_vm_end;
extern u_int32_t KERNend;
#ifdef PAE
pt_entry_t pg_nx;
#if !defined(XEN)
static uma_zone_t pdptzone;
#endif
#endif
/*
* Data for the pv entry allocation mechanism
*/
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
static struct md_page *pv_table;
static int shpgperproc = PMAP_SHPGPERPROC;
struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
int pv_maxchunks; /* How many chunks we have KVA for */
vm_offset_t pv_vafree; /* freelist stored in the PTE */
/*
* All those kernel PT submaps that BSD is so fond of
*/
struct sysmaps {
struct mtx lock;
pt_entry_t *CMAP1;
pt_entry_t *CMAP2;
caddr_t CADDR1;
caddr_t CADDR2;
};
static struct sysmaps sysmaps_pcpu[MAXCPU];
pt_entry_t *CMAP1 = 0;
static pt_entry_t *CMAP3;
caddr_t CADDR1 = 0, ptvmmap = 0;
static caddr_t CADDR3;
struct msgbuf *msgbufp = 0;
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
static pt_entry_t *PMAP1 = 0, *PMAP2;
static pt_entry_t *PADDR1 = 0, *PADDR2;
#ifdef SMP
static int PMAP1cpu;
static int PMAP1changedcpu;
SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
&PMAP1changedcpu, 0,
"Number of times pmap_pte_quick changed CPU with same PMAP1");
#endif
static int PMAP1changed;
SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
&PMAP1changed, 0,
"Number of times pmap_pte_quick changed PMAP1");
static int PMAP1unchanged;
SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
&PMAP1unchanged, 0,
"Number of times pmap_pte_quick didn't change PMAP1");
static struct mtx PMAP2mutex;
SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
static int pg_ps_enabled;
SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
"Are large page mappings enabled?");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
"Max number of PV entries");
SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
"Page share factor per proc");
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
vm_page_t m, vm_prot_t prot, vm_page_t mpte);
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
vm_page_t *free);
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
vm_page_t *free);
static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
vm_offset_t va);
static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
vm_page_t m);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
static void pmap_pte_release(pt_entry_t *pte);
static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
#if defined(PAE) && !defined(XEN)
static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
#endif
CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
/*
* If you get an error here, then you set KVA_PAGES wrong! See the
* description of KVA_PAGES in sys/i386/include/pmap.h. It must be
* multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
*/
CTASSERT(KERNBASE % (1 << 24) == 0);
static __inline void
pagezero(void *page)
{
#if defined(I686_CPU)
if (cpu_class == CPUCLASS_686) {
#if defined(CPU_ENABLE_SSE)
if (cpu_feature & CPUID_SSE2)
sse2_pagezero(page);
else
#endif
i686_pagezero(page);
} else
#endif
bzero(page, PAGE_SIZE);
}
void
pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
{
vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
switch (type) {
case SH_PD_SET_VA:
#if 0
xen_queue_pt_update(shadow_pdir_ma,
xpmap_ptom(val & ~(PG_RW)));
#endif
xen_queue_pt_update(pdir_ma,
xpmap_ptom(val));
break;
case SH_PD_SET_VA_MA:
#if 0
xen_queue_pt_update(shadow_pdir_ma,
val & ~(PG_RW));
#endif
xen_queue_pt_update(pdir_ma, val);
break;
case SH_PD_SET_VA_CLEAR:
#if 0
xen_queue_pt_update(shadow_pdir_ma, 0);
#endif
xen_queue_pt_update(pdir_ma, 0);
break;
}
}
/*
* Move the kernel virtual free pointer to the next
* 4MB. This is used to help improve performance
* by using a large (4MB) page for much of the kernel
* (.text, .data, .bss)
*/
static vm_offset_t
pmap_kmem_choose(vm_offset_t addr)
{
vm_offset_t newaddr = addr;
#ifndef DISABLE_PSE
if (cpu_feature & CPUID_PSE)
newaddr = (addr + PDRMASK) & ~PDRMASK;
#endif
return newaddr;
}
/*
* Bootstrap the system enough to run with virtual memory.
*
* On the i386 this is called after mapping has already been enabled
* and just syncs the pmap module with what has already been done.
* [We can't call it easily with mapping off since the kernel is not
* mapped with PA == VA, hence we would have to relocate every address
* from the linked base (virtual) address "KERNBASE" to the actual
* (physical) address starting relative to 0]
*/
void
pmap_bootstrap(vm_paddr_t firstaddr)
{
vm_offset_t va;
pt_entry_t *pte, *unused;
struct sysmaps *sysmaps;
int i;
/*
* XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
* large. It should instead be correctly calculated in locore.s and
* not based on 'first' (which is a physical address, not a virtual
* address, for the start of unused physical memory). The kernel
* page tables are NOT double mapped and thus should not be included
* in this calculation.
*/
virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
virtual_avail = pmap_kmem_choose(virtual_avail);
virtual_end = VM_MAX_KERNEL_ADDRESS;
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
#ifdef PAE
kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
#endif
kernel_pmap->pm_active = -1; /* don't allow deactivation */
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
LIST_INIT(&allpmaps);
mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
mtx_lock_spin(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
if (nkpt == 0)
nkpt = NKPT;
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
#define SYSMAP(c, p, v, n) \
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
va = virtual_avail;
pte = vtopte(va);
/*
* CMAP1/CMAP2 are used for zeroing and copying pages.
* CMAP3 is used for the idle process page zeroing.
*/
for (i = 0; i < MAXCPU; i++) {
sysmaps = &sysmaps_pcpu[i];
mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
}
SYSMAP(caddr_t, CMAP1, CADDR1, 1)
SYSMAP(caddr_t, CMAP3, CADDR3, 1)
PT_SET_MA(CADDR3, 0);
/*
* Crashdump maps.
*/
SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
/*
* ptvmmap is used for reading arbitrary physical pages via /dev/mem.
*/
SYSMAP(caddr_t, unused, ptvmmap, 1)
/*
* msgbufp is used to map the system message buffer.
*/
SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
/*
* ptemap is used for pmap_pte_quick
*/
SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
virtual_avail = va;
PT_SET_MA(CADDR1, 0);
/*
* Leave in place an identity mapping (virt == phys) for the low 1 MB
* physical memory region that is used by the ACPI wakeup code. This
* mapping must not have PG_G set.
*/
#ifndef XEN
/*
* leave here deliberately to show that this is not supported
*/
#ifdef XBOX
/* FIXME: This is gross, but needed for the XBOX. Since we are in such
* an early stadium, we cannot yet neatly map video memory ... :-(
* Better fixes are very welcome! */
if (!arch_i386_is_xbox)
#endif
for (i = 1; i < NKPT; i++)
PTD[i] = 0;
/* Initialize the PAT MSR if present. */
pmap_init_pat();
/* Turn on PG_G on kernel page(s) */
pmap_set_pg();
#endif
}
/*
* Setup the PAT MSR.
*/
void
pmap_init_pat(void)
{
uint64_t pat_msr;
/* Bail if this CPU doesn't implement PAT. */
if (!(cpu_feature & CPUID_PAT))
return;
#ifdef PAT_WORKS
/*
* Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
* Program 4 and 5 as WP and WC.
* Leave 6 and 7 as UC and UC-.
*/
pat_msr = rdmsr(MSR_PAT);
pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
PAT_VALUE(5, PAT_WRITE_COMBINING);
#else
/*
* Due to some Intel errata, we can only safely use the lower 4
* PAT entries. Thus, just replace PAT Index 2 with WC instead
* of UC-.
*
* Intel Pentium III Processor Specification Update
* Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
* or Mode C Paging)
*
* Intel Pentium IV Processor Specification Update
* Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
*/
pat_msr = rdmsr(MSR_PAT);
pat_msr &= ~PAT_MASK(2);
pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
#endif
wrmsr(MSR_PAT, pat_msr);
}
/*
* Set PG_G on kernel pages. Only the BSP calls this when SMP is turned on.
*/
void
pmap_set_pg(void)
{
pd_entry_t pdir;
pt_entry_t *pte;
vm_offset_t va, endva;
int i;
if (pgeflag == 0)
return;
i = KERNLOAD/NBPDR;
endva = KERNBASE + KERNend;
if (pseflag) {
va = KERNBASE + KERNLOAD;
while (va < endva) {
pdir = kernel_pmap->pm_pdir[KPTDI+i];
pdir |= pgeflag;
kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
invltlb(); /* Play it safe, invltlb() every time */
i++;
va += NBPDR;
}
} else {
va = (vm_offset_t)btext;
while (va < endva) {
pte = vtopte(va);
if (*pte & PG_V)
*pte |= pgeflag;
invltlb(); /* Play it safe, invltlb() every time */
va += PAGE_SIZE;
}
}
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
}
#if defined(PAE) && !defined(XEN)
static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
static void *
pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
*flags = UMA_SLAB_PRIV;
return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
1, 0));
}
#endif
/*
* ABuse the pte nodes for unmapped kva to thread a kva freelist through.
* Requirements:
* - Must deal with pages in order to ensure that none of the PG_* bits
* are ever set, PG_V in particular.
* - Assumes we can write to ptes without pte_store() atomic ops, even
* on PAE systems. This should be ok.
* - Assumes nothing will ever test these addresses for 0 to indicate
* no mapping instead of correctly checking PG_V.
* - Assumes a vm_offset_t will fit in a pte (true for i386).
* Because PG_V is never set, there can be no mappings to invalidate.
*/
static int ptelist_count = 0;
static vm_offset_t
pmap_ptelist_alloc(vm_offset_t *head)
{
vm_offset_t va;
vm_offset_t *phead = (vm_offset_t *)*head;
if (ptelist_count == 0) {
printf("out of memory!!!!!!\n");
return (0); /* Out of memory */
}
ptelist_count--;
va = phead[ptelist_count];
return (va);
}
static void
pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
{
vm_offset_t *phead = (vm_offset_t *)*head;
phead[ptelist_count++] = va;
}
static void
pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
{
int i, nstackpages;
vm_offset_t va;
vm_page_t m;
nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
for (i = 0; i < nstackpages; i++) {
va = (vm_offset_t)base + i * PAGE_SIZE;
m = vm_page_alloc(NULL, i,
VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
pmap_qenter(va, &m, 1);
}
*head = (vm_offset_t)base;
for (i = npages - 1; i >= nstackpages; i--) {
va = (vm_offset_t)base + i * PAGE_SIZE;
pmap_ptelist_free(head, va);
}
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
vm_page_t mpte;
vm_size_t s;
int i, pv_npg;
/*
* Initialize the vm page array entries for the kernel pmap's
* page table pages.
*/
for (i = 0; i < nkpt; i++) {
mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
KASSERT(mpte >= vm_page_array &&
mpte < &vm_page_array[vm_page_array_size],
("pmap_init: page table page is out of range"));
mpte->pindex = i + KPTDI;
mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
}
/*
* Initialize the address space (zone) for the pv entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
pv_entry_max = roundup(pv_entry_max, _NPCPV);
pv_entry_high_water = 9 * (pv_entry_max / 10);
/*
* Are large page mappings enabled?
*/
TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
/*
* Calculate the size of the pv head table for superpages.
*/
for (i = 0; phys_avail[i + 1]; i += 2);
pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
/*
* Allocate memory for the pv head table for superpages.
*/
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
s = round_page(s);
pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
for (i = 0; i < pv_npg; i++)
TAILQ_INIT(&pv_table[i].pv_list);
pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
PAGE_SIZE * pv_maxchunks);
if (pv_chunkbase == NULL)
panic("pmap_init: not enough kvm for pv chunks");
pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
#if defined(PAE) && !defined(XEN)
pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
#endif
}
/***************************************************
* Low level helper routines.....
***************************************************/
/*
* Determine the appropriate bits to set in a PTE or PDE for a specified
* caching mode.
*/
static int
pmap_cache_bits(int mode, boolean_t is_pde)
{
int pat_flag, pat_index, cache_bits;
/* The PAT bit is different for PTE's and PDE's. */
pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
/* If we don't support PAT, map extended modes to older ones. */
if (!(cpu_feature & CPUID_PAT)) {
switch (mode) {
case PAT_UNCACHEABLE:
case PAT_WRITE_THROUGH:
case PAT_WRITE_BACK:
break;
case PAT_UNCACHED:
case PAT_WRITE_COMBINING:
case PAT_WRITE_PROTECTED:
mode = PAT_UNCACHEABLE;
break;
}
}
/* Map the caching mode to a PAT index. */
switch (mode) {
#ifdef PAT_WORKS
case PAT_UNCACHEABLE:
pat_index = 3;
break;
case PAT_WRITE_THROUGH:
pat_index = 1;
break;
case PAT_WRITE_BACK:
pat_index = 0;
break;
case PAT_UNCACHED:
pat_index = 2;
break;
case PAT_WRITE_COMBINING:
pat_index = 5;
break;
case PAT_WRITE_PROTECTED:
pat_index = 4;
break;
#else
case PAT_UNCACHED:
case PAT_UNCACHEABLE:
case PAT_WRITE_PROTECTED:
pat_index = 3;
break;
case PAT_WRITE_THROUGH:
pat_index = 1;
break;
case PAT_WRITE_BACK:
pat_index = 0;
break;
case PAT_WRITE_COMBINING:
pat_index = 2;
break;
#endif
default:
panic("Unknown caching mode %d\n", mode);
}
/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
cache_bits = 0;
if (pat_index & 0x4)
cache_bits |= pat_flag;
if (pat_index & 0x2)
cache_bits |= PG_NC_PCD;
if (pat_index & 0x1)
cache_bits |= PG_NC_PWT;
return (cache_bits);
}
#ifdef SMP
/*
* For SMP, these functions have to use the IPI mechanism for coherence.
*
* N.B.: Before calling any of the following TLB invalidation functions,
* the calling processor must ensure that all stores updating a non-
* kernel page table are globally performed. Otherwise, another
* processor could cache an old, pre-update entry without being
* invalidated. This can happen one of two ways: (1) The pmap becomes
* active on another processor after its pm_active field is checked by
* one of the following functions but before a store updating the page
* table is globally performed. (2) The pmap becomes active on another
* processor before its pm_active field is checked but due to
* speculative loads one of the following functions stills reads the
* pmap as inactive on the other processor.
*
* The kernel page table is exempt because its pm_active field is
* immutable. The kernel page table is always active on every
* processor.
*/
void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
u_int cpumask;
u_int other_cpus;
CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
pmap, va);
sched_pin();
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
invlpg(va);
smp_invlpg(va);
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
invlpg(va);
if (pmap->pm_active & other_cpus)
smp_masked_invlpg(pmap->pm_active & other_cpus, va);
}
sched_unpin();
PT_UPDATES_FLUSH();
}
void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
u_int cpumask;
u_int other_cpus;
vm_offset_t addr;
CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
pmap, sva, eva);
sched_pin();
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
smp_invlpg_range(sva, eva);
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
if (pmap->pm_active & other_cpus)
smp_masked_invlpg_range(pmap->pm_active & other_cpus,
sva, eva);
}
sched_unpin();
PT_UPDATES_FLUSH();
}
void
pmap_invalidate_all(pmap_t pmap)
{
u_int cpumask;
u_int other_cpus;
CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
sched_pin();
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
invltlb();
smp_invltlb();
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
invltlb();
if (pmap->pm_active & other_cpus)
smp_masked_invltlb(pmap->pm_active & other_cpus);
}
sched_unpin();
}
void
pmap_invalidate_cache(void)
{
sched_pin();
wbinvd();
smp_cache_flush();
sched_unpin();
}
#else /* !SMP */
/*
* Normal, non-SMP, 486+ invalidation functions.
* We inline these within pmap.c for speed.
*/
PMAP_INLINE void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
pmap, va);
if (pmap == kernel_pmap || pmap->pm_active)
invlpg(va);
PT_UPDATES_FLUSH();
}
PMAP_INLINE void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t addr;
if (eva - sva > PAGE_SIZE)
CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
pmap, sva, eva);
if (pmap == kernel_pmap || pmap->pm_active)
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
PT_UPDATES_FLUSH();
}
PMAP_INLINE void
pmap_invalidate_all(pmap_t pmap)
{
CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
if (pmap == kernel_pmap || pmap->pm_active)
invltlb();
}
PMAP_INLINE void
pmap_invalidate_cache(void)
{
wbinvd();
}
#endif /* !SMP */
/*
* Are we current address space or kernel? N.B. We return FALSE when
* a pmap's page table is in use because a kernel thread is borrowing
* it. The borrowed page table can change spontaneously, making any
* dependence on its continued use subject to a race condition.
*/
static __inline int
pmap_is_current(pmap_t pmap)
{
return (pmap == kernel_pmap ||
(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
}
/*
* If the given pmap is not the current or kernel pmap, the returned pte must
* be released by passing it to pmap_pte_release().
*/
pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
pd_entry_t newpf;
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (*pde & PG_PS)
return (pde);
if (*pde != 0) {
/* are we current address space or kernel? */
if (pmap_is_current(pmap))
return (vtopte(va));
mtx_lock(&PMAP2mutex);
newpf = *pde & PG_FRAME;
if ((*PMAP2 & PG_FRAME) != newpf) {
PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
pmap, va, (*PMAP2 & 0xffffffff));
}
return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
}
return (0);
}
/*
* Releases a pte that was obtained from pmap_pte(). Be prepared for the pte
* being NULL.
*/
static __inline void
pmap_pte_release(pt_entry_t *pte)
{
if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
*PMAP2);
PT_SET_VA(PMAP2, 0, TRUE);
mtx_unlock(&PMAP2mutex);
}
}
static __inline void
invlcaddr(void *caddr)
{
invlpg((u_int)caddr);
PT_UPDATES_FLUSH();
}
/*
* Super fast pmap_pte routine best used when scanning
* the pv lists. This eliminates many coarse-grained
* invltlb calls. Note that many of the pv list
* scans are across different pmaps. It is very wasteful
* to do an entire invltlb for checking a single mapping.
*
* If the given pmap is not the current pmap, vm_page_queue_mtx
* must be held and curthread pinned to a CPU.
*/
static pt_entry_t *
pmap_pte_quick(pmap_t pmap, vm_offset_t va)
{
pd_entry_t newpf;
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (*pde & PG_PS)
return (pde);
if (*pde != 0) {
/* are we current address space or kernel? */
if (pmap_is_current(pmap))
return (vtopte(va));
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
newpf = *pde & PG_FRAME;
if ((*PMAP1 & PG_FRAME) != newpf) {
PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
pmap, va, (u_long)*PMAP1);
#ifdef SMP
PMAP1cpu = PCPU_GET(cpuid);
#endif
PMAP1changed++;
} else
#ifdef SMP
if (PMAP1cpu != PCPU_GET(cpuid)) {
PMAP1cpu = PCPU_GET(cpuid);
invlcaddr(PADDR1);
PMAP1changedcpu++;
} else
#endif
PMAP1unchanged++;
return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
}
return (0);
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t rtval;
pt_entry_t *pte;
pd_entry_t pde;
pt_entry_t pteval;
rtval = 0;
PMAP_LOCK(pmap);
pde = pmap->pm_pdir[va >> PDRSHIFT];
if (pde != 0) {
if ((pde & PG_PS) != 0) {
rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
PMAP_UNLOCK(pmap);
return rtval;
}
pte = pmap_pte(pmap, va);
pteval = *pte ? xpmap_mtop(*pte) : 0;
rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
pmap_pte_release(pte);
}
PMAP_UNLOCK(pmap);
return (rtval);
}
/*
* Routine: pmap_extract_ma
* Function:
* Like pmap_extract, but returns machine address
*/
vm_paddr_t
pmap_extract_ma(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t rtval;
pt_entry_t *pte;
pd_entry_t pde;
rtval = 0;
PMAP_LOCK(pmap);
pde = pmap->pm_pdir[va >> PDRSHIFT];
if (pde != 0) {
if ((pde & PG_PS) != 0) {
rtval = (pde & ~PDRMASK) | (va & PDRMASK);
PMAP_UNLOCK(pmap);
return rtval;
}
pte = pmap_pte(pmap, va);
rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
pmap_pte_release(pte);
}
PMAP_UNLOCK(pmap);
return (rtval);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pd_entry_t pde;
pt_entry_t pte;
vm_page_t m;
m = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
pde = PT_GET(pmap_pde(pmap, va));
if (pde != 0) {
if (pde & PG_PS) {
if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
(va & PDRMASK));
vm_page_hold(m);
}
} else {
sched_pin();
pte = PT_GET(pmap_pte_quick(pmap, va));
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
if ((pte & PG_V) &&
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
vm_page_hold(m);
}
sched_unpin();
}
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
return (m);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* Add a wired page to the kva.
* Note: not SMP coherent.
*/
void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
}
void
pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
{
pt_entry_t *pte;
pte = vtopte(va);
pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
}
static __inline void
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
{
PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
}
/*
* Remove a page from the kernel pagetables.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
pt_entry_t *pte;
pte = vtopte(va);
PT_CLEAR_VA(pte, FALSE);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
vm_offset_t va, sva;
va = sva = *virt;
CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
va, start, end, prot);
while (start < end) {
pmap_kenter(va, start);
va += PAGE_SIZE;
start += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
*virt = va;
return (sva);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
pt_entry_t *endpte, *pte;
vm_paddr_t pa;
vm_offset_t va = sva;
int mclcount = 0;
multicall_entry_t mcl[16];
multicall_entry_t *mclp = mcl;
int error;
CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
pte = vtopte(sva);
endpte = pte + count;
while (pte < endpte) {
pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
mclp->op = __HYPERVISOR_update_va_mapping;
mclp->args[0] = va;
mclp->args[1] = (uint32_t)(pa & 0xffffffff);
mclp->args[2] = (uint32_t)(pa >> 32);
mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
va += PAGE_SIZE;
pte++;
ma++;
mclp++;
mclcount++;
if (mclcount == 16) {
error = HYPERVISOR_multicall(mcl, mclcount);
mclp = mcl;
mclcount = 0;
KASSERT(error == 0, ("bad multicall %d", error));
}
}
if (mclcount) {
error = HYPERVISOR_multicall(mcl, mclcount);
KASSERT(error == 0, ("bad multicall %d", error));
}
#ifdef INVARIANTS
for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
#endif
}
/*
* This routine tears out page mappings from the
* kernel -- it is meant only for temporary mappings.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
va = sva;
vm_page_lock_queues();
critical_enter();
while (count-- > 0) {
pmap_kremove(va);
va += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
critical_exit();
vm_page_unlock_queues();
}
/***************************************************
* Page table page management routines.....
***************************************************/
static __inline void
pmap_free_zero_pages(vm_page_t free)
{
vm_page_t m;
while (free != NULL) {
m = free;
free = m->right;
vm_page_free_zero(m);
}
}
/*
* This routine unholds page table pages, and if the hold count
* drops to zero, then it decrements the wire count.
*/
static __inline int
pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
{
--m->wire_count;
if (m->wire_count == 0)
return _pmap_unwire_pte_hold(pmap, m, free);
else
return 0;
}
static int
_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
{
vm_offset_t pteva;
PT_UPDATES_FLUSH();
/*
* unmap the page table page
*/
xen_pt_unpin(pmap->pm_pdir[m->pindex]);
/*
* page *might* contain residual mapping :-/
*/
PD_CLEAR_VA(pmap, m->pindex, TRUE);
pmap_zero_page(m);
--pmap->pm_stats.resident_count;
/*
* This is a release store so that the ordinary store unmapping
* the page table page is globally performed before TLB shoot-
* down is begun.
*/
atomic_subtract_rel_int(&cnt.v_wire_count, 1);
/*
* Do an invltlb to make the invalidated mapping
* take effect immediately.
*/
pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
pmap_invalidate_page(pmap, pteva);
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
m->right = *free;
*free = m;
return 1;
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
{
pd_entry_t ptepde;
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return 0;
ptepde = PT_GET(pmap_pde(pmap, va));
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
return pmap_unwire_pte_hold(pmap, mpte, free);
}
void
pmap_pinit0(pmap_t pmap)
{
PMAP_LOCK_INIT(pmap);
pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
#ifdef PAE
pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
#endif
pmap->pm_active = 0;
PCPU_SET(curpmap, pmap);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
mtx_lock_spin(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit(pmap_t pmap)
{
vm_page_t m, ptdpg[NPGPTD + 1];
int npgptd = NPGPTD + 1;
static int color;
int i;
PMAP_LOCK_INIT(pmap);
/*
* No need to allocate page table space yet but we do need a valid
* page directory table.
*/
if (pmap->pm_pdir == NULL) {
pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
NBPTD);
if (pmap->pm_pdir == NULL) {
PMAP_LOCK_DESTROY(pmap);
return (0);
}
#if defined(XEN) && defined(PAE)
pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
#endif
#if defined(PAE) && !defined(XEN)
pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
KASSERT(((vm_offset_t)pmap->pm_pdpt &
((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
("pmap_pinit: pdpt misaligned"));
KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
("pmap_pinit: pdpt above 4g"));
#endif
}
/*
* allocate the page directory page(s)
*/
for (i = 0; i < npgptd;) {
m = vm_page_alloc(NULL, color++,
VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
if (m == NULL)
VM_WAIT;
else {
ptdpg[i++] = m;
}
}
pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
for (i = 0; i < NPGPTD; i++) {
if ((ptdpg[i]->flags & PG_ZERO) == 0)
pagezero(&pmap->pm_pdir[i*NPTEPG]);
}
mtx_lock_spin(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
/* Wire in kernel global address entries. */
bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
#ifdef PAE
#ifdef XEN
pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
bzero(pmap->pm_pdpt, PAGE_SIZE);
#endif
for (i = 0; i < NPGPTD; i++) {
vm_paddr_t ma;
ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
pmap->pm_pdpt[i] = ma | PG_V;
}
#endif
#ifdef XEN
for (i = 0; i < NPGPTD; i++) {
pt_entry_t *pd;
vm_paddr_t ma;
ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
pd = pmap->pm_pdir + (i * NPDEPG);
PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
#if 0
xen_pgd_pin(ma);
#endif
}
#ifdef PAE
PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
#endif
vm_page_lock_queues();
xen_flush_queue();
xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
for (i = 0; i < NPGPTD; i++) {
vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
}
xen_flush_queue();
vm_page_unlock_queues();
#endif
pmap->pm_active = 0;
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
return (1);
}
/*
* this routine is called if the page table page is not
* mapped correctly.
*/
static vm_page_t
_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
{
vm_paddr_t ptema;
vm_page_t m;
KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
(flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
/*
* Allocate a page table page.
*/
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
if (flags & M_WAITOK) {
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
VM_WAIT;
vm_page_lock_queues();
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
pmap->pm_stats.resident_count++;
ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
xen_pt_pin(ptema);
PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
KASSERT(pmap->pm_pdir[ptepindex],
("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
return (m);
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
{
unsigned ptepindex;
pd_entry_t ptema;
vm_page_t m;
KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
(flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
/*
* Calculate pagetable page index
*/
ptepindex = va >> PDRSHIFT;
retry:
/*
* Get the page directory entry
*/
ptema = pmap->pm_pdir[ptepindex];
/*
* This supports switching from a 4MB page to a
* normal 4K page.
*/
if (ptema & PG_PS) {
/*
* XXX
*/
pmap->pm_pdir[ptepindex] = 0;
ptema = 0;
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
pmap_invalidate_all(kernel_pmap);
}
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (ptema & PG_V) {
m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
m->wire_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has
* been deallocated.
*/
CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
pmap, va, flags);
m = _pmap_allocpte(pmap, ptepindex, flags);
if (m == NULL && (flags & M_WAITOK))
goto retry;
KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
#ifdef SMP
/*
* Deal with a SMP shootdown of other users of the pmap that we are
* trying to dispose of. This can be a bit hairy.
*/
static u_int *lazymask;
static u_int lazyptd;
static volatile u_int lazywait;
void pmap_lazyfix_action(void);
void
pmap_lazyfix_action(void)
{
u_int mymask = PCPU_GET(cpumask);
#ifdef COUNT_IPIS
(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
#endif
if (rcr3() == lazyptd)
load_cr3(PCPU_GET(curpcb)->pcb_cr3);
atomic_clear_int(lazymask, mymask);
atomic_store_rel_int(&lazywait, 1);
}
static void
pmap_lazyfix_self(u_int mymask)
{
if (rcr3() == lazyptd)
load_cr3(PCPU_GET(curpcb)->pcb_cr3);
atomic_clear_int(lazymask, mymask);
}
static void
pmap_lazyfix(pmap_t pmap)
{
u_int mymask;
u_int mask;
u_int spins;
while ((mask = pmap->pm_active) != 0) {
spins = 50000000;
mask = mask & -mask; /* Find least significant set bit */
mtx_lock_spin(&smp_ipi_mtx);
#ifdef PAE
lazyptd = vtophys(pmap->pm_pdpt);
#else
lazyptd = vtophys(pmap->pm_pdir);
#endif
mymask = PCPU_GET(cpumask);
if (mask == mymask) {
lazymask = &pmap->pm_active;
pmap_lazyfix_self(mymask);
} else {
atomic_store_rel_int((u_int *)&lazymask,
(u_int)&pmap->pm_active);
atomic_store_rel_int(&lazywait, 0);
ipi_selected(mask, IPI_LAZYPMAP);
while (lazywait == 0) {
ia32_pause();
if (--spins == 0)
break;
}
}
mtx_unlock_spin(&smp_ipi_mtx);
if (spins == 0)
printf("pmap_lazyfix: spun for 50000000\n");
}
}
#else /* SMP */
/*
* Cleaning up on uniprocessor is easy. For various reasons, we're
* unlikely to have to even execute this code, including the fact
* that the cleanup is deferred until the parent does a wait(2), which
* means that another userland process has run.
*/
static void
pmap_lazyfix(pmap_t pmap)
{
u_int cr3;
cr3 = vtophys(pmap->pm_pdir);
if (cr3 == rcr3()) {
load_cr3(PCPU_GET(curpcb)->pcb_cr3);
pmap->pm_active &= ~(PCPU_GET(cpumask));
}
}
#endif /* SMP */
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_page_t m, ptdpg[2*NPGPTD+1];
vm_paddr_t ma;
int i;
#ifdef XEN
#ifdef PAE
int npgptd = NPGPTD + 1;
#else
int npgptd = NPGPTD;
#endif
#else
int npgptd = NPGPTD;
#endif
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
PT_UPDATES_FLUSH();
pmap_lazyfix(pmap);
mtx_lock_spin(&allpmaps_lock);
LIST_REMOVE(pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
for (i = 0; i < NPGPTD; i++)
ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
#if defined(PAE) && defined(XEN)
ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
#endif
for (i = 0; i < npgptd; i++) {
m = ptdpg[i];
ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
/* unpinning L1 and L2 treated the same */
xen_pgd_unpin(ma);
#ifdef PAE
KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
("pmap_release: got wrong ptd page"));
#endif
m->wire_count--;
atomic_subtract_int(&cnt.v_wire_count, 1);
vm_page_free(m);
}
PMAP_LOCK_DESTROY(pmap);
}
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_size, "IU", "Size of KVM");
static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_free, "IU", "Amount of KVM free");
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
struct pmap *pmap;
vm_paddr_t ptppaddr;
vm_page_t nkpg;
pd_entry_t newpdir;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
if (kernel_vm_end == 0) {
kernel_vm_end = KERNBASE;
nkpt = 0;
while (pdir_pde(PTD, kernel_vm_end)) {
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
nkpt++;
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
}
}
addr = roundup2(addr, PAGE_SIZE * NPTEPG);
if (addr - 1 >= kernel_map->max_offset)
addr = kernel_map->max_offset;
while (kernel_vm_end < addr) {
if (pdir_pde(PTD, kernel_vm_end)) {
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
continue;
}
/*
* This index is bogus, but out of the way
*/
nkpg = vm_page_alloc(NULL, nkpt,
VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
if (!nkpg)
panic("pmap_growkernel: no memory to grow kernel");
nkpt++;
pmap_zero_page(nkpg);
ptppaddr = VM_PAGE_TO_PHYS(nkpg);
newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
vm_page_lock_queues();
PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
mtx_lock_spin(&allpmaps_lock);
LIST_FOREACH(pmap, &allpmaps, pm_list)
PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
mtx_unlock_spin(&allpmaps_lock);
vm_page_unlock_queues();
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
}
}
/***************************************************
* page management routines.
***************************************************/
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
CTASSERT(_NPCM == 11);
static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{
return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
}
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
#define PC_FREE10 0x0000fffful /* Free values for index 10 */
static uint32_t pc_freemask[11] = {
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE10
};
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
"Current number of pv entries");
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
"Number of times tried to get a chunk page but failed.");
static long pv_entry_frees, pv_entry_allocs;
static int pv_entry_spare;
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
"Current number of pv entry allocs");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
"Current number of spare pv entries");
static int pmap_collect_inactive, pmap_collect_active;
SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
"Current number times pmap_collect called on inactive queue");
SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
"Current number times pmap_collect called on active queue");
#endif
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk. This is normally called to
* unmap inactive pages, and if necessary, active pages.
*/
static void
pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
{
pmap_t pmap;
pt_entry_t *pte, tpte;
pv_entry_t next_pv, pv;
vm_offset_t va;
vm_page_t m, free;
sched_pin();
TAILQ_FOREACH(m, &vpq->pl, pageq) {
if (m->hold_count || m->busy)
continue;
TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
va = pv->pv_va;
pmap = PV_PMAP(pv);
/* Avoid deadlock and lock recursion. */
if (pmap > locked_pmap)
PMAP_LOCK(pmap);
else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
continue;
pmap->pm_stats.resident_count--;
pte = pmap_pte_quick(pmap, va);
tpte = pte_load_clear(pte);
KASSERT((tpte & PG_W) == 0,
("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
if (tpte & PG_A)
vm_page_flag_set(m, PG_REFERENCED);
if (tpte & PG_M) {
KASSERT((tpte & PG_RW),
("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
va, (uintmax_t)tpte));
vm_page_dirty(m);
}
free = NULL;
pmap_unuse_pt(pmap, va, &free);
pmap_invalidate_page(pmap, va);
pmap_free_zero_pages(free);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
free_pv_entry(pmap, pv);
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
}
sched_unpin();
}
/*
* free the pv_entry back to the free list
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
vm_page_t m;
struct pv_chunk *pc;
int idx, field, bit;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / 32;
bit = idx % 32;
pc->pc_map[field] |= 1ul << bit;
/* move to head of list */
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
for (idx = 0; idx < _NPCM; idx++)
if (pc->pc_map[idx] != pc_freemask[idx])
return;
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
/* entire chunk is free, return it */
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
pmap_qremove((vm_offset_t)pc, 1);
vm_page_unwire(m, 0);
vm_page_free(m);
pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, int try)
{
static const struct timeval printinterval = { 60, 0 };
static struct timeval lastprint;
static vm_pindex_t colour;
struct vpgqueues *pq;
int bit, field;
pv_entry_t pv;
struct pv_chunk *pc;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
PV_STAT(pv_entry_allocs++);
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
if (ratecheck(&lastprint, &printinterval))
printf("Approaching the limit on PV entries, consider "
"increasing either the vm.pmap.shpgperproc or the "
"vm.pmap.pv_entry_max tunable.\n");
pq = NULL;
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = bsfl(pc->pc_map[field]);
break;
}
}
if (field < _NPCM) {
pv = &pc->pc_pventry[field * 32 + bit];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
for (field = 0; field < _NPCM; field++)
if (pc->pc_map[field] != 0) {
PV_STAT(pv_entry_spare--);
return (pv); /* not full, return */
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare--);
return (pv);
}
}
/*
* Access to the ptelist "pv_vafree" is synchronized by the page
* queues lock. If "pv_vafree" is currently non-empty, it will
* remain non-empty until pmap_ptelist_alloc() completes.
*/
if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
&vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
if (try) {
pv_entry_count--;
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
/*
* Reclaim pv entries: At first, destroy mappings to
* inactive pages. After that, if a pv chunk entry
* is still needed, destroy mappings to active pages.
*/
if (pq == NULL) {
PV_STAT(pmap_collect_inactive++);
pq = &vm_page_queues[PQ_INACTIVE];
} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
PV_STAT(pmap_collect_active++);
pq = &vm_page_queues[PQ_ACTIVE];
} else
panic("get_pv_entry: increase vm.pmap.shpgperproc");
pmap_collect(pmap, pq);
goto retry;
}
PV_STAT(pc_chunk_count++);
PV_STAT(pc_chunk_allocs++);
colour++;
pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
pmap_qenter((vm_offset_t)pc, &m, 1);
if ((m->flags & PG_ZERO) == 0)
pagezero(pc);
pc->pc_pmap = pmap;
pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
for (field = 1; field < _NPCM; field++)
pc->pc_map[field] = pc_freemask[field];
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare += _NPCPV - 1);
return (pv);
}
static void
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
{
pv_entry_t pv;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pmap == PV_PMAP(pv) && va == pv->pv_va)
break;
}
KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
free_pv_entry(pmap, pv);
}
/*
* Create a pv entry for page at pa for
* (pmap, va).
*/
static void
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pv;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
pv = get_pv_entry(pmap, FALSE);
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
}
/*
* Conditionally create a pv entry.
*/
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pv;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (pv_entry_count < pv_entry_high_water &&
(pv = get_pv_entry(pmap, TRUE)) != NULL) {
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
return (TRUE);
} else
return (FALSE);
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
{
pt_entry_t oldpte;
vm_page_t m;
CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
pmap, (u_long)*ptq, va);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpte = *ptq;
PT_SET_VA_MA(ptq, 0, TRUE);
if (oldpte & PG_W)
pmap->pm_stats.wired_count -= 1;
/*
* Machines that don't support invlpg, also don't support
* PG_G.
*/
if (oldpte & PG_G)
pmap_invalidate_page(kernel_pmap, va);
pmap->pm_stats.resident_count -= 1;
/*
* XXX This is not strictly correctly, but somewhere along the line
* we are losing the managed bit on some pages. It is unclear to me
* why, but I think the most likely explanation is that xen's writable
* page table implementation doesn't respect the unused bits.
*/
if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
) {
m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
if (!(oldpte & PG_MANAGED))
printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
if (oldpte & PG_M) {
KASSERT((oldpte & PG_RW),
("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
va, (uintmax_t)oldpte));
vm_page_dirty(m);
}
if (oldpte & PG_A)
vm_page_flag_set(m, PG_REFERENCED);
pmap_remove_entry(pmap, m, va);
} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
return (pmap_unuse_pt(pmap, va, free));
}
/*
* Remove a single page from a process address space
*/
static void
pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
{
pt_entry_t *pte;
CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
pmap, va);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
return;
pmap_remove_pte(pmap, pte, va, free);
pmap_invalidate_page(pmap, va);
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t pdnxt;
pd_entry_t ptpaddr;
pt_entry_t *pte;
vm_page_t free = NULL;
int anyvalid;
CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
pmap, sva, eva);
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
anyvalid = 0;
vm_page_lock_queues();
sched_pin();
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very
* common operation and easy to short circuit some
* code.
*/
if ((sva + PAGE_SIZE == eva) &&
((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
pmap_remove_page(pmap, sva, &free);
goto out;
}
for (; sva < eva; sva = pdnxt) {
unsigned pdirindex;
/*
* Calculate index for next page table.
*/
pdnxt = (sva + NBPDR) & ~PDRMASK;
if (pmap->pm_stats.resident_count == 0)
break;
pdirindex = sva >> PDRSHIFT;
ptpaddr = pmap->pm_pdir[pdirindex];
/*
* Weed out invalid mappings. Note: we assume that the page
* directory table is always allocated, and in kernel virtual.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
PD_CLEAR_VA(pmap, pdirindex, TRUE);
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
anyvalid = 1;
continue;
}
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (pdnxt > eva)
pdnxt = eva;
for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
sva += PAGE_SIZE) {
if ((*pte & PG_V) == 0)
continue;
/*
* The TLB entry for a PG_G mapping is invalidated
* by pmap_remove_pte().
*/
if ((*pte & PG_G) == 0)
anyvalid = 1;
if (pmap_remove_pte(pmap, pte, sva, &free))
break;
}
}
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_VA_MA(PMAP1, 0, TRUE);
out:
if (anyvalid)
pmap_invalidate_all(pmap);
sched_unpin();
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
pmap_free_zero_pages(free);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t *pte, tpte;
vm_page_t free;
#if defined(PMAP_DIAGNOSTIC)
/*
* XXX This makes pmap_remove_all() illegal for non-managed pages!
*/
if (m->flags & PG_FICTITIOUS) {
panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
VM_PAGE_TO_PHYS(m) & 0xffffffff);
}
#endif
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
sched_pin();
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pmap->pm_stats.resident_count--;
pte = pmap_pte_quick(pmap, pv->pv_va);
tpte = *pte;
PT_SET_VA_MA(pte, 0, TRUE);
if (tpte & PG_W)
pmap->pm_stats.wired_count--;
if (tpte & PG_A)
vm_page_flag_set(m, PG_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if (tpte & PG_M) {
KASSERT((tpte & PG_RW),
("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
pv->pv_va, (uintmax_t)tpte));
vm_page_dirty(m);
}
free = NULL;
pmap_unuse_pt(pmap, pv->pv_va, &free);
pmap_invalidate_page(pmap, pv->pv_va);
pmap_free_zero_pages(free);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_flag_clear(m, PG_WRITEABLE);
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
sched_unpin();
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
vm_offset_t pdnxt;
pd_entry_t ptpaddr;
pt_entry_t *pte;
int anychanged;
CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
pmap, sva, eva, prot);
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
#ifdef PAE
if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
(VM_PROT_WRITE|VM_PROT_EXECUTE))
return;
#else
if (prot & VM_PROT_WRITE)
return;
#endif
anychanged = 0;
vm_page_lock_queues();
sched_pin();
PMAP_LOCK(pmap);
for (; sva < eva; sva = pdnxt) {
pt_entry_t obits, pbits;
unsigned pdirindex;
pdnxt = (sva + NBPDR) & ~PDRMASK;
pdirindex = sva >> PDRSHIFT;
ptpaddr = pmap->pm_pdir[pdirindex];
/*
* Weed out invalid mappings. Note: we assume that the page
* directory table is always allocated, and in kernel virtual.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
if ((prot & VM_PROT_WRITE) == 0)
pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
#ifdef PAE
if ((prot & VM_PROT_EXECUTE) == 0)
pmap->pm_pdir[pdirindex] |= pg_nx;
#endif
anychanged = 1;
continue;
}
if (pdnxt > eva)
pdnxt = eva;
for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
sva += PAGE_SIZE) {
vm_page_t m;
retry:
/*
* Regardless of whether a pte is 32 or 64 bits in
* size, PG_RW, PG_A, and PG_M are among the least
* significant 32 bits.
*/
obits = pbits = *pte;
if ((pbits & PG_V) == 0)
continue;
if (pbits & PG_MANAGED) {
m = NULL;
if (pbits & PG_A) {
m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
vm_page_flag_set(m, PG_REFERENCED);
pbits &= ~PG_A;
}
if ((pbits & PG_M) != 0) {
if (m == NULL)
m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
vm_page_dirty(m);
}
}
if ((prot & VM_PROT_WRITE) == 0)
pbits &= ~(PG_RW | PG_M);
#ifdef PAE
if ((prot & VM_PROT_EXECUTE) == 0)
pbits |= pg_nx;
#endif
if (pbits != obits) {
#ifdef XEN
obits = *pte;
PT_SET_VA_MA(pte, pbits, TRUE);
if (*pte != pbits)
goto retry;
#else
#ifdef PAE
if (!atomic_cmpset_64(pte, obits, pbits))
goto retry;
#else
if (!atomic_cmpset_int((u_int *)pte, obits,
pbits))
goto retry;
#endif
#endif
if (obits & PG_G)
pmap_invalidate_page(pmap, sva);
else
anychanged = 1;
}
}
}
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_VA_MA(PMAP1, 0, TRUE);
if (anychanged)
pmap_invalidate_all(pmap);
sched_unpin();
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
vm_paddr_t pa;
pd_entry_t *pde;
pt_entry_t *pte;
vm_paddr_t opa;
pt_entry_t origpte, newpte;
vm_page_t mpte, om;
boolean_t invlva;
CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
va = trunc_page(va);
#ifdef PMAP_DIAGNOSTIC
if (va > VM_MAX_KERNEL_ADDRESS)
panic("pmap_enter: toobig");
if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
#endif
mpte = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
sched_pin();
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
mpte = pmap_allocpte(pmap, va, M_WAITOK);
}
#if 0 && defined(PMAP_DIAGNOSTIC)
else {
pd_entry_t *pdeaddr = pmap_pde(pmap, va);
origpte = *pdeaddr;
if ((origpte & PG_V) == 0) {
panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
pmap->pm_pdir[PTDPTDI], origpte, va);
}
}
#endif
pde = pmap_pde(pmap, va);
if ((*pde & PG_PS) != 0)
panic("pmap_enter: attempted pmap_enter on 4MB page");
pte = pmap_pte_quick(pmap, va);
/*
* Page Directory table entry not valid, we need a new PT page
*/
if (pte == NULL) {
panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
}
pa = VM_PAGE_TO_PHYS(m);
om = NULL;
opa = origpte = 0;
#if 0
KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
pte, *pte));
#endif
origpte = *pte;
if (origpte)
origpte = xpmap_mtop(origpte);
opa = origpte & PG_FRAME;
/*
* Mapping has not changed, must be protection or wiring change.
*/
if (origpte && (opa == pa)) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if (wired && ((origpte & PG_W) == 0))
pmap->pm_stats.wired_count++;
else if (!wired && (origpte & PG_W))
pmap->pm_stats.wired_count--;
/*
* Remove extra pte reference
*/
if (mpte)
mpte->wire_count--;
/*
* We might be turning off write access to the page,
* so we go ahead and sense modify status.
*/
if (origpte & PG_MANAGED) {
om = m;
pa |= PG_MANAGED;
}
goto validate;
}
/*
* Mapping has changed, invalidate old range and fall through to
* handle validating new mapping.
*/
if (opa) {
if (origpte & PG_W)
pmap->pm_stats.wired_count--;
if (origpte & PG_MANAGED) {
om = PHYS_TO_VM_PAGE(opa);
pmap_remove_entry(pmap, om, va);
} else if (va < VM_MAXUSER_ADDRESS)
printf("va=0x%x is unmanaged :-( \n", va);
if (mpte != NULL) {
mpte->wire_count--;
KASSERT(mpte->wire_count > 0,
("pmap_enter: missing reference to page table page,"
" va: 0x%x", va));
}
} else
pmap->pm_stats.resident_count++;
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
pmap_insert_entry(pmap, va, m);
pa |= PG_MANAGED;
}
/*
* Increment counters
*/
if (wired)
pmap->pm_stats.wired_count++;
validate:
/*
* Now validate mapping with desired protection/wiring.
*/
newpte = (pt_entry_t)(pa | PG_V);
if ((prot & VM_PROT_WRITE) != 0) {
newpte |= PG_RW;
vm_page_flag_set(m, PG_WRITEABLE);
}
#ifdef PAE
if ((prot & VM_PROT_EXECUTE) == 0)
newpte |= pg_nx;
#endif
if (wired)
newpte |= PG_W;
if (va < VM_MAXUSER_ADDRESS)
newpte |= PG_U;
if (pmap == kernel_pmap)
newpte |= pgeflag;
critical_enter();
/*
* if the mapping or permission bits are different, we need
* to update the pte.
*/
if ((origpte & ~(PG_M|PG_A)) != newpte) {
if (origpte) {
invlva = FALSE;
origpte = *pte;
PT_SET_VA(pte, newpte | PG_A, FALSE);
if (origpte & PG_A) {
if (origpte & PG_MANAGED)
vm_page_flag_set(om, PG_REFERENCED);
if (opa != VM_PAGE_TO_PHYS(m))
invlva = TRUE;
#ifdef PAE
if ((origpte & PG_NX) == 0 &&
(newpte & PG_NX) != 0)
invlva = TRUE;
#endif
}
if (origpte & PG_M) {
KASSERT((origpte & PG_RW),
("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
va, (uintmax_t)origpte));
if ((origpte & PG_MANAGED) != 0)
vm_page_dirty(om);
if ((prot & VM_PROT_WRITE) == 0)
invlva = TRUE;
}
if (invlva)
pmap_invalidate_page(pmap, va);
} else{
PT_SET_VA(pte, newpte | PG_A, FALSE);
}
}
PT_UPDATES_FLUSH();
critical_exit();
if (*PMAP1)
PT_SET_VA_MA(PMAP1, 0, TRUE);
sched_unpin();
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m, mpte;
vm_pindex_t diff, psize;
multicall_entry_t mcl[16];
multicall_entry_t *mclp = mcl;
int error, count = 0;
VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
psize = atop(end - start);
mpte = NULL;
m = m_start;
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
prot, mpte);
m = TAILQ_NEXT(m, listq);
if (count == 16) {
error = HYPERVISOR_multicall(mcl, count);
KASSERT(error == 0, ("bad multicall %d", error));
mclp = mcl;
count = 0;
}
}
if (count) {
error = HYPERVISOR_multicall(mcl, count);
KASSERT(error == 0, ("bad multicall %d", error));
}
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
multicall_entry_t mcl, *mclp;
int count = 0;
mclp = &mcl;
CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
pmap, va, m, prot);
PMAP_LOCK(pmap);
(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
if (count)
HYPERVISOR_multicall(&mcl, count);
PMAP_UNLOCK(pmap);
}
#ifdef notyet
void
pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
{
int i, error, index = 0;
multicall_entry_t mcl[16];
multicall_entry_t *mclp = mcl;
PMAP_LOCK(pmap);
for (i = 0; i < count; i++, addrs++, pages++, prots++) {
if (!pmap_is_prefaultable_locked(pmap, *addrs))
continue;
(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
if (index == 16) {
error = HYPERVISOR_multicall(mcl, index);
mclp = mcl;
index = 0;
KASSERT(error == 0, ("bad multicall %d", error));
}
}
if (index) {
error = HYPERVISOR_multicall(mcl, index);
KASSERT(error == 0, ("bad multicall %d", error));
}
PMAP_UNLOCK(pmap);
}
#endif
static vm_page_t
pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte)
{
pt_entry_t *pte;
vm_paddr_t pa;
vm_page_t free;
multicall_entry_t *mcl = *mclpp;
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
(m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
("pmap_enter_quick_locked: managed mapping within the clean submap"));
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
unsigned ptepindex;
pd_entry_t ptema;
/*
* Calculate pagetable page index
*/
ptepindex = va >> PDRSHIFT;
if (mpte && (mpte->pindex == ptepindex)) {
mpte->wire_count++;
} else {
/*
* Get the page directory entry
*/
ptema = pmap->pm_pdir[ptepindex];
/*
* If the page table page is mapped, we just increment
* the hold count, and activate it.
*/
if (ptema & PG_V) {
if (ptema & PG_PS)
panic("pmap_enter_quick: unexpected mapping into 4MB page");
mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
mpte->wire_count++;
} else {
mpte = _pmap_allocpte(pmap, ptepindex,
M_NOWAIT);
if (mpte == NULL)
return (mpte);
}
}
} else {
mpte = NULL;
}
/*
* This call to vtopte makes the assumption that we are
* entering the page into the current pmap. In order to support
* quick entry into any pmap, one would likely use pmap_pte_quick.
* But that isn't as quick as vtopte.
*/
KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
pte = vtopte(va);
if (*pte & PG_V) {
if (mpte != NULL) {
mpte->wire_count--;
mpte = NULL;
}
return (mpte);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
!pmap_try_insert_pv_entry(pmap, va, m)) {
if (mpte != NULL) {
free = NULL;
if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
pmap_invalidate_page(pmap, va);
pmap_free_zero_pages(free);
}
mpte = NULL;
}
return (mpte);
}
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
pa = VM_PAGE_TO_PHYS(m);
#ifdef PAE
if ((prot & VM_PROT_EXECUTE) == 0)
pa |= pg_nx;
#endif
#if 0
/*
* Now validate mapping with RO protection
*/
if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
pte_store(pte, pa | PG_V | PG_U);
else
pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
#else
/*
* Now validate mapping with RO protection
*/
if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
pa = xpmap_ptom(pa | PG_V | PG_U);
else
pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
mcl->op = __HYPERVISOR_update_va_mapping;
mcl->args[0] = va;
mcl->args[1] = (uint32_t)(pa & 0xffffffff);
mcl->args[2] = (uint32_t)(pa >> 32);
mcl->args[3] = 0;
*mclpp = mcl + 1;
*count = *count + 1;
#endif
return mpte;
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
invlpg(va);
return ((void *)crashdumpmap);
}
/*
* This code maps large physical mmap regions into the
* processor address space. Note that some shortcuts
* are taken, but the code works.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex,
vm_size_t size)
{
vm_page_t p;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->type == OBJT_DEVICE,
("pmap_object_init_pt: non-device object"));
if (pseflag &&
((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
int i;
vm_page_t m[1];
unsigned int ptepindex;
int npdes;
pd_entry_t ptepa;
PMAP_LOCK(pmap);
if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
goto out;
PMAP_UNLOCK(pmap);
retry:
p = vm_page_lookup(object, pindex);
if (p != NULL) {
if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
goto retry;
} else {
p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
if (p == NULL)
return;
m[0] = p;
if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
vm_page_lock_queues();
vm_page_free(p);
vm_page_unlock_queues();
return;
}
p = vm_page_lookup(object, pindex);
vm_page_wakeup(p);
}
ptepa = VM_PAGE_TO_PHYS(p);
if (ptepa & (NBPDR - 1))
return;
p->valid = VM_PAGE_BITS_ALL;
PMAP_LOCK(pmap);
pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
npdes = size >> PDRSHIFT;
critical_enter();
for(i = 0; i < npdes; i++) {
PD_SET_VA(pmap, ptepindex,
ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
ptepa += NBPDR;
ptepindex += 1;
}
pmap_invalidate_all(pmap);
critical_exit();
out:
PMAP_UNLOCK(pmap);
}
}
/*
* Routine: pmap_change_wiring
* Function: Change the wiring attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
{
pt_entry_t *pte;
vm_page_lock_queues();
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, va);
if (wired && !pmap_pte_w(pte)) {
PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
pmap->pm_stats.wired_count++;
} else if (!wired && pmap_pte_w(pte)) {
PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
pmap->pm_stats.wired_count--;
}
/*
* Wiring is not a hardware characteristic so there is no need to
* invalidate TLB.
*/
pmap_pte_release(pte);
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
vm_page_t free;
vm_offset_t addr;
vm_offset_t end_addr = src_addr + len;
vm_offset_t pdnxt;
if (dst_addr != src_addr)
return;
if (!pmap_is_current(src_pmap)) {
CTR2(KTR_PMAP,
"pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
(src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
return;
}
CTR5(KTR_PMAP, "pmap_copy: dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
dst_pmap, src_pmap, dst_addr, len, src_addr);
vm_page_lock_queues();
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
sched_pin();
for (addr = src_addr; addr < end_addr; addr = pdnxt) {
pt_entry_t *src_pte, *dst_pte;
vm_page_t dstmpte, srcmpte;
pd_entry_t srcptepaddr;
unsigned ptepindex;
if (addr >= UPT_MIN_ADDRESS)
panic("pmap_copy: invalid to pmap_copy page tables");
pdnxt = (addr + NBPDR) & ~PDRMASK;
ptepindex = addr >> PDRSHIFT;
srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
if (srcptepaddr == 0)
continue;
if (srcptepaddr & PG_PS) {
if (dst_pmap->pm_pdir[ptepindex] == 0) {
PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
dst_pmap->pm_stats.resident_count +=
NBPDR / PAGE_SIZE;
}
continue;
}
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
if (srcmpte->wire_count == 0)
panic("pmap_copy: source page table page is unused");
if (pdnxt > end_addr)
pdnxt = end_addr;
src_pte = vtopte(addr);
while (addr < pdnxt) {
pt_entry_t ptetemp;
ptetemp = *src_pte;
/*
* we only virtual copy managed pages
*/
if ((ptetemp & PG_MANAGED) != 0) {
dstmpte = pmap_allocpte(dst_pmap, addr,
M_NOWAIT);
if (dstmpte == NULL)
break;
dst_pte = pmap_pte_quick(dst_pmap, addr);
if (*dst_pte == 0 &&
pmap_try_insert_pv_entry(dst_pmap, addr,
PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
/*
* Clear the wired, modified, and
* accessed (referenced) bits
* during the copy.
*/
KASSERT(ptetemp != 0, ("src_pte not set"));
PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
("no pmap copy expected: 0x%jx saw: 0x%jx",
ptetemp & ~(PG_W | PG_M | PG_A), *dst_pte));
dst_pmap->pm_stats.resident_count++;
} else {
free = NULL;
if (pmap_unwire_pte_hold(dst_pmap,
dstmpte, &free)) {
pmap_invalidate_page(dst_pmap,
addr);
pmap_free_zero_pages(free);
}
}
if (dstmpte->wire_count >= srcmpte->wire_count)
break;
}
addr += PAGE_SIZE;
src_pte++;
}
}
PT_UPDATES_FLUSH();
sched_unpin();
vm_page_unlock_queues();
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
struct sysmaps *sysmaps;
sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
mtx_lock(&sysmaps->lock);
if (*sysmaps->CMAP2)
panic("pmap_zero_page: CMAP2 busy");
sched_pin();
PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
pagezero(sysmaps->CADDR2);
PT_SET_MA(sysmaps->CADDR2, 0);
sched_unpin();
mtx_unlock(&sysmaps->lock);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
struct sysmaps *sysmaps;
sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
mtx_lock(&sysmaps->lock);
if (*sysmaps->CMAP2)
panic("pmap_zero_page: CMAP2 busy");
sched_pin();
PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
if (off == 0 && size == PAGE_SIZE)
pagezero(sysmaps->CADDR2);
else
bzero((char *)sysmaps->CADDR2 + off, size);
PT_SET_MA(sysmaps->CADDR2, 0);
sched_unpin();
mtx_unlock(&sysmaps->lock);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents. This
* is intended to be called from the vm_pagezero process only and
* outside of Giant.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
if (*CMAP3)
panic("pmap_zero_page: CMAP3 busy");
sched_pin();
PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
pagezero(CADDR3);
PT_SET_MA(CADDR3, 0);
sched_unpin();
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t src, vm_page_t dst)
{
struct sysmaps *sysmaps;
sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
mtx_lock(&sysmaps->lock);
if (*sysmaps->CMAP1)
panic("pmap_copy_page: CMAP1 busy");
if (*sysmaps->CMAP2)
panic("pmap_copy_page: CMAP2 busy");
sched_pin();
PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
PT_SET_MA(sysmaps->CADDR1, 0);
PT_SET_MA(sysmaps->CADDR2, 0);
sched_unpin();
mtx_unlock(&sysmaps->lock);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops = 0;
if (m->flags & PG_FICTITIOUS)
return (FALSE);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (PV_PMAP(pv) == pmap) {
return TRUE;
}
loops++;
if (loops >= 16)
break;
}
return (FALSE);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
pmap_t pmap;
int count;
count = 0;
if ((m->flags & PG_FICTITIOUS) != 0)
return (count);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
sched_pin();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
if ((*pte & PG_W) != 0)
count++;
PMAP_UNLOCK(pmap);
}
sched_unpin();
return (count);
}
/*
* Returns TRUE if the given page is mapped individually or as part of
* a 4mpage. Otherwise, returns FALSE.
*/
boolean_t
pmap_page_is_mapped(vm_page_t m)
{
struct md_page *pvh;
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
return (FALSE);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (TAILQ_EMPTY(&m->md.pv_list)) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
return (!TAILQ_EMPTY(&pvh->pv_list));
} else
return (TRUE);
}
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap_t pmap)
{
pt_entry_t *pte, tpte;
vm_page_t m, free = NULL;
pv_entry_t pv;
struct pv_chunk *pc, *npc;
int field, idx;
int32_t bit;
uint32_t inuse, bitmask;
int allfree;
CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
printf("warning: pmap_remove_pages called with non-current pmap\n");
return;
}
vm_page_lock_queues();
KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
PMAP_LOCK(pmap);
sched_pin();
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
allfree = 1;
for (field = 0; field < _NPCM; field++) {
inuse = (~(pc->pc_map[field])) & pc_freemask[field];
while (inuse != 0) {
bit = bsfl(inuse);
bitmask = 1UL << bit;
idx = field * 32 + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
pte = vtopte(pv->pv_va);
tpte = *pte ? xpmap_mtop(*pte) : 0;
if (tpte == 0) {
printf(
"TPTE at %p IS ZERO @ VA %08x\n",
pte, pv->pv_va);
panic("bad pte");
}
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (tpte & PG_W) {
allfree = 0;
continue;
}
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
KASSERT(m->phys_addr == (tpte & PG_FRAME),
("vm_page_t %p phys_addr mismatch %016jx %016jx",
m, (uintmax_t)m->phys_addr,
(uintmax_t)tpte));
KASSERT(m < &vm_page_array[vm_page_array_size],
("pmap_remove_pages: bad tpte %#jx",
(uintmax_t)tpte));
PT_CLEAR_VA(pte, FALSE);
/*
* Update the vm_page_t clean/reference bits.
*/
if (tpte & PG_M)
vm_page_dirty(m);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
pmap_unuse_pt(pmap, pv->pv_va, &free);
/* Mark free */
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc->pc_map[field] |= bitmask;
pmap->pm_stats.resident_count--;
}
}
PT_UPDATES_FLUSH();
if (allfree) {
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
pmap_qremove((vm_offset_t)pc, 1);
vm_page_unwire(m, 0);
vm_page_free(m);
pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
}
}
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
sched_unpin();
pmap_invalidate_all(pmap);
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
pmap_free_zero_pages(free);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
pmap_t pmap;
boolean_t rv;
rv = FALSE;
if (m->flags & PG_FICTITIOUS)
return (rv);
sched_pin();
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
rv = (*pte & PG_M) != 0;
PMAP_UNLOCK(pmap);
if (rv)
break;
}
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
sched_unpin();
return (rv);
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
static boolean_t
pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
{
pt_entry_t *pte;
boolean_t rv = FALSE;
return (rv);
if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
pte = vtopte(addr);
rv = (*pte == 0);
}
return (rv);
}
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
boolean_t rv;
PMAP_LOCK(pmap);
rv = pmap_is_prefaultable_locked(pmap, addr);
PMAP_UNLOCK(pmap);
return (rv);
}
void
pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
{
int i, npages = round_page(len) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
pt_entry_t *pte;
pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
PMAP_MARK_PRIV(xpmap_mtop(*pte));
pmap_pte_release(pte);
}
}
void
pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
{
int i, npages = round_page(len) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
pt_entry_t *pte;
pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
pmap_pte_release(pte);
}
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t oldpte, *pte;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0 ||
(m->flags & PG_WRITEABLE) == 0)
return;
sched_pin();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
retry:
oldpte = *pte;
if ((oldpte & PG_RW) != 0) {
vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
/*
* Regardless of whether a pte is 32 or 64 bits
* in size, PG_RW and PG_M are among the least
* significant 32 bits.
*/
PT_SET_VA_MA(pte, newpte, TRUE);
if (*pte != newpte)
goto retry;
if ((oldpte & PG_M) != 0)
vm_page_dirty(m);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
vm_page_flag_clear(m, PG_WRITEABLE);
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
sched_unpin();
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
pmap_ts_referenced(vm_page_t m)
{
pv_entry_t pv, pvf, pvn;
pmap_t pmap;
pt_entry_t *pte;
int rtval = 0;
if (m->flags & PG_FICTITIOUS)
return (rtval);
sched_pin();
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pvf = pv;
do {
pvn = TAILQ_NEXT(pv, pv_list);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
if ((*pte & PG_A) != 0) {
PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
pmap_invalidate_page(pmap, pv->pv_va);
rtval++;
if (rtval > 4)
pvn = NULL;
}
PMAP_UNLOCK(pmap);
} while ((pv = pvn) != NULL && pv != pvf);
}
PT_UPDATES_FLUSH();
if (*PMAP1)
PT_SET_MA(PADDR1, 0);
sched_unpin();
return (rtval);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t *pte;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0)
return;
sched_pin();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
if ((*pte & PG_M) != 0) {
/*
* Regardless of whether a pte is 32 or 64 bits
* in size, PG_M is among the least significant
* 32 bits.
*/
PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
sched_unpin();
}
/*
* pmap_clear_reference:
*
* Clear the reference bit on the specified physical page.
*/
void
pmap_clear_reference(vm_page_t m)
{
pv_entry_t pv;
pmap_t pmap;
pt_entry_t *pte;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0)
return;
sched_pin();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte = pmap_pte_quick(pmap, pv->pv_va);
if ((*pte & PG_A) != 0) {
/*
* Regardless of whether a pte is 32 or 64 bits
* in size, PG_A is among the least significant
* 32 bits.
*/
PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
sched_unpin();
}
/*
* Miscellaneous support routines follow
*/
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
{
vm_offset_t va, tmpva, offset;
offset = pa & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
pa = pa & PG_FRAME;
if (pa < KERNLOAD && pa + size <= KERNLOAD)
va = KERNBASE + pa;
else
va = kmem_alloc_nofault(kernel_map, size);
if (!va)
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0; ) {
pmap_kenter_attr(tmpva, pa, mode);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
pa += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, va, tmpva);
pmap_invalidate_cache();
return ((void *)(va + offset));
}
void *
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
{
return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
}
void *
pmap_mapbios(vm_paddr_t pa, vm_size_t size)
{
return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
}
void
pmap_unmapdev(vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset, tmpva;
if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
return;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
critical_enter();
for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
pmap_kremove(tmpva);
pmap_invalidate_range(kernel_pmap, va, tmpva);
critical_exit();
kmem_free(kernel_map, base, size);
}
int
pmap_change_attr(va, size, mode)
vm_offset_t va;
vm_size_t size;
int mode;
{
vm_offset_t base, offset, tmpva;
pt_entry_t *pte;
u_int opte, npte;
pd_entry_t *pde;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
/* Only supported on kernel virtual addresses. */
if (base <= VM_MAXUSER_ADDRESS)
return (EINVAL);
/* 4MB pages and pages that aren't mapped aren't supported. */
for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
pde = pmap_pde(kernel_pmap, tmpva);
if (*pde & PG_PS)
return (EINVAL);
if ((*pde & PG_V) == 0)
return (EINVAL);
pte = vtopte(va);
if ((*pte & PG_V) == 0)
return (EINVAL);
}
/*
* Ok, all the pages exist and are 4k, so run through them updating
* their cache mode.
*/
for (tmpva = base; size > 0; ) {
pte = vtopte(tmpva);
/*
* The cache mode bits are all in the low 32-bits of the
* PTE, so we can just spin on updating the low 32-bits.
*/
do {
opte = *(u_int *)pte;
npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
npte |= pmap_cache_bits(mode, 0);
PT_SET_VA_MA(pte, npte, TRUE);
} while (npte != opte && (*pte != npte));
tmpva += PAGE_SIZE;
size -= PAGE_SIZE;
}
/*
* Flush CPU caches to make sure any data isn't cached that shouldn't
* be, etc.
*/
pmap_invalidate_range(kernel_pmap, base, tmpva);
pmap_invalidate_cache();
return (0);
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr)
{
pt_entry_t *ptep, pte;
vm_page_t m;
int val = 0;
PMAP_LOCK(pmap);
ptep = pmap_pte(pmap, addr);
pte = (ptep != NULL) ? PT_GET(ptep) : 0;
pmap_pte_release(ptep);
PMAP_UNLOCK(pmap);
if (pte != 0) {
vm_paddr_t pa;
val = MINCORE_INCORE;
if ((pte & PG_MANAGED) == 0)
return val;
pa = pte & PG_FRAME;
m = PHYS_TO_VM_PAGE(pa);
/*
* Modified by us
*/
if (pte & PG_M)
val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
else {
/*
* Modified by someone else
*/
vm_page_lock_queues();
if (m->dirty || pmap_is_modified(m))
val |= MINCORE_MODIFIED_OTHER;
vm_page_unlock_queues();
}
/*
* Referenced by us
*/
if (pte & PG_A)
val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
else {
/*
* Referenced by someone else
*/
vm_page_lock_queues();
if ((m->flags & PG_REFERENCED) ||
pmap_ts_referenced(m)) {
val |= MINCORE_REFERENCED_OTHER;
vm_page_flag_set(m, PG_REFERENCED);
}
vm_page_unlock_queues();
}
}
return val;
}
void
pmap_activate(struct thread *td)
{
pmap_t pmap, oldpmap;
u_int32_t cr3;
critical_enter();
pmap = vmspace_pmap(td->td_proc->p_vmspace);
oldpmap = PCPU_GET(curpmap);
#if defined(SMP)
atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
#else
oldpmap->pm_active &= ~1;
pmap->pm_active |= 1;
#endif
#ifdef PAE
cr3 = vtophys(pmap->pm_pdpt);
#else
cr3 = vtophys(pmap->pm_pdir);
#endif
/*
* pmap_activate is for the current thread on the current cpu
*/
td->td_pcb->pcb_cr3 = cr3;
PT_UPDATES_FLUSH();
load_cr3(cr3);
PCPU_SET(curpmap, pmap);
critical_exit();
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
vm_offset_t superpage_offset;
if (size < NBPDR)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
superpage_offset = offset & PDRMASK;
if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
(*addr & PDRMASK) == superpage_offset)
return;
if ((*addr & PDRMASK) < superpage_offset)
*addr = (*addr & ~PDRMASK) + superpage_offset;
else
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
}
#ifdef XEN
void
pmap_suspend()
{
pmap_t pmap;
int i, pdir, offset;
vm_paddr_t pdirma;
mmu_update_t mu[4];
/*
* We need to remove the recursive mapping structure from all
* our pmaps so that Xen doesn't get confused when it restores
* the page tables. The recursive map lives at page directory
* index PTDPTDI. We assume that the suspend code has stopped
* the other vcpus (if any).
*/
LIST_FOREACH(pmap, &allpmaps, pm_list) {
for (i = 0; i < 4; i++) {
/*
* Figure out which page directory (L2) page
* contains this bit of the recursive map and
* the offset within that page of the map
* entry
*/
pdir = (PTDPTDI + i) / NPDEPG;
offset = (PTDPTDI + i) % NPDEPG;
pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
mu[i].val = 0;
}
HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
}
}
void
pmap_resume()
{
pmap_t pmap;
int i, pdir, offset;
vm_paddr_t pdirma;
mmu_update_t mu[4];
/*
* Restore the recursive map that we removed on suspend.
*/
LIST_FOREACH(pmap, &allpmaps, pm_list) {
for (i = 0; i < 4; i++) {
/*
* Figure out which page directory (L2) page
* contains this bit of the recursive map and
* the offset within that page of the map
* entry
*/
pdir = (PTDPTDI + i) / NPDEPG;
offset = (PTDPTDI + i) % NPDEPG;
pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
}
HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
}
}
#endif
#if defined(PMAP_DEBUG)
pmap_pid_dump(int pid)
{
pmap_t pmap;
struct proc *p;
int npte = 0;
int index;
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
if (p->p_pid != pid)
continue;
if (p->p_vmspace) {
int i,j;
index = 0;
pmap = vmspace_pmap(p->p_vmspace);
for (i = 0; i < NPDEPTD; i++) {
pd_entry_t *pde;
pt_entry_t *pte;
vm_offset_t base = i << PDRSHIFT;
pde = &pmap->pm_pdir[i];
if (pde && pmap_pde_v(pde)) {
for (j = 0; j < NPTEPG; j++) {
vm_offset_t va = base + (j << PAGE_SHIFT);
if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
if (index) {
index = 0;
printf("\n");
}
sx_sunlock(&allproc_lock);
return npte;
}
pte = pmap_pte(pmap, va);
if (pte && pmap_pte_v(pte)) {
pt_entry_t pa;
vm_page_t m;
pa = PT_GET(pte);
m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
va, pa, m->hold_count, m->wire_count, m->flags);
npte++;
index++;
if (index >= 2) {
index = 0;
printf("\n");
} else {
printf(" ");
}
}
}
}
}
}
}
sx_sunlock(&allproc_lock);
return npte;
}
#endif
#if defined(DEBUG)
static void pads(pmap_t pm);
void pmap_pvdump(vm_paddr_t pa);
/* print address space of pmap*/
static void
pads(pmap_t pm)
{
int i, j;
vm_paddr_t va;
pt_entry_t *ptep;
if (pm == kernel_pmap)
return;
for (i = 0; i < NPDEPTD; i++)
if (pm->pm_pdir[i])
for (j = 0; j < NPTEPG; j++) {
va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
if (pm == kernel_pmap && va < KERNBASE)
continue;
if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
continue;
ptep = pmap_pte(pm, va);
if (pmap_pte_v(ptep))
printf("%x:%x ", va, *ptep);
};
}
void
pmap_pvdump(vm_paddr_t pa)
{
pv_entry_t pv;
pmap_t pmap;
vm_page_t m;
printf("pa %x", pa);
m = PHYS_TO_VM_PAGE(pa);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
pmap = PV_PMAP(pv);
printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
pads(pmap);
}
printf(" ");
}
#endif