ba610be90a
Currently, this supports SHA1 and SHA2-{224,256,384,512} both as plain hashes and in HMAC mode on both amd64 and i386. It uses the SHA intrinsics when present similar to aesni(4), but uses SSE/AVX instructions when they are not. Note that some files from OpenSSL that normally wrap the assembly routines have been adapted to export methods usable by 'struct auth_xform' as is used by existing software crypto routines. Reviewed by: gallatin, jkim, delphij, gnn Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D26821
147 lines
4.2 KiB
C
147 lines
4.2 KiB
C
/*
|
|
* Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Derived from include/crypto/md32_common.h
|
|
*
|
|
* HASH_UPDATE and HASH_FINAL have been updated to work with the
|
|
* auth_hash interface.
|
|
*/
|
|
|
|
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
|
|
|
|
# define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
|
|
l|=(((unsigned long)(*((c)++)))<<16), \
|
|
l|=(((unsigned long)(*((c)++)))<< 8), \
|
|
l|=(((unsigned long)(*((c)++))) ) )
|
|
# define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
|
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
|
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
|
*((c)++)=(unsigned char)(((l) )&0xff), \
|
|
l)
|
|
|
|
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
|
|
|
# define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \
|
|
l|=(((unsigned long)(*((c)++)))<< 8), \
|
|
l|=(((unsigned long)(*((c)++)))<<16), \
|
|
l|=(((unsigned long)(*((c)++)))<<24) )
|
|
# define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
|
|
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
|
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
|
*((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
|
l)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Time for some action :-)
|
|
*/
|
|
|
|
static int
|
|
HASH_UPDATE(void *c_, const void *data_, unsigned int len)
|
|
{
|
|
HASH_CTX *c = c_;
|
|
const unsigned char *data = data_;
|
|
unsigned char *p;
|
|
HASH_LONG l;
|
|
size_t n;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
|
|
if (l < c->Nl) /* overflow */
|
|
c->Nh++;
|
|
c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
|
|
* 16-bit */
|
|
c->Nl = l;
|
|
|
|
n = c->num;
|
|
if (n != 0) {
|
|
p = (unsigned char *)c->data;
|
|
|
|
if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
|
|
memcpy(p + n, data, HASH_CBLOCK - n);
|
|
HASH_BLOCK_DATA_ORDER(c, p, 1);
|
|
n = HASH_CBLOCK - n;
|
|
data += n;
|
|
len -= n;
|
|
c->num = 0;
|
|
/*
|
|
* We use memset rather than OPENSSL_cleanse() here deliberately.
|
|
* Using OPENSSL_cleanse() here could be a performance issue. It
|
|
* will get properly cleansed on finalisation so this isn't a
|
|
* security problem.
|
|
*/
|
|
memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
|
|
} else {
|
|
memcpy(p + n, data, len);
|
|
c->num += (unsigned int)len;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
n = len / HASH_CBLOCK;
|
|
if (n > 0) {
|
|
HASH_BLOCK_DATA_ORDER(c, data, n);
|
|
n *= HASH_CBLOCK;
|
|
data += n;
|
|
len -= n;
|
|
}
|
|
|
|
if (len != 0) {
|
|
p = (unsigned char *)c->data;
|
|
c->num = (unsigned int)len;
|
|
memcpy(p, data, len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
HASH_FINAL(uint8_t *md, void *c_)
|
|
{
|
|
HASH_CTX *c = c_;
|
|
unsigned char *p = (unsigned char *)c->data;
|
|
size_t n = c->num;
|
|
|
|
p[n] = 0x80; /* there is always room for one */
|
|
n++;
|
|
|
|
if (n > (HASH_CBLOCK - 8)) {
|
|
memset(p + n, 0, HASH_CBLOCK - n);
|
|
n = 0;
|
|
HASH_BLOCK_DATA_ORDER(c, p, 1);
|
|
}
|
|
memset(p + n, 0, HASH_CBLOCK - 8 - n);
|
|
|
|
p += HASH_CBLOCK - 8;
|
|
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
|
|
(void)HOST_l2c(c->Nh, p);
|
|
(void)HOST_l2c(c->Nl, p);
|
|
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
|
(void)HOST_l2c(c->Nl, p);
|
|
(void)HOST_l2c(c->Nh, p);
|
|
#endif
|
|
p -= HASH_CBLOCK;
|
|
HASH_BLOCK_DATA_ORDER(c, p, 1);
|
|
c->num = 0;
|
|
OPENSSL_cleanse(p, HASH_CBLOCK);
|
|
|
|
#ifndef HASH_MAKE_STRING
|
|
# error "HASH_MAKE_STRING must be defined!"
|
|
#else
|
|
HASH_MAKE_STRING(c, md);
|
|
#endif
|
|
|
|
return;
|
|
}
|