freebsd-nq/sys/geom/mirror/g_mirror.c
Alexander Motin 10ae42ccbd GEOM: Set G_CF_DIRECT_SEND/RECEIVE for taste consumers.
All I/O requests through the taste consumers are synchronous, done
with g_read_data() and without any locks held.  It makes no sense
to delegate the I/O to g_down/g_up threads.

This removes many of context switches during disk retaste.

MFC after:	2 weeks
2022-01-29 21:59:03 -05:00

3612 lines
98 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/eventhandler.h>
#include <sys/fail.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <geom/geom.h>
#include <geom/geom_dbg.h>
#include <geom/mirror/g_mirror.h>
FEATURE(geom_mirror, "GEOM mirroring support");
static MALLOC_DEFINE(M_MIRROR, "mirror_data", "GEOM_MIRROR Data");
SYSCTL_DECL(_kern_geom);
static SYSCTL_NODE(_kern_geom, OID_AUTO, mirror, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"GEOM_MIRROR stuff");
int g_mirror_debug = 0;
SYSCTL_INT(_kern_geom_mirror, OID_AUTO, debug, CTLFLAG_RWTUN, &g_mirror_debug, 0,
"Debug level");
bool g_launch_mirror_before_timeout = true;
SYSCTL_BOOL(_kern_geom_mirror, OID_AUTO, launch_mirror_before_timeout,
CTLFLAG_RWTUN, &g_launch_mirror_before_timeout, 0,
"If false, force gmirror to wait out the full kern.geom.mirror.timeout "
"before launching mirrors");
static u_int g_mirror_timeout = 4;
SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_mirror_timeout,
0, "Time to wait on all mirror components");
static u_int g_mirror_idletime = 5;
SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, idletime, CTLFLAG_RWTUN,
&g_mirror_idletime, 0, "Mark components as clean when idling");
static u_int g_mirror_disconnect_on_failure = 1;
SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
&g_mirror_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
static u_int g_mirror_syncreqs = 2;
SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
&g_mirror_syncreqs, 0, "Parallel synchronization I/O requests.");
static u_int g_mirror_sync_period = 5;
SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, sync_update_period, CTLFLAG_RWTUN,
&g_mirror_sync_period, 0,
"Metadata update period during synchronization, in seconds");
#define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \
G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
G_MIRROR_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
} while (0)
static eventhandler_tag g_mirror_post_sync = NULL;
static int g_mirror_shutdown = 0;
static g_ctl_destroy_geom_t g_mirror_destroy_geom;
static g_taste_t g_mirror_taste;
static g_init_t g_mirror_init;
static g_fini_t g_mirror_fini;
static g_provgone_t g_mirror_providergone;
static g_resize_t g_mirror_resize;
struct g_class g_mirror_class = {
.name = G_MIRROR_CLASS_NAME,
.version = G_VERSION,
.ctlreq = g_mirror_config,
.taste = g_mirror_taste,
.destroy_geom = g_mirror_destroy_geom,
.init = g_mirror_init,
.fini = g_mirror_fini,
.providergone = g_mirror_providergone,
.resize = g_mirror_resize
};
static void g_mirror_destroy_provider(struct g_mirror_softc *sc);
static int g_mirror_update_disk(struct g_mirror_disk *disk, u_int state);
static void g_mirror_update_device(struct g_mirror_softc *sc, bool force);
static void g_mirror_dumpconf(struct sbuf *sb, const char *indent,
struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
static void g_mirror_timeout_drain(struct g_mirror_softc *sc);
static int g_mirror_refresh_device(struct g_mirror_softc *sc,
const struct g_provider *pp, const struct g_mirror_metadata *md);
static void g_mirror_sync_reinit(const struct g_mirror_disk *disk,
struct bio *bp, off_t offset);
static void g_mirror_sync_stop(struct g_mirror_disk *disk, int type);
static void g_mirror_register_request(struct g_mirror_softc *sc,
struct bio *bp);
static void g_mirror_sync_release(struct g_mirror_softc *sc);
static const char *
g_mirror_disk_state2str(int state)
{
switch (state) {
case G_MIRROR_DISK_STATE_NONE:
return ("NONE");
case G_MIRROR_DISK_STATE_NEW:
return ("NEW");
case G_MIRROR_DISK_STATE_ACTIVE:
return ("ACTIVE");
case G_MIRROR_DISK_STATE_STALE:
return ("STALE");
case G_MIRROR_DISK_STATE_SYNCHRONIZING:
return ("SYNCHRONIZING");
case G_MIRROR_DISK_STATE_DISCONNECTED:
return ("DISCONNECTED");
case G_MIRROR_DISK_STATE_DESTROY:
return ("DESTROY");
default:
return ("INVALID");
}
}
static const char *
g_mirror_device_state2str(int state)
{
switch (state) {
case G_MIRROR_DEVICE_STATE_STARTING:
return ("STARTING");
case G_MIRROR_DEVICE_STATE_RUNNING:
return ("RUNNING");
default:
return ("INVALID");
}
}
static const char *
g_mirror_get_diskname(struct g_mirror_disk *disk)
{
if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
return ("[unknown]");
return (disk->d_name);
}
/*
* --- Events handling functions ---
* Events in geom_mirror are used to maintain disks and device status
* from one thread to simplify locking.
*/
static void
g_mirror_event_free(struct g_mirror_event *ep)
{
free(ep, M_MIRROR);
}
static int
g_mirror_event_dispatch(struct g_mirror_event *ep, void *arg, int state,
int flags)
{
struct g_mirror_softc *sc;
struct g_mirror_disk *disk;
int error;
G_MIRROR_DEBUG(4, "%s: Sending event %p.", __func__, ep);
if ((flags & G_MIRROR_EVENT_DEVICE) != 0) {
disk = NULL;
sc = arg;
} else {
disk = arg;
sc = disk->d_softc;
}
ep->e_disk = disk;
ep->e_state = state;
ep->e_flags = flags;
ep->e_error = 0;
mtx_lock(&sc->sc_events_mtx);
TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_events_mtx);
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc);
mtx_lock(&sc->sc_queue_mtx);
wakeup(sc);
mtx_unlock(&sc->sc_queue_mtx);
if ((flags & G_MIRROR_EVENT_DONTWAIT) != 0)
return (0);
G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
sx_xunlock(&sc->sc_lock);
while ((ep->e_flags & G_MIRROR_EVENT_DONE) == 0) {
mtx_lock(&sc->sc_events_mtx);
MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "m:event",
hz * 5);
}
error = ep->e_error;
g_mirror_event_free(ep);
sx_xlock(&sc->sc_lock);
return (error);
}
int
g_mirror_event_send(void *arg, int state, int flags)
{
struct g_mirror_event *ep;
ep = malloc(sizeof(*ep), M_MIRROR, M_WAITOK);
return (g_mirror_event_dispatch(ep, arg, state, flags));
}
static struct g_mirror_event *
g_mirror_event_first(struct g_mirror_softc *sc)
{
struct g_mirror_event *ep;
mtx_lock(&sc->sc_events_mtx);
ep = TAILQ_FIRST(&sc->sc_events);
mtx_unlock(&sc->sc_events_mtx);
return (ep);
}
static void
g_mirror_event_remove(struct g_mirror_softc *sc, struct g_mirror_event *ep)
{
mtx_lock(&sc->sc_events_mtx);
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_events_mtx);
}
static void
g_mirror_event_cancel(struct g_mirror_disk *disk)
{
struct g_mirror_softc *sc;
struct g_mirror_event *ep, *tmpep;
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
mtx_lock(&sc->sc_events_mtx);
TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
if ((ep->e_flags & G_MIRROR_EVENT_DEVICE) != 0)
continue;
if (ep->e_disk != disk)
continue;
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0)
g_mirror_event_free(ep);
else {
ep->e_error = ECANCELED;
wakeup(ep);
}
}
mtx_unlock(&sc->sc_events_mtx);
}
/*
* Return the number of disks in given state.
* If state is equal to -1, count all connected disks.
*/
u_int
g_mirror_ndisks(struct g_mirror_softc *sc, int state)
{
struct g_mirror_disk *disk;
u_int n = 0;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (state == -1 || disk->d_state == state)
n++;
}
return (n);
}
/*
* Find a disk in mirror by its disk ID.
*/
static struct g_mirror_disk *
g_mirror_id2disk(struct g_mirror_softc *sc, uint32_t id)
{
struct g_mirror_disk *disk;
sx_assert(&sc->sc_lock, SX_XLOCKED);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_id == id)
return (disk);
}
return (NULL);
}
static u_int
g_mirror_nrequests(struct g_mirror_softc *sc, struct g_consumer *cp)
{
struct bio *bp;
u_int nreqs = 0;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH(bp, &sc->sc_queue, bio_queue) {
if (bp->bio_from == cp)
nreqs++;
}
mtx_unlock(&sc->sc_queue_mtx);
return (nreqs);
}
static int
g_mirror_is_busy(struct g_mirror_softc *sc, struct g_consumer *cp)
{
if (cp->index > 0) {
G_MIRROR_DEBUG(2,
"I/O requests for %s exist, can't destroy it now.",
cp->provider->name);
return (1);
}
if (g_mirror_nrequests(sc, cp) > 0) {
G_MIRROR_DEBUG(2,
"I/O requests for %s in queue, can't destroy it now.",
cp->provider->name);
return (1);
}
return (0);
}
static void
g_mirror_destroy_consumer(void *arg, int flags __unused)
{
struct g_consumer *cp;
g_topology_assert();
cp = arg;
G_MIRROR_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
g_detach(cp);
g_destroy_consumer(cp);
}
static void
g_mirror_kill_consumer(struct g_mirror_softc *sc, struct g_consumer *cp)
{
struct g_provider *pp;
int retaste_wait;
g_topology_assert();
cp->private = NULL;
if (g_mirror_is_busy(sc, cp))
return;
pp = cp->provider;
retaste_wait = 0;
if (cp->acw == 1) {
if ((pp->geom->flags & G_GEOM_WITHER) == 0)
retaste_wait = 1;
}
G_MIRROR_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
-cp->acw, -cp->ace, 0);
if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
g_access(cp, -cp->acr, -cp->acw, -cp->ace);
if (retaste_wait) {
/*
* After retaste event was send (inside g_access()), we can send
* event to detach and destroy consumer.
* A class, which has consumer to the given provider connected
* will not receive retaste event for the provider.
* This is the way how I ignore retaste events when I close
* consumers opened for write: I detach and destroy consumer
* after retaste event is sent.
*/
g_post_event(g_mirror_destroy_consumer, cp, M_WAITOK, NULL);
return;
}
G_MIRROR_DEBUG(1, "Consumer %s destroyed.", pp->name);
g_detach(cp);
g_destroy_consumer(cp);
}
static int
g_mirror_connect_disk(struct g_mirror_disk *disk, struct g_provider *pp)
{
struct g_consumer *cp;
int error;
g_topology_assert_not();
KASSERT(disk->d_consumer == NULL,
("Disk already connected (device %s).", disk->d_softc->sc_name));
g_topology_lock();
cp = g_new_consumer(disk->d_softc->sc_geom);
cp->flags |= G_CF_DIRECT_RECEIVE;
error = g_attach(cp, pp);
if (error != 0) {
g_destroy_consumer(cp);
g_topology_unlock();
return (error);
}
error = g_access(cp, 1, 1, 1);
if (error != 0) {
g_detach(cp);
g_destroy_consumer(cp);
g_topology_unlock();
G_MIRROR_DEBUG(0, "Cannot open consumer %s (error=%d).",
pp->name, error);
return (error);
}
g_topology_unlock();
disk->d_consumer = cp;
disk->d_consumer->private = disk;
disk->d_consumer->index = 0;
G_MIRROR_DEBUG(2, "Disk %s connected.", g_mirror_get_diskname(disk));
return (0);
}
static void
g_mirror_disconnect_consumer(struct g_mirror_softc *sc, struct g_consumer *cp)
{
g_topology_assert();
if (cp == NULL)
return;
if (cp->provider != NULL)
g_mirror_kill_consumer(sc, cp);
else
g_destroy_consumer(cp);
}
/*
* Initialize disk. This means allocate memory, create consumer, attach it
* to the provider and open access (r1w1e1) to it.
*/
static struct g_mirror_disk *
g_mirror_init_disk(struct g_mirror_softc *sc, struct g_provider *pp,
struct g_mirror_metadata *md, int *errorp)
{
struct g_mirror_disk *disk;
int i, error;
disk = malloc(sizeof(*disk), M_MIRROR, M_NOWAIT | M_ZERO);
if (disk == NULL) {
error = ENOMEM;
goto fail;
}
disk->d_softc = sc;
error = g_mirror_connect_disk(disk, pp);
if (error != 0)
goto fail;
disk->d_id = md->md_did;
disk->d_state = G_MIRROR_DISK_STATE_NONE;
disk->d_priority = md->md_priority;
disk->d_flags = md->md_dflags;
error = g_getattr("GEOM::candelete", disk->d_consumer, &i);
if (error == 0 && i != 0)
disk->d_flags |= G_MIRROR_DISK_FLAG_CANDELETE;
if (md->md_provider[0] != '\0')
disk->d_flags |= G_MIRROR_DISK_FLAG_HARDCODED;
disk->d_sync.ds_consumer = NULL;
disk->d_sync.ds_offset = md->md_sync_offset;
disk->d_sync.ds_offset_done = md->md_sync_offset;
disk->d_sync.ds_update_ts = time_uptime;
disk->d_genid = md->md_genid;
disk->d_sync.ds_syncid = md->md_syncid;
disk->d_init_ndisks = md->md_all;
disk->d_init_slice = md->md_slice;
disk->d_init_balance = md->md_balance;
disk->d_init_mediasize = md->md_mediasize;
if (errorp != NULL)
*errorp = 0;
return (disk);
fail:
if (errorp != NULL)
*errorp = error;
if (disk != NULL)
free(disk, M_MIRROR);
return (NULL);
}
static void
g_mirror_destroy_disk(struct g_mirror_disk *disk)
{
struct g_mirror_softc *sc;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
g_topology_lock();
LIST_REMOVE(disk, d_next);
g_topology_unlock();
g_mirror_event_cancel(disk);
if (sc->sc_hint == disk)
sc->sc_hint = NULL;
switch (disk->d_state) {
case G_MIRROR_DISK_STATE_SYNCHRONIZING:
g_mirror_sync_stop(disk, 1);
/* FALLTHROUGH */
case G_MIRROR_DISK_STATE_NEW:
case G_MIRROR_DISK_STATE_STALE:
case G_MIRROR_DISK_STATE_ACTIVE:
g_topology_lock();
g_mirror_disconnect_consumer(sc, disk->d_consumer);
g_topology_unlock();
free(disk, M_MIRROR);
break;
default:
KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
}
}
static void
g_mirror_free_device(struct g_mirror_softc *sc)
{
g_topology_assert();
mtx_destroy(&sc->sc_queue_mtx);
mtx_destroy(&sc->sc_events_mtx);
mtx_destroy(&sc->sc_done_mtx);
sx_destroy(&sc->sc_lock);
free(sc, M_MIRROR);
}
static void
g_mirror_providergone(struct g_provider *pp)
{
struct g_mirror_softc *sc = pp->private;
if ((--sc->sc_refcnt) == 0)
g_mirror_free_device(sc);
}
static void
g_mirror_destroy_device(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
struct g_mirror_event *ep;
struct g_geom *gp;
struct g_consumer *cp, *tmpcp;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
gp = sc->sc_geom;
if (sc->sc_provider != NULL)
g_mirror_destroy_provider(sc);
for (disk = LIST_FIRST(&sc->sc_disks); disk != NULL;
disk = LIST_FIRST(&sc->sc_disks)) {
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
g_mirror_update_metadata(disk);
g_mirror_destroy_disk(disk);
}
while ((ep = g_mirror_event_first(sc)) != NULL) {
g_mirror_event_remove(sc, ep);
if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0)
g_mirror_event_free(ep);
else {
ep->e_error = ECANCELED;
ep->e_flags |= G_MIRROR_EVENT_DONE;
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, ep);
mtx_lock(&sc->sc_events_mtx);
wakeup(ep);
mtx_unlock(&sc->sc_events_mtx);
}
}
g_mirror_timeout_drain(sc);
g_topology_lock();
LIST_FOREACH_SAFE(cp, &sc->sc_sync.ds_geom->consumer, consumer, tmpcp) {
g_mirror_disconnect_consumer(sc, cp);
}
g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
G_MIRROR_DEBUG(0, "Device %s destroyed.", gp->name);
g_wither_geom(gp, ENXIO);
sx_xunlock(&sc->sc_lock);
if ((--sc->sc_refcnt) == 0)
g_mirror_free_device(sc);
g_topology_unlock();
}
static void
g_mirror_orphan(struct g_consumer *cp)
{
struct g_mirror_disk *disk;
g_topology_assert();
disk = cp->private;
if (disk == NULL)
return;
disk->d_softc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED,
G_MIRROR_EVENT_DONTWAIT);
}
/*
* Function should return the next active disk on the list.
* It is possible that it will be the same disk as given.
* If there are no active disks on list, NULL is returned.
*/
static __inline struct g_mirror_disk *
g_mirror_find_next(struct g_mirror_softc *sc, struct g_mirror_disk *disk)
{
struct g_mirror_disk *dp;
for (dp = LIST_NEXT(disk, d_next); dp != disk;
dp = LIST_NEXT(dp, d_next)) {
if (dp == NULL)
dp = LIST_FIRST(&sc->sc_disks);
if (dp->d_state == G_MIRROR_DISK_STATE_ACTIVE)
break;
}
if (dp->d_state != G_MIRROR_DISK_STATE_ACTIVE)
return (NULL);
return (dp);
}
static struct g_mirror_disk *
g_mirror_get_disk(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
if (sc->sc_hint == NULL) {
sc->sc_hint = LIST_FIRST(&sc->sc_disks);
if (sc->sc_hint == NULL)
return (NULL);
}
disk = sc->sc_hint;
if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) {
disk = g_mirror_find_next(sc, disk);
if (disk == NULL)
return (NULL);
}
sc->sc_hint = g_mirror_find_next(sc, disk);
return (disk);
}
static int
g_mirror_write_metadata(struct g_mirror_disk *disk,
struct g_mirror_metadata *md)
{
struct g_mirror_softc *sc;
struct g_consumer *cp;
off_t offset, length;
u_char *sector;
int error = 0;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
cp = disk->d_consumer;
KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
cp->acw, cp->ace));
length = cp->provider->sectorsize;
offset = cp->provider->mediasize - length;
sector = malloc((size_t)length, M_MIRROR, M_WAITOK | M_ZERO);
if (md != NULL &&
(sc->sc_flags & G_MIRROR_DEVICE_FLAG_WIPE) == 0) {
/*
* Handle the case, when the size of parent provider reduced.
*/
if (offset < md->md_mediasize)
error = ENOSPC;
else
mirror_metadata_encode(md, sector);
}
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_metadata_write, error);
if (error == 0)
error = g_write_data(cp, offset, sector, length);
free(sector, M_MIRROR);
if (error != 0) {
if ((disk->d_flags & G_MIRROR_DISK_FLAG_BROKEN) == 0) {
disk->d_flags |= G_MIRROR_DISK_FLAG_BROKEN;
G_MIRROR_DEBUG(0, "Cannot write metadata on %s "
"(device=%s, error=%d).",
g_mirror_get_diskname(disk), sc->sc_name, error);
} else {
G_MIRROR_DEBUG(1, "Cannot write metadata on %s "
"(device=%s, error=%d).",
g_mirror_get_diskname(disk), sc->sc_name, error);
}
if (g_mirror_disconnect_on_failure &&
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 1) {
sc->sc_bump_id |= G_MIRROR_BUMP_GENID;
g_mirror_event_send(disk,
G_MIRROR_DISK_STATE_DISCONNECTED,
G_MIRROR_EVENT_DONTWAIT);
}
}
return (error);
}
static int
g_mirror_clear_metadata(struct g_mirror_disk *disk)
{
int error;
g_topology_assert_not();
sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
if (disk->d_softc->sc_type != G_MIRROR_TYPE_AUTOMATIC)
return (0);
error = g_mirror_write_metadata(disk, NULL);
if (error == 0) {
G_MIRROR_DEBUG(2, "Metadata on %s cleared.",
g_mirror_get_diskname(disk));
} else {
G_MIRROR_DEBUG(0,
"Cannot clear metadata on disk %s (error=%d).",
g_mirror_get_diskname(disk), error);
}
return (error);
}
void
g_mirror_fill_metadata(struct g_mirror_softc *sc, struct g_mirror_disk *disk,
struct g_mirror_metadata *md)
{
bzero(md, sizeof(*md));
strlcpy(md->md_magic, G_MIRROR_MAGIC, sizeof(md->md_magic));
md->md_version = G_MIRROR_VERSION;
strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
md->md_mid = sc->sc_id;
md->md_all = sc->sc_ndisks;
md->md_slice = sc->sc_slice;
md->md_balance = sc->sc_balance;
md->md_genid = sc->sc_genid;
md->md_mediasize = sc->sc_mediasize;
md->md_sectorsize = sc->sc_sectorsize;
md->md_mflags = (sc->sc_flags & G_MIRROR_DEVICE_FLAG_MASK);
if (disk == NULL) {
md->md_did = arc4random();
} else {
md->md_did = disk->d_id;
md->md_priority = disk->d_priority;
md->md_syncid = disk->d_sync.ds_syncid;
md->md_dflags = (disk->d_flags & G_MIRROR_DISK_FLAG_MASK);
if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING)
md->md_sync_offset = disk->d_sync.ds_offset_done;
if ((disk->d_flags & G_MIRROR_DISK_FLAG_HARDCODED) != 0) {
strlcpy(md->md_provider,
disk->d_consumer->provider->name,
sizeof(md->md_provider));
}
md->md_provsize = disk->d_consumer->provider->mediasize;
}
}
void
g_mirror_update_metadata(struct g_mirror_disk *disk)
{
struct g_mirror_softc *sc;
struct g_mirror_metadata md;
int error;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
if (sc->sc_type != G_MIRROR_TYPE_AUTOMATIC)
return;
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_WIPE) == 0)
g_mirror_fill_metadata(sc, disk, &md);
error = g_mirror_write_metadata(disk, &md);
if (error == 0) {
G_MIRROR_DEBUG(2, "Metadata on %s updated.",
g_mirror_get_diskname(disk));
} else {
G_MIRROR_DEBUG(0,
"Cannot update metadata on disk %s (error=%d).",
g_mirror_get_diskname(disk), error);
}
}
static void
g_mirror_bump_syncid(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 0,
("%s called with no active disks (device=%s).", __func__,
sc->sc_name));
sc->sc_syncid++;
G_MIRROR_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
sc->sc_syncid);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE ||
disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) {
disk->d_sync.ds_syncid = sc->sc_syncid;
g_mirror_update_metadata(disk);
}
}
}
static void
g_mirror_bump_genid(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 0,
("%s called with no active disks (device=%s).", __func__,
sc->sc_name));
sc->sc_genid++;
G_MIRROR_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
sc->sc_genid);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE ||
disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) {
disk->d_genid = sc->sc_genid;
g_mirror_update_metadata(disk);
}
}
}
static int
g_mirror_idle(struct g_mirror_softc *sc, int acw)
{
struct g_mirror_disk *disk;
int timeout;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (sc->sc_provider == NULL)
return (0);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0)
return (0);
if (sc->sc_idle)
return (0);
if (sc->sc_writes > 0)
return (0);
if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
timeout = g_mirror_idletime - (time_uptime - sc->sc_last_write);
if (!g_mirror_shutdown && timeout > 0)
return (timeout);
}
sc->sc_idle = 1;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE)
continue;
G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as clean.",
g_mirror_get_diskname(disk), sc->sc_name);
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
g_mirror_update_metadata(disk);
}
return (0);
}
static void
g_mirror_unidle(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0)
return;
sc->sc_idle = 0;
sc->sc_last_write = time_uptime;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE)
continue;
G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as dirty.",
g_mirror_get_diskname(disk), sc->sc_name);
disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY;
g_mirror_update_metadata(disk);
}
}
static void
g_mirror_done(struct bio *bp)
{
struct g_mirror_softc *sc;
sc = bp->bio_from->geom->softc;
bp->bio_cflags = G_MIRROR_BIO_FLAG_REGULAR;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue);
mtx_unlock(&sc->sc_queue_mtx);
wakeup(sc);
}
static void
g_mirror_regular_request_error(struct g_mirror_softc *sc,
struct g_mirror_disk *disk, struct bio *bp)
{
if ((bp->bio_cmd == BIO_FLUSH || bp->bio_cmd == BIO_SPEEDUP) &&
bp->bio_error == EOPNOTSUPP)
return;
if ((disk->d_flags & G_MIRROR_DISK_FLAG_BROKEN) == 0) {
disk->d_flags |= G_MIRROR_DISK_FLAG_BROKEN;
G_MIRROR_LOGREQ(0, bp, "Request failed (error=%d).",
bp->bio_error);
} else {
G_MIRROR_LOGREQ(1, bp, "Request failed (error=%d).",
bp->bio_error);
}
if (g_mirror_disconnect_on_failure &&
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 1) {
if (bp->bio_error == ENXIO &&
bp->bio_cmd == BIO_READ)
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
else if (bp->bio_error == ENXIO)
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID_NOW;
else
sc->sc_bump_id |= G_MIRROR_BUMP_GENID;
g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED,
G_MIRROR_EVENT_DONTWAIT);
}
}
static void
g_mirror_regular_request(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk;
struct bio *pbp;
g_topology_assert_not();
KASSERT(sc->sc_provider == bp->bio_parent->bio_to,
("regular request %p with unexpected origin", bp));
pbp = bp->bio_parent;
bp->bio_from->index--;
if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE)
sc->sc_writes--;
disk = bp->bio_from->private;
if (disk == NULL) {
g_topology_lock();
g_mirror_kill_consumer(sc, bp->bio_from);
g_topology_unlock();
}
switch (bp->bio_cmd) {
case BIO_READ:
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_read,
bp->bio_error);
break;
case BIO_WRITE:
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_write,
bp->bio_error);
break;
case BIO_DELETE:
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_delete,
bp->bio_error);
break;
case BIO_FLUSH:
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_flush,
bp->bio_error);
break;
case BIO_SPEEDUP:
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_speedup,
bp->bio_error);
break;
}
pbp->bio_inbed++;
KASSERT(pbp->bio_inbed <= pbp->bio_children,
("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
pbp->bio_children));
if (bp->bio_error == 0 && pbp->bio_error == 0) {
G_MIRROR_LOGREQ(3, bp, "Request delivered.");
g_destroy_bio(bp);
if (pbp->bio_children == pbp->bio_inbed) {
G_MIRROR_LOGREQ(3, pbp, "Request delivered.");
pbp->bio_completed = pbp->bio_length;
if (pbp->bio_cmd == BIO_WRITE ||
pbp->bio_cmd == BIO_DELETE) {
TAILQ_REMOVE(&sc->sc_inflight, pbp, bio_queue);
/* Release delayed sync requests if possible. */
g_mirror_sync_release(sc);
}
g_io_deliver(pbp, pbp->bio_error);
}
return;
} else if (bp->bio_error != 0) {
if (pbp->bio_error == 0)
pbp->bio_error = bp->bio_error;
if (disk != NULL)
g_mirror_regular_request_error(sc, disk, bp);
switch (pbp->bio_cmd) {
case BIO_DELETE:
case BIO_WRITE:
case BIO_FLUSH:
case BIO_SPEEDUP:
pbp->bio_inbed--;
pbp->bio_children--;
break;
}
}
g_destroy_bio(bp);
switch (pbp->bio_cmd) {
case BIO_READ:
if (pbp->bio_inbed < pbp->bio_children)
break;
/*
* If there is only one active disk we want to double-check that
* it is, in fact, the disk that we already tried. This is
* necessary because we might have just lost a race with a
* removal of the tried disk (likely because of the same error)
* and the only remaining disk is still viable for a retry.
*/
if (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 1 &&
disk != NULL &&
disk->d_state == G_MIRROR_DISK_STATE_ACTIVE) {
g_io_deliver(pbp, pbp->bio_error);
} else {
pbp->bio_error = 0;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_INSERT_TAIL(&sc->sc_queue, pbp, bio_queue);
mtx_unlock(&sc->sc_queue_mtx);
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc);
wakeup(sc);
}
break;
case BIO_DELETE:
case BIO_WRITE:
case BIO_FLUSH:
case BIO_SPEEDUP:
if (pbp->bio_children == 0) {
/*
* All requests failed.
*/
} else if (pbp->bio_inbed < pbp->bio_children) {
/* Do nothing. */
break;
} else if (pbp->bio_children == pbp->bio_inbed) {
/* Some requests succeeded. */
pbp->bio_error = 0;
pbp->bio_completed = pbp->bio_length;
}
if (pbp->bio_cmd == BIO_WRITE || pbp->bio_cmd == BIO_DELETE) {
TAILQ_REMOVE(&sc->sc_inflight, pbp, bio_queue);
/* Release delayed sync requests if possible. */
g_mirror_sync_release(sc);
}
g_io_deliver(pbp, pbp->bio_error);
break;
default:
KASSERT(1 == 0, ("Invalid request: %u.", pbp->bio_cmd));
break;
}
}
static void
g_mirror_sync_done(struct bio *bp)
{
struct g_mirror_softc *sc;
G_MIRROR_LOGREQ(3, bp, "Synchronization request delivered.");
sc = bp->bio_from->geom->softc;
bp->bio_cflags = G_MIRROR_BIO_FLAG_SYNC;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue);
mtx_unlock(&sc->sc_queue_mtx);
wakeup(sc);
}
static void
g_mirror_candelete(struct bio *bp)
{
struct g_mirror_softc *sc;
struct g_mirror_disk *disk;
int val;
sc = bp->bio_to->private;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_flags & G_MIRROR_DISK_FLAG_CANDELETE)
break;
}
val = disk != NULL;
g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
}
static void
g_mirror_kernel_dump(struct bio *bp)
{
struct g_mirror_softc *sc;
struct g_mirror_disk *disk;
struct bio *cbp;
struct g_kerneldump *gkd;
/*
* We configure dumping to the first component, because this component
* will be used for reading with 'prefer' balance algorithm.
* If the component with the highest priority is currently disconnected
* we will not be able to read the dump after the reboot if it will be
* connected and synchronized later. Can we do something better?
*/
sc = bp->bio_to->private;
disk = LIST_FIRST(&sc->sc_disks);
gkd = (struct g_kerneldump *)bp->bio_data;
if (gkd->length > bp->bio_to->mediasize)
gkd->length = bp->bio_to->mediasize;
cbp = g_clone_bio(bp);
if (cbp == NULL) {
g_io_deliver(bp, ENOMEM);
return;
}
cbp->bio_done = g_std_done;
g_io_request(cbp, disk->d_consumer);
G_MIRROR_DEBUG(1, "Kernel dump will go to %s.",
g_mirror_get_diskname(disk));
}
static void
g_mirror_start(struct bio *bp)
{
struct g_mirror_softc *sc;
sc = bp->bio_to->private;
/*
* If sc == NULL or there are no valid disks, provider's error
* should be set and g_mirror_start() should not be called at all.
*/
KASSERT(sc != NULL && sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Provider's error should be set (error=%d)(mirror=%s).",
bp->bio_to->error, bp->bio_to->name));
G_MIRROR_LOGREQ(3, bp, "Request received.");
switch (bp->bio_cmd) {
case BIO_READ:
case BIO_WRITE:
case BIO_DELETE:
case BIO_SPEEDUP:
case BIO_FLUSH:
break;
case BIO_GETATTR:
if (!strcmp(bp->bio_attribute, "GEOM::candelete")) {
g_mirror_candelete(bp);
return;
} else if (strcmp("GEOM::kerneldump", bp->bio_attribute) == 0) {
g_mirror_kernel_dump(bp);
return;
}
/* FALLTHROUGH */
default:
g_io_deliver(bp, EOPNOTSUPP);
return;
}
mtx_lock(&sc->sc_queue_mtx);
if (bp->bio_to->error != 0) {
mtx_unlock(&sc->sc_queue_mtx);
g_io_deliver(bp, bp->bio_to->error);
return;
}
TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue);
mtx_unlock(&sc->sc_queue_mtx);
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc);
wakeup(sc);
}
/*
* Return TRUE if the given request is colliding with a in-progress
* synchronization request.
*/
static bool
g_mirror_sync_collision(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk;
struct bio *sbp;
off_t rstart, rend, sstart, send;
u_int i;
if (sc->sc_sync.ds_ndisks == 0)
return (false);
rstart = bp->bio_offset;
rend = bp->bio_offset + bp->bio_length;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state != G_MIRROR_DISK_STATE_SYNCHRONIZING)
continue;
for (i = 0; i < g_mirror_syncreqs; i++) {
sbp = disk->d_sync.ds_bios[i];
if (sbp == NULL)
continue;
sstart = sbp->bio_offset;
send = sbp->bio_offset + sbp->bio_length;
if (rend > sstart && rstart < send)
return (true);
}
}
return (false);
}
/*
* Return TRUE if the given sync request is colliding with a in-progress regular
* request.
*/
static bool
g_mirror_regular_collision(struct g_mirror_softc *sc, struct bio *sbp)
{
off_t rstart, rend, sstart, send;
struct bio *bp;
if (sc->sc_sync.ds_ndisks == 0)
return (false);
sstart = sbp->bio_offset;
send = sbp->bio_offset + sbp->bio_length;
TAILQ_FOREACH(bp, &sc->sc_inflight, bio_queue) {
rstart = bp->bio_offset;
rend = bp->bio_offset + bp->bio_length;
if (rend > sstart && rstart < send)
return (true);
}
return (false);
}
/*
* Puts regular request onto delayed queue.
*/
static void
g_mirror_regular_delay(struct g_mirror_softc *sc, struct bio *bp)
{
G_MIRROR_LOGREQ(2, bp, "Delaying request.");
TAILQ_INSERT_TAIL(&sc->sc_regular_delayed, bp, bio_queue);
}
/*
* Puts synchronization request onto delayed queue.
*/
static void
g_mirror_sync_delay(struct g_mirror_softc *sc, struct bio *bp)
{
G_MIRROR_LOGREQ(2, bp, "Delaying synchronization request.");
TAILQ_INSERT_TAIL(&sc->sc_sync_delayed, bp, bio_queue);
}
/*
* Requeue delayed regular requests.
*/
static void
g_mirror_regular_release(struct g_mirror_softc *sc)
{
struct bio *bp;
if ((bp = TAILQ_FIRST(&sc->sc_regular_delayed)) == NULL)
return;
if (g_mirror_sync_collision(sc, bp))
return;
G_MIRROR_DEBUG(2, "Requeuing regular requests after collision.");
mtx_lock(&sc->sc_queue_mtx);
TAILQ_CONCAT(&sc->sc_regular_delayed, &sc->sc_queue, bio_queue);
TAILQ_SWAP(&sc->sc_regular_delayed, &sc->sc_queue, bio, bio_queue);
mtx_unlock(&sc->sc_queue_mtx);
}
/*
* Releases delayed sync requests which don't collide anymore with regular
* requests.
*/
static void
g_mirror_sync_release(struct g_mirror_softc *sc)
{
struct bio *bp, *bp2;
TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed, bio_queue, bp2) {
if (g_mirror_regular_collision(sc, bp))
continue;
TAILQ_REMOVE(&sc->sc_sync_delayed, bp, bio_queue);
G_MIRROR_LOGREQ(2, bp,
"Releasing delayed synchronization request.");
g_io_request(bp, bp->bio_from);
}
}
/*
* Free a synchronization request and clear its slot in the array.
*/
static void
g_mirror_sync_request_free(struct g_mirror_disk *disk, struct bio *bp)
{
int idx;
if (disk != NULL && disk->d_sync.ds_bios != NULL) {
idx = (int)(uintptr_t)bp->bio_caller1;
KASSERT(disk->d_sync.ds_bios[idx] == bp,
("unexpected sync BIO at %p:%d", disk, idx));
disk->d_sync.ds_bios[idx] = NULL;
}
free(bp->bio_data, M_MIRROR);
g_destroy_bio(bp);
}
/*
* Handle synchronization requests.
* Every synchronization request is a two-step process: first, a read request is
* sent to the mirror provider via the sync consumer. If that request completes
* successfully, it is converted to a write and sent to the disk being
* synchronized. If the write also completes successfully, the synchronization
* offset is advanced and a new read request is submitted.
*/
static void
g_mirror_sync_request(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk;
struct g_mirror_disk_sync *sync;
KASSERT((bp->bio_cmd == BIO_READ &&
bp->bio_from->geom == sc->sc_sync.ds_geom) ||
(bp->bio_cmd == BIO_WRITE && bp->bio_from->geom == sc->sc_geom),
("Sync BIO %p with unexpected origin", bp));
bp->bio_from->index--;
disk = bp->bio_from->private;
if (disk == NULL) {
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
g_topology_lock();
g_mirror_kill_consumer(sc, bp->bio_from);
g_topology_unlock();
g_mirror_sync_request_free(NULL, bp);
sx_xlock(&sc->sc_lock);
return;
}
sync = &disk->d_sync;
/*
* Synchronization request.
*/
switch (bp->bio_cmd) {
case BIO_READ: {
struct g_consumer *cp;
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_sync_request_read,
bp->bio_error);
if (bp->bio_error != 0) {
G_MIRROR_LOGREQ(0, bp,
"Synchronization request failed (error=%d).",
bp->bio_error);
/*
* The read error will trigger a syncid bump, so there's
* no need to do that here.
*
* The read error handling for regular requests will
* retry the read from all active mirrors before passing
* the error back up, so there's no need to retry here.
*/
g_mirror_sync_request_free(disk, bp);
g_mirror_event_send(disk,
G_MIRROR_DISK_STATE_DISCONNECTED,
G_MIRROR_EVENT_DONTWAIT);
return;
}
G_MIRROR_LOGREQ(3, bp,
"Synchronization request half-finished.");
bp->bio_cmd = BIO_WRITE;
bp->bio_cflags = 0;
cp = disk->d_consumer;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
cp->index++;
g_io_request(bp, cp);
return;
}
case BIO_WRITE: {
off_t offset;
int i;
KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_sync_request_write,
bp->bio_error);
if (bp->bio_error != 0) {
G_MIRROR_LOGREQ(0, bp,
"Synchronization request failed (error=%d).",
bp->bio_error);
g_mirror_sync_request_free(disk, bp);
sc->sc_bump_id |= G_MIRROR_BUMP_GENID;
g_mirror_event_send(disk,
G_MIRROR_DISK_STATE_DISCONNECTED,
G_MIRROR_EVENT_DONTWAIT);
return;
}
G_MIRROR_LOGREQ(3, bp, "Synchronization request finished.");
if (sync->ds_offset >= sc->sc_mediasize ||
sync->ds_consumer == NULL ||
(sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
/* Don't send more synchronization requests. */
sync->ds_inflight--;
g_mirror_sync_request_free(disk, bp);
if (sync->ds_inflight > 0)
return;
if (sync->ds_consumer == NULL ||
(sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
return;
}
/* Disk up-to-date, activate it. */
g_mirror_event_send(disk, G_MIRROR_DISK_STATE_ACTIVE,
G_MIRROR_EVENT_DONTWAIT);
return;
}
/* Send next synchronization request. */
g_mirror_sync_reinit(disk, bp, sync->ds_offset);
sync->ds_offset += bp->bio_length;
G_MIRROR_LOGREQ(3, bp, "Sending synchronization request.");
sync->ds_consumer->index++;
/*
* Delay the request if it is colliding with a regular request.
*/
if (g_mirror_regular_collision(sc, bp))
g_mirror_sync_delay(sc, bp);
else
g_io_request(bp, sync->ds_consumer);
/* Requeue delayed requests if possible. */
g_mirror_regular_release(sc);
/* Find the smallest offset */
offset = sc->sc_mediasize;
for (i = 0; i < g_mirror_syncreqs; i++) {
bp = sync->ds_bios[i];
if (bp != NULL && bp->bio_offset < offset)
offset = bp->bio_offset;
}
if (g_mirror_sync_period > 0 &&
time_uptime - sync->ds_update_ts > g_mirror_sync_period) {
sync->ds_offset_done = offset;
g_mirror_update_metadata(disk);
sync->ds_update_ts = time_uptime;
}
return;
}
default:
panic("Invalid I/O request %p", bp);
}
}
static void
g_mirror_request_prefer(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk;
struct g_consumer *cp;
struct bio *cbp;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE)
break;
}
if (disk == NULL) {
if (bp->bio_error == 0)
bp->bio_error = ENXIO;
g_io_deliver(bp, bp->bio_error);
return;
}
cbp = g_clone_bio(bp);
if (cbp == NULL) {
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
/*
* Fill in the component buf structure.
*/
cp = disk->d_consumer;
cbp->bio_done = g_mirror_done;
cbp->bio_to = cp->provider;
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr,
cp->acw, cp->ace));
cp->index++;
g_io_request(cbp, cp);
}
static void
g_mirror_request_round_robin(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk;
struct g_consumer *cp;
struct bio *cbp;
disk = g_mirror_get_disk(sc);
if (disk == NULL) {
if (bp->bio_error == 0)
bp->bio_error = ENXIO;
g_io_deliver(bp, bp->bio_error);
return;
}
cbp = g_clone_bio(bp);
if (cbp == NULL) {
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
/*
* Fill in the component buf structure.
*/
cp = disk->d_consumer;
cbp->bio_done = g_mirror_done;
cbp->bio_to = cp->provider;
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr,
cp->acw, cp->ace));
cp->index++;
g_io_request(cbp, cp);
}
#define TRACK_SIZE (1 * 1024 * 1024)
#define LOAD_SCALE 256
#define ABS(x) (((x) >= 0) ? (x) : (-(x)))
static void
g_mirror_request_load(struct g_mirror_softc *sc, struct bio *bp)
{
struct g_mirror_disk *disk, *dp;
struct g_consumer *cp;
struct bio *cbp;
int prio, best;
/* Find a disk with the smallest load. */
disk = NULL;
best = INT_MAX;
LIST_FOREACH(dp, &sc->sc_disks, d_next) {
if (dp->d_state != G_MIRROR_DISK_STATE_ACTIVE)
continue;
prio = dp->load;
/* If disk head is precisely in position - highly prefer it. */
if (dp->d_last_offset == bp->bio_offset)
prio -= 2 * LOAD_SCALE;
else
/* If disk head is close to position - prefer it. */
if (ABS(dp->d_last_offset - bp->bio_offset) < TRACK_SIZE)
prio -= 1 * LOAD_SCALE;
if (prio <= best) {
disk = dp;
best = prio;
}
}
KASSERT(disk != NULL, ("NULL disk for %s.", sc->sc_name));
cbp = g_clone_bio(bp);
if (cbp == NULL) {
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
/*
* Fill in the component buf structure.
*/
cp = disk->d_consumer;
cbp->bio_done = g_mirror_done;
cbp->bio_to = cp->provider;
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr,
cp->acw, cp->ace));
cp->index++;
/* Remember last head position */
disk->d_last_offset = bp->bio_offset + bp->bio_length;
/* Update loads. */
LIST_FOREACH(dp, &sc->sc_disks, d_next) {
dp->load = (dp->d_consumer->index * LOAD_SCALE +
dp->load * 7) / 8;
}
g_io_request(cbp, cp);
}
static void
g_mirror_request_split(struct g_mirror_softc *sc, struct bio *bp)
{
struct bio_queue queue;
struct g_mirror_disk *disk;
struct g_consumer *cp __diagused;
struct bio *cbp;
off_t left, mod, offset, slice;
u_char *data;
u_int ndisks;
if (bp->bio_length <= sc->sc_slice) {
g_mirror_request_round_robin(sc, bp);
return;
}
ndisks = g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE);
slice = bp->bio_length / ndisks;
mod = slice % sc->sc_provider->sectorsize;
if (mod != 0)
slice += sc->sc_provider->sectorsize - mod;
/*
* Allocate all bios before sending any request, so we can
* return ENOMEM in nice and clean way.
*/
left = bp->bio_length;
offset = bp->bio_offset;
data = bp->bio_data;
TAILQ_INIT(&queue);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE)
continue;
cbp = g_clone_bio(bp);
if (cbp == NULL) {
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, cbp, bio_queue);
g_destroy_bio(cbp);
}
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
TAILQ_INSERT_TAIL(&queue, cbp, bio_queue);
cbp->bio_done = g_mirror_done;
cbp->bio_caller1 = disk;
cbp->bio_to = disk->d_consumer->provider;
cbp->bio_offset = offset;
cbp->bio_data = data;
cbp->bio_length = MIN(left, slice);
left -= cbp->bio_length;
if (left == 0)
break;
offset += cbp->bio_length;
data += cbp->bio_length;
}
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, cbp, bio_queue);
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
disk = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
cp = disk->d_consumer;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
disk->d_consumer->index++;
g_io_request(cbp, disk->d_consumer);
}
}
static void
g_mirror_register_request(struct g_mirror_softc *sc, struct bio *bp)
{
struct bio_queue queue;
struct bio *cbp;
struct g_consumer *cp;
struct g_mirror_disk *disk;
sx_assert(&sc->sc_lock, SA_XLOCKED);
/*
* To avoid ordering issues, if a write is deferred because of a
* collision with a sync request, all I/O is deferred until that
* write is initiated.
*/
if (bp->bio_from->geom != sc->sc_sync.ds_geom &&
!TAILQ_EMPTY(&sc->sc_regular_delayed)) {
g_mirror_regular_delay(sc, bp);
return;
}
switch (bp->bio_cmd) {
case BIO_READ:
switch (sc->sc_balance) {
case G_MIRROR_BALANCE_LOAD:
g_mirror_request_load(sc, bp);
break;
case G_MIRROR_BALANCE_PREFER:
g_mirror_request_prefer(sc, bp);
break;
case G_MIRROR_BALANCE_ROUND_ROBIN:
g_mirror_request_round_robin(sc, bp);
break;
case G_MIRROR_BALANCE_SPLIT:
g_mirror_request_split(sc, bp);
break;
}
return;
case BIO_WRITE:
case BIO_DELETE:
/*
* Delay the request if it is colliding with a synchronization
* request.
*/
if (g_mirror_sync_collision(sc, bp)) {
g_mirror_regular_delay(sc, bp);
return;
}
if (sc->sc_idle)
g_mirror_unidle(sc);
else
sc->sc_last_write = time_uptime;
/*
* Bump syncid on first write.
*/
if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID) != 0) {
sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID;
g_mirror_bump_syncid(sc);
}
/*
* Allocate all bios before sending any request, so we can
* return ENOMEM in nice and clean way.
*/
TAILQ_INIT(&queue);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
switch (disk->d_state) {
case G_MIRROR_DISK_STATE_ACTIVE:
break;
case G_MIRROR_DISK_STATE_SYNCHRONIZING:
if (bp->bio_offset >= disk->d_sync.ds_offset)
continue;
break;
default:
continue;
}
if (bp->bio_cmd == BIO_DELETE &&
(disk->d_flags & G_MIRROR_DISK_FLAG_CANDELETE) == 0)
continue;
cbp = g_clone_bio(bp);
if (cbp == NULL) {
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, cbp, bio_queue);
g_destroy_bio(cbp);
}
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
TAILQ_INSERT_TAIL(&queue, cbp, bio_queue);
cbp->bio_done = g_mirror_done;
cp = disk->d_consumer;
cbp->bio_caller1 = cp;
cbp->bio_to = cp->provider;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).",
cp->provider->name, cp->acr, cp->acw, cp->ace));
}
if (TAILQ_EMPTY(&queue)) {
KASSERT(bp->bio_cmd == BIO_DELETE,
("No consumers for regular request %p", bp));
g_io_deliver(bp, EOPNOTSUPP);
return;
}
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
TAILQ_REMOVE(&queue, cbp, bio_queue);
cp = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
cp->index++;
sc->sc_writes++;
g_io_request(cbp, cp);
}
/*
* Put request onto inflight queue, so we can check if new
* synchronization requests don't collide with it.
*/
TAILQ_INSERT_TAIL(&sc->sc_inflight, bp, bio_queue);
return;
case BIO_SPEEDUP:
case BIO_FLUSH:
TAILQ_INIT(&queue);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE)
continue;
cbp = g_clone_bio(bp);
if (cbp == NULL) {
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, cbp, bio_queue);
g_destroy_bio(cbp);
}
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
TAILQ_INSERT_TAIL(&queue, cbp, bio_queue);
cbp->bio_done = g_mirror_done;
cbp->bio_caller1 = disk;
cbp->bio_to = disk->d_consumer->provider;
}
KASSERT(!TAILQ_EMPTY(&queue),
("No consumers for regular request %p", bp));
while ((cbp = TAILQ_FIRST(&queue)) != NULL) {
G_MIRROR_LOGREQ(3, cbp, "Sending request.");
TAILQ_REMOVE(&queue, cbp, bio_queue);
disk = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
cp = disk->d_consumer;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
cp->index++;
g_io_request(cbp, cp);
}
break;
default:
KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
bp->bio_cmd, sc->sc_name));
break;
}
}
static int
g_mirror_can_destroy(struct g_mirror_softc *sc)
{
struct g_geom *gp;
struct g_consumer *cp;
g_topology_assert();
gp = sc->sc_geom;
if (gp->softc == NULL)
return (1);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_TASTING) != 0)
return (0);
LIST_FOREACH(cp, &gp->consumer, consumer) {
if (g_mirror_is_busy(sc, cp))
return (0);
}
gp = sc->sc_sync.ds_geom;
LIST_FOREACH(cp, &gp->consumer, consumer) {
if (g_mirror_is_busy(sc, cp))
return (0);
}
G_MIRROR_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
sc->sc_name);
return (1);
}
static int
g_mirror_try_destroy(struct g_mirror_softc *sc)
{
if (sc->sc_rootmount != NULL) {
G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
g_topology_lock();
if (!g_mirror_can_destroy(sc)) {
g_topology_unlock();
return (0);
}
sc->sc_geom->softc = NULL;
sc->sc_sync.ds_geom->softc = NULL;
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DRAIN) != 0) {
g_topology_unlock();
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__,
&sc->sc_worker);
/* Unlock sc_lock here, as it can be destroyed after wakeup. */
sx_xunlock(&sc->sc_lock);
wakeup(&sc->sc_worker);
sc->sc_worker = NULL;
} else {
g_topology_unlock();
g_mirror_destroy_device(sc);
}
return (1);
}
/*
* Worker thread.
*/
static void
g_mirror_worker(void *arg)
{
struct g_mirror_softc *sc;
struct g_mirror_event *ep;
struct bio *bp;
int timeout;
sc = arg;
thread_lock(curthread);
sched_prio(curthread, PRIBIO);
thread_unlock(curthread);
sx_xlock(&sc->sc_lock);
for (;;) {
G_MIRROR_DEBUG(5, "%s: Let's see...", __func__);
/*
* First take a look at events.
* This is important to handle events before any I/O requests.
*/
ep = g_mirror_event_first(sc);
if (ep != NULL) {
g_mirror_event_remove(sc, ep);
if ((ep->e_flags & G_MIRROR_EVENT_DEVICE) != 0) {
/* Update only device status. */
G_MIRROR_DEBUG(3,
"Running event for device %s.",
sc->sc_name);
ep->e_error = 0;
g_mirror_update_device(sc, true);
} else {
/* Update disk status. */
G_MIRROR_DEBUG(3, "Running event for disk %s.",
g_mirror_get_diskname(ep->e_disk));
ep->e_error = g_mirror_update_disk(ep->e_disk,
ep->e_state);
if (ep->e_error == 0)
g_mirror_update_device(sc, false);
}
if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0) {
KASSERT(ep->e_error == 0,
("Error cannot be handled."));
g_mirror_event_free(ep);
} else {
ep->e_flags |= G_MIRROR_EVENT_DONE;
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__,
ep);
mtx_lock(&sc->sc_events_mtx);
wakeup(ep);
mtx_unlock(&sc->sc_events_mtx);
}
if ((sc->sc_flags &
G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
if (g_mirror_try_destroy(sc)) {
curthread->td_pflags &= ~TDP_GEOM;
G_MIRROR_DEBUG(1, "Thread exiting.");
kproc_exit(0);
}
}
G_MIRROR_DEBUG(5, "%s: I'm here 1.", __func__);
continue;
}
/*
* Check if we can mark array as CLEAN and if we can't take
* how much seconds should we wait.
*/
timeout = g_mirror_idle(sc, -1);
/*
* Handle I/O requests.
*/
mtx_lock(&sc->sc_queue_mtx);
bp = TAILQ_FIRST(&sc->sc_queue);
if (bp != NULL)
TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue);
else {
if ((sc->sc_flags &
G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
mtx_unlock(&sc->sc_queue_mtx);
if (g_mirror_try_destroy(sc)) {
curthread->td_pflags &= ~TDP_GEOM;
G_MIRROR_DEBUG(1, "Thread exiting.");
kproc_exit(0);
}
mtx_lock(&sc->sc_queue_mtx);
if (!TAILQ_EMPTY(&sc->sc_queue)) {
mtx_unlock(&sc->sc_queue_mtx);
continue;
}
}
if (g_mirror_event_first(sc) != NULL) {
mtx_unlock(&sc->sc_queue_mtx);
continue;
}
sx_xunlock(&sc->sc_lock);
MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:w1",
timeout * hz);
sx_xlock(&sc->sc_lock);
G_MIRROR_DEBUG(5, "%s: I'm here 4.", __func__);
continue;
}
mtx_unlock(&sc->sc_queue_mtx);
if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
(bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0) {
/*
* Handle completion of the first half (the read) of a
* block synchronization operation.
*/
g_mirror_sync_request(sc, bp);
} else if (bp->bio_to != sc->sc_provider) {
if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_REGULAR) != 0)
/*
* Handle completion of a regular I/O request.
*/
g_mirror_regular_request(sc, bp);
else if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0)
/*
* Handle completion of the second half (the
* write) of a block synchronization operation.
*/
g_mirror_sync_request(sc, bp);
else {
KASSERT(0,
("Invalid request cflags=0x%hx to=%s.",
bp->bio_cflags, bp->bio_to->name));
}
} else {
/*
* Initiate an I/O request.
*/
g_mirror_register_request(sc, bp);
}
G_MIRROR_DEBUG(5, "%s: I'm here 9.", __func__);
}
}
static void
g_mirror_update_idle(struct g_mirror_softc *sc, struct g_mirror_disk *disk)
{
sx_assert(&sc->sc_lock, SX_LOCKED);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0)
return;
if (!sc->sc_idle && (disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) == 0) {
G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as dirty.",
g_mirror_get_diskname(disk), sc->sc_name);
disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY;
} else if (sc->sc_idle &&
(disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) != 0) {
G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as clean.",
g_mirror_get_diskname(disk), sc->sc_name);
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
}
}
static void
g_mirror_sync_reinit(const struct g_mirror_disk *disk, struct bio *bp,
off_t offset)
{
void *data;
int idx;
data = bp->bio_data;
idx = (int)(uintptr_t)bp->bio_caller1;
g_reset_bio(bp);
bp->bio_cmd = BIO_READ;
bp->bio_data = data;
bp->bio_done = g_mirror_sync_done;
bp->bio_from = disk->d_sync.ds_consumer;
bp->bio_to = disk->d_softc->sc_provider;
bp->bio_caller1 = (void *)(uintptr_t)idx;
bp->bio_offset = offset;
bp->bio_length = MIN(maxphys,
disk->d_softc->sc_mediasize - bp->bio_offset);
}
static void
g_mirror_sync_start(struct g_mirror_disk *disk)
{
struct g_mirror_softc *sc;
struct g_mirror_disk_sync *sync;
struct g_consumer *cp;
struct bio *bp;
int error __diagused, i;
g_topology_assert_not();
sc = disk->d_softc;
sync = &disk->d_sync;
sx_assert(&sc->sc_lock, SX_LOCKED);
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING,
("Disk %s is not marked for synchronization.",
g_mirror_get_diskname(disk)));
KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Device not in RUNNING state (%s, %u).", sc->sc_name,
sc->sc_state));
sx_xunlock(&sc->sc_lock);
g_topology_lock();
cp = g_new_consumer(sc->sc_sync.ds_geom);
cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
error = g_attach(cp, sc->sc_provider);
KASSERT(error == 0,
("Cannot attach to %s (error=%d).", sc->sc_name, error));
error = g_access(cp, 1, 0, 0);
KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
g_topology_unlock();
sx_xlock(&sc->sc_lock);
G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
g_mirror_get_diskname(disk));
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) == 0)
disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY;
KASSERT(sync->ds_consumer == NULL,
("Sync consumer already exists (device=%s, disk=%s).",
sc->sc_name, g_mirror_get_diskname(disk)));
sync->ds_consumer = cp;
sync->ds_consumer->private = disk;
sync->ds_consumer->index = 0;
/*
* Allocate memory for synchronization bios and initialize them.
*/
sync->ds_bios = malloc(sizeof(struct bio *) * g_mirror_syncreqs,
M_MIRROR, M_WAITOK);
for (i = 0; i < g_mirror_syncreqs; i++) {
bp = g_alloc_bio();
sync->ds_bios[i] = bp;
bp->bio_data = malloc(maxphys, M_MIRROR, M_WAITOK);
bp->bio_caller1 = (void *)(uintptr_t)i;
g_mirror_sync_reinit(disk, bp, sync->ds_offset);
sync->ds_offset += bp->bio_length;
}
/* Increase the number of disks in SYNCHRONIZING state. */
sc->sc_sync.ds_ndisks++;
/* Set the number of in-flight synchronization requests. */
sync->ds_inflight = g_mirror_syncreqs;
/*
* Fire off first synchronization requests.
*/
for (i = 0; i < g_mirror_syncreqs; i++) {
bp = sync->ds_bios[i];
G_MIRROR_LOGREQ(3, bp, "Sending synchronization request.");
sync->ds_consumer->index++;
/*
* Delay the request if it is colliding with a regular request.
*/
if (g_mirror_regular_collision(sc, bp))
g_mirror_sync_delay(sc, bp);
else
g_io_request(bp, sync->ds_consumer);
}
}
/*
* Stop synchronization process.
* type: 0 - synchronization finished
* 1 - synchronization stopped
*/
static void
g_mirror_sync_stop(struct g_mirror_disk *disk, int type)
{
struct g_mirror_softc *sc;
struct g_consumer *cp;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
if (disk->d_sync.ds_consumer == NULL)
return;
if (type == 0) {
G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s finished.",
sc->sc_name, g_mirror_get_diskname(disk));
} else /* if (type == 1) */ {
G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
sc->sc_name, g_mirror_get_diskname(disk));
}
g_mirror_regular_release(sc);
free(disk->d_sync.ds_bios, M_MIRROR);
disk->d_sync.ds_bios = NULL;
cp = disk->d_sync.ds_consumer;
disk->d_sync.ds_consumer = NULL;
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
sc->sc_sync.ds_ndisks--;
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
g_topology_lock();
g_mirror_kill_consumer(sc, cp);
g_topology_unlock();
sx_xlock(&sc->sc_lock);
}
static void
g_mirror_launch_provider(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
struct g_provider *pp, *dp;
sx_assert(&sc->sc_lock, SX_LOCKED);
g_topology_lock();
pp = g_new_providerf(sc->sc_geom, "mirror/%s", sc->sc_name);
pp->flags |= G_PF_DIRECT_RECEIVE;
pp->mediasize = sc->sc_mediasize;
pp->sectorsize = sc->sc_sectorsize;
pp->stripesize = 0;
pp->stripeoffset = 0;
/* Splitting of unmapped BIO's could work but isn't implemented now */
if (sc->sc_balance != G_MIRROR_BALANCE_SPLIT)
pp->flags |= G_PF_ACCEPT_UNMAPPED;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer && disk->d_consumer->provider) {
dp = disk->d_consumer->provider;
if (dp->stripesize > pp->stripesize) {
pp->stripesize = dp->stripesize;
pp->stripeoffset = dp->stripeoffset;
}
/* A provider underneath us doesn't support unmapped */
if ((dp->flags & G_PF_ACCEPT_UNMAPPED) == 0) {
G_MIRROR_DEBUG(0, "Cancelling unmapped "
"because of %s.", dp->name);
pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
}
}
}
pp->private = sc;
sc->sc_refcnt++;
sc->sc_provider = pp;
g_error_provider(pp, 0);
g_topology_unlock();
G_MIRROR_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE), sc->sc_ndisks);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING)
g_mirror_sync_start(disk);
}
}
static void
g_mirror_destroy_provider(struct g_mirror_softc *sc)
{
struct g_mirror_disk *disk;
struct bio *bp;
g_topology_assert_not();
KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
sc->sc_name));
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING)
g_mirror_sync_stop(disk, 1);
}
g_topology_lock();
g_error_provider(sc->sc_provider, ENXIO);
mtx_lock(&sc->sc_queue_mtx);
while ((bp = TAILQ_FIRST(&sc->sc_queue)) != NULL) {
TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue);
/*
* Abort any pending I/O that wasn't generated by us.
* Synchronization requests and requests destined for individual
* mirror components can be destroyed immediately.
*/
if (bp->bio_to == sc->sc_provider &&
bp->bio_from->geom != sc->sc_sync.ds_geom) {
g_io_deliver(bp, ENXIO);
} else {
if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0)
free(bp->bio_data, M_MIRROR);
g_destroy_bio(bp);
}
}
mtx_unlock(&sc->sc_queue_mtx);
g_wither_provider(sc->sc_provider, ENXIO);
sc->sc_provider = NULL;
G_MIRROR_DEBUG(0, "Device %s: provider destroyed.", sc->sc_name);
g_topology_unlock();
}
static void
g_mirror_go(void *arg)
{
struct g_mirror_softc *sc;
struct g_mirror_event *ep;
sc = arg;
G_MIRROR_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
ep = sc->sc_timeout_event;
sc->sc_timeout_event = NULL;
g_mirror_event_dispatch(ep, sc, 0,
G_MIRROR_EVENT_DONTWAIT | G_MIRROR_EVENT_DEVICE);
}
static void
g_mirror_timeout_drain(struct g_mirror_softc *sc)
{
sx_assert(&sc->sc_lock, SX_XLOCKED);
callout_drain(&sc->sc_callout);
g_mirror_event_free(sc->sc_timeout_event);
sc->sc_timeout_event = NULL;
}
static u_int
g_mirror_determine_state(struct g_mirror_disk *disk)
{
struct g_mirror_softc *sc;
u_int state;
sc = disk->d_softc;
if (sc->sc_syncid == disk->d_sync.ds_syncid) {
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_SYNCHRONIZING) == 0 &&
(g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 0 ||
(disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) == 0)) {
/* Disk does not need synchronization. */
state = G_MIRROR_DISK_STATE_ACTIVE;
} else {
if ((sc->sc_flags &
G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
(disk->d_flags &
G_MIRROR_DISK_FLAG_FORCE_SYNC) != 0) {
/*
* We can start synchronization from
* the stored offset.
*/
state = G_MIRROR_DISK_STATE_SYNCHRONIZING;
} else {
state = G_MIRROR_DISK_STATE_STALE;
}
}
} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
/*
* Reset all synchronization data for this disk,
* because if it even was synchronized, it was
* synchronized to disks with different syncid.
*/
disk->d_flags |= G_MIRROR_DISK_FLAG_SYNCHRONIZING;
disk->d_sync.ds_offset = 0;
disk->d_sync.ds_offset_done = 0;
disk->d_sync.ds_syncid = sc->sc_syncid;
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
(disk->d_flags & G_MIRROR_DISK_FLAG_FORCE_SYNC) != 0) {
state = G_MIRROR_DISK_STATE_SYNCHRONIZING;
} else {
state = G_MIRROR_DISK_STATE_STALE;
}
} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
/*
* Not good, NOT GOOD!
* It means that mirror was started on stale disks
* and more fresh disk just arrive.
* If there were writes, mirror is broken, sorry.
* I think the best choice here is don't touch
* this disk and inform the user loudly.
*/
G_MIRROR_DEBUG(0, "Device %s was started before the freshest "
"disk (%s) arrives!! It will not be connected to the "
"running device.", sc->sc_name,
g_mirror_get_diskname(disk));
g_mirror_destroy_disk(disk);
state = G_MIRROR_DISK_STATE_NONE;
/* Return immediately, because disk was destroyed. */
return (state);
}
G_MIRROR_DEBUG(3, "State for %s disk: %s.",
g_mirror_get_diskname(disk), g_mirror_disk_state2str(state));
return (state);
}
/*
* Update device state.
*/
static void
g_mirror_update_device(struct g_mirror_softc *sc, bool force)
{
struct g_mirror_disk *disk;
u_int state;
sx_assert(&sc->sc_lock, SX_XLOCKED);
switch (sc->sc_state) {
case G_MIRROR_DEVICE_STATE_STARTING:
{
struct g_mirror_disk *pdisk, *tdisk;
const char *mismatch;
uintmax_t found, newest;
u_int dirty, ndisks;
/* Pre-flight checks */
LIST_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
/*
* Confirm we already detected the newest genid.
*/
KASSERT(sc->sc_genid >= disk->d_genid,
("%s: found newer genid %u (sc:%p had %u).", __func__,
disk->d_genid, sc, sc->sc_genid));
/* Kick out any previously tasted stale components. */
if (disk->d_genid < sc->sc_genid) {
G_MIRROR_DEBUG(0, "Stale 'genid' field on %s "
"(device %s) (component=%u latest=%u), skipping.",
g_mirror_get_diskname(disk), sc->sc_name,
disk->d_genid, sc->sc_genid);
g_mirror_destroy_disk(disk);
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
continue;
}
/*
* Confirm we already detected the newest syncid.
*/
KASSERT(sc->sc_syncid >= disk->d_sync.ds_syncid,
("%s: found newer syncid %u (sc:%p had %u).",
__func__, disk->d_sync.ds_syncid, sc,
sc->sc_syncid));
#define DETECT_MISMATCH(field, name) \
if (mismatch == NULL && \
disk->d_init_ ## field != sc->sc_ ## field) { \
mismatch = name; \
found = (intmax_t)disk->d_init_ ## field; \
newest = (intmax_t)sc->sc_ ## field; \
}
mismatch = NULL;
DETECT_MISMATCH(ndisks, "md_all");
DETECT_MISMATCH(balance, "md_balance");
DETECT_MISMATCH(slice, "md_slice");
DETECT_MISMATCH(mediasize, "md_mediasize");
#undef DETECT_MISMATCH
if (mismatch != NULL) {
G_MIRROR_DEBUG(0, "Found a mismatching '%s' "
"field on %s (device %s) (found=%ju "
"newest=%ju).", mismatch,
g_mirror_get_diskname(disk), sc->sc_name,
found, newest);
g_mirror_destroy_disk(disk);
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
continue;
}
}
KASSERT(sc->sc_provider == NULL,
("Non-NULL provider in STARTING state (%s).", sc->sc_name));
/*
* Are we ready? If the timeout (force is true) has expired, and
* any disks are present, then yes. If we're permitted to launch
* before the timeout has expired and the expected number of
* current-generation mirror disks have been tasted, then yes.
*/
ndisks = g_mirror_ndisks(sc, -1);
if ((force && ndisks > 0) ||
(g_launch_mirror_before_timeout && ndisks == sc->sc_ndisks)) {
;
} else if (ndisks == 0) {
/*
* Disks went down in starting phase, so destroy
* device.
*/
g_mirror_timeout_drain(sc);
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY;
G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
return;
} else {
return;
}
/*
* Activate all disks with the biggest syncid.
*/
if (force) {
/*
* If 'force' is true, we have been called due to
* timeout, so don't bother canceling timeout.
*/
ndisks = 0;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_SYNCHRONIZING) == 0) {
ndisks++;
}
}
if (ndisks == 0) {
/* No valid disks found, destroy device. */
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY;
G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p",
__LINE__, sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
return;
}
} else {
/* Cancel timeout. */
g_mirror_timeout_drain(sc);
}
/*
* Here we need to look for dirty disks and if all disks
* with the biggest syncid are dirty, we have to choose
* one with the biggest priority and rebuild the rest.
*/
/*
* Find the number of dirty disks with the biggest syncid.
* Find the number of disks with the biggest syncid.
* While here, find a disk with the biggest priority.
*/
dirty = ndisks = 0;
pdisk = NULL;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_sync.ds_syncid != sc->sc_syncid)
continue;
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) {
continue;
}
ndisks++;
if ((disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) != 0) {
dirty++;
if (pdisk == NULL ||
pdisk->d_priority < disk->d_priority) {
pdisk = disk;
}
}
}
if (dirty == 0) {
/* No dirty disks at all, great. */
} else if (dirty == ndisks) {
/*
* Force synchronization for all dirty disks except one
* with the biggest priority.
*/
KASSERT(pdisk != NULL, ("pdisk == NULL"));
G_MIRROR_DEBUG(1, "Using disk %s (device %s) as a "
"master disk for synchronization.",
g_mirror_get_diskname(pdisk), sc->sc_name);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_sync.ds_syncid != sc->sc_syncid)
continue;
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) {
continue;
}
KASSERT((disk->d_flags &
G_MIRROR_DISK_FLAG_DIRTY) != 0,
("Disk %s isn't marked as dirty.",
g_mirror_get_diskname(disk)));
/* Skip the disk with the biggest priority. */
if (disk == pdisk)
continue;
disk->d_sync.ds_syncid = 0;
}
} else if (dirty < ndisks) {
/*
* Force synchronization for all dirty disks.
* We have some non-dirty disks.
*/
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_sync.ds_syncid != sc->sc_syncid)
continue;
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) {
continue;
}
if ((disk->d_flags &
G_MIRROR_DISK_FLAG_DIRTY) == 0) {
continue;
}
disk->d_sync.ds_syncid = 0;
}
}
/* Reset hint. */
sc->sc_hint = NULL;
if (force) {
/* Remember to bump syncid on first write. */
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
}
state = G_MIRROR_DEVICE_STATE_RUNNING;
G_MIRROR_DEBUG(1, "Device %s state changed from %s to %s.",
sc->sc_name, g_mirror_device_state2str(sc->sc_state),
g_mirror_device_state2str(state));
sc->sc_state = state;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
state = g_mirror_determine_state(disk);
g_mirror_event_send(disk, state,
G_MIRROR_EVENT_DONTWAIT);
if (state == G_MIRROR_DISK_STATE_STALE)
sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID;
}
break;
}
case G_MIRROR_DEVICE_STATE_RUNNING:
if (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 0 &&
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_NEW) == 0) {
/*
* No usable disks, so destroy the device.
*/
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY;
break;
} else if (g_mirror_ndisks(sc,
G_MIRROR_DISK_STATE_ACTIVE) > 0 &&
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_NEW) == 0) {
/*
* We have active disks, launch provider if it doesn't
* exist.
*/
if (sc->sc_provider == NULL)
g_mirror_launch_provider(sc);
if (sc->sc_rootmount != NULL) {
G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p",
__LINE__, sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
}
/*
* Genid should be bumped immediately, so do it here.
*/
if ((sc->sc_bump_id & G_MIRROR_BUMP_GENID) != 0) {
sc->sc_bump_id &= ~G_MIRROR_BUMP_GENID;
g_mirror_bump_genid(sc);
}
if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID_NOW) != 0) {
sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID_NOW;
g_mirror_bump_syncid(sc);
}
break;
default:
KASSERT(1 == 0, ("Wrong device state (%s, %s).",
sc->sc_name, g_mirror_device_state2str(sc->sc_state)));
break;
}
}
/*
* Update disk state and device state if needed.
*/
#define DISK_STATE_CHANGED() G_MIRROR_DEBUG(1, \
"Disk %s state changed from %s to %s (device %s).", \
g_mirror_get_diskname(disk), \
g_mirror_disk_state2str(disk->d_state), \
g_mirror_disk_state2str(state), sc->sc_name)
static int
g_mirror_update_disk(struct g_mirror_disk *disk, u_int state)
{
struct g_mirror_softc *sc;
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
again:
G_MIRROR_DEBUG(3, "Changing disk %s state from %s to %s.",
g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state),
g_mirror_disk_state2str(state));
switch (state) {
case G_MIRROR_DISK_STATE_NEW:
/*
* Possible scenarios:
* 1. New disk arrive.
*/
/* Previous state should be NONE. */
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NONE,
("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
disk->d_state = state;
g_topology_lock();
if (LIST_EMPTY(&sc->sc_disks))
LIST_INSERT_HEAD(&sc->sc_disks, disk, d_next);
else {
struct g_mirror_disk *dp;
LIST_FOREACH(dp, &sc->sc_disks, d_next) {
if (disk->d_priority >= dp->d_priority) {
LIST_INSERT_BEFORE(dp, disk, d_next);
dp = NULL;
break;
}
if (LIST_NEXT(dp, d_next) == NULL)
break;
}
if (dp != NULL)
LIST_INSERT_AFTER(dp, disk, d_next);
}
g_topology_unlock();
G_MIRROR_DEBUG(1, "Device %s: provider %s detected.",
sc->sc_name, g_mirror_get_diskname(disk));
if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING)
break;
KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
state = g_mirror_determine_state(disk);
if (state != G_MIRROR_DISK_STATE_NONE)
goto again;
break;
case G_MIRROR_DISK_STATE_ACTIVE:
/*
* Possible scenarios:
* 1. New disk does not need synchronization.
* 2. Synchronization process finished successfully.
*/
KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
/* Previous state should be NEW or SYNCHRONIZING. */
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW ||
disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) {
disk->d_flags &= ~G_MIRROR_DISK_FLAG_SYNCHRONIZING;
disk->d_flags &= ~G_MIRROR_DISK_FLAG_FORCE_SYNC;
g_mirror_sync_stop(disk, 0);
}
disk->d_state = state;
disk->d_sync.ds_offset = 0;
disk->d_sync.ds_offset_done = 0;
g_mirror_update_idle(sc, disk);
g_mirror_update_metadata(disk);
G_MIRROR_DEBUG(1, "Device %s: provider %s activated.",
sc->sc_name, g_mirror_get_diskname(disk));
break;
case G_MIRROR_DISK_STATE_STALE:
/*
* Possible scenarios:
* 1. Stale disk was connected.
*/
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW,
("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
/*
* STALE state is only possible if device is marked
* NOAUTOSYNC.
*/
KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) != 0,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
disk->d_state = state;
g_mirror_update_metadata(disk);
G_MIRROR_DEBUG(0, "Device %s: provider %s is stale.",
sc->sc_name, g_mirror_get_diskname(disk));
break;
case G_MIRROR_DISK_STATE_SYNCHRONIZING:
/*
* Possible scenarios:
* 1. Disk which needs synchronization was connected.
*/
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW,
("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
if (disk->d_state == G_MIRROR_DISK_STATE_NEW)
disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY;
disk->d_state = state;
if (sc->sc_provider != NULL) {
g_mirror_sync_start(disk);
g_mirror_update_metadata(disk);
}
break;
case G_MIRROR_DISK_STATE_DISCONNECTED:
/*
* Possible scenarios:
* 1. Device wasn't running yet, but disk disappear.
* 2. Disk was active and disapppear.
* 3. Disk disappear during synchronization process.
*/
if (sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING) {
/*
* Previous state should be ACTIVE, STALE or
* SYNCHRONIZING.
*/
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_ACTIVE ||
disk->d_state == G_MIRROR_DISK_STATE_STALE ||
disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).",
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
} else if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING) {
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW,
("Wrong disk state (%s, %s).",
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
/*
* Reset bumping syncid if disk disappeared in STARTING
* state.
*/
if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID) != 0)
sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID;
#ifdef INVARIANTS
} else {
KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
sc->sc_name,
g_mirror_device_state2str(sc->sc_state),
g_mirror_get_diskname(disk),
g_mirror_disk_state2str(disk->d_state)));
#endif
}
DISK_STATE_CHANGED();
G_MIRROR_DEBUG(0, "Device %s: provider %s disconnected.",
sc->sc_name, g_mirror_get_diskname(disk));
g_mirror_destroy_disk(disk);
break;
case G_MIRROR_DISK_STATE_DESTROY:
{
int error;
error = g_mirror_clear_metadata(disk);
if (error != 0) {
G_MIRROR_DEBUG(0,
"Device %s: failed to clear metadata on %s: %d.",
sc->sc_name, g_mirror_get_diskname(disk), error);
break;
}
DISK_STATE_CHANGED();
G_MIRROR_DEBUG(0, "Device %s: provider %s destroyed.",
sc->sc_name, g_mirror_get_diskname(disk));
g_mirror_destroy_disk(disk);
sc->sc_ndisks--;
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
g_mirror_update_metadata(disk);
}
break;
}
default:
KASSERT(1 == 0, ("Unknown state (%u).", state));
break;
}
return (0);
}
#undef DISK_STATE_CHANGED
int
g_mirror_read_metadata(struct g_consumer *cp, struct g_mirror_metadata *md)
{
struct g_provider *pp;
u_char *buf;
int error;
g_topology_assert();
error = g_access(cp, 1, 0, 0);
if (error != 0)
return (error);
pp = cp->provider;
g_topology_unlock();
/* Metadata are stored on last sector. */
buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
&error);
g_topology_lock();
g_access(cp, -1, 0, 0);
if (buf == NULL) {
G_MIRROR_DEBUG(1, "Cannot read metadata from %s (error=%d).",
cp->provider->name, error);
return (error);
}
/* Decode metadata. */
error = mirror_metadata_decode(buf, md);
g_free(buf);
if (strcmp(md->md_magic, G_MIRROR_MAGIC) != 0)
return (EINVAL);
if (md->md_version > G_MIRROR_VERSION) {
G_MIRROR_DEBUG(0,
"Kernel module is too old to handle metadata from %s.",
cp->provider->name);
return (EINVAL);
}
if (error != 0) {
G_MIRROR_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
cp->provider->name);
return (error);
}
return (0);
}
static int
g_mirror_check_metadata(struct g_mirror_softc *sc, struct g_provider *pp,
struct g_mirror_metadata *md)
{
G_MIRROR_DEBUG(2, "%s: md_did 0x%u disk %s device %s md_all 0x%x "
"sc_ndisks 0x%x md_slice 0x%x sc_slice 0x%x md_balance 0x%x "
"sc_balance 0x%x sc_mediasize 0x%jx pp_mediasize 0x%jx "
"md_sectorsize 0x%x sc_sectorsize 0x%x md_mflags 0x%jx "
"md_dflags 0x%jx md_syncid 0x%x md_genid 0x%x md_priority 0x%x "
"sc_state 0x%x.",
__func__, md->md_did, pp->name, sc->sc_name, md->md_all,
sc->sc_ndisks, md->md_slice, sc->sc_slice, md->md_balance,
sc->sc_balance, (uintmax_t)sc->sc_mediasize,
(uintmax_t)pp->mediasize, md->md_sectorsize, sc->sc_sectorsize,
(uintmax_t)md->md_mflags, (uintmax_t)md->md_dflags, md->md_syncid,
md->md_genid, md->md_priority, sc->sc_state);
if (g_mirror_id2disk(sc, md->md_did) != NULL) {
G_MIRROR_DEBUG(1, "Disk %s (id=%u) already exists, skipping.",
pp->name, md->md_did);
return (EEXIST);
}
if (sc->sc_mediasize > pp->mediasize) {
G_MIRROR_DEBUG(1,
"Invalid size of disk %s (device %s), skipping.", pp->name,
sc->sc_name);
return (EINVAL);
}
if (md->md_sectorsize != sc->sc_sectorsize) {
G_MIRROR_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_sectorsize", pp->name, sc->sc_name);
return (EINVAL);
}
if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
G_MIRROR_DEBUG(1,
"Invalid sector size of disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_mflags & ~G_MIRROR_DEVICE_FLAG_MASK) != 0) {
G_MIRROR_DEBUG(1,
"Invalid device flags on disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_dflags & ~G_MIRROR_DISK_FLAG_MASK) != 0) {
G_MIRROR_DEBUG(1,
"Invalid disk flags on disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
return (0);
}
int
g_mirror_add_disk(struct g_mirror_softc *sc, struct g_provider *pp,
struct g_mirror_metadata *md)
{
struct g_mirror_disk *disk;
int error;
g_topology_assert_not();
G_MIRROR_DEBUG(2, "Adding disk %s.", pp->name);
error = g_mirror_check_metadata(sc, pp, md);
if (error != 0)
return (error);
if (md->md_genid < sc->sc_genid) {
G_MIRROR_DEBUG(0, "Component %s (device %s) broken, skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
/*
* If the component disk we're tasting has newer metadata than the
* STARTING gmirror device, refresh the device from the component.
*/
error = g_mirror_refresh_device(sc, pp, md);
if (error != 0)
return (error);
disk = g_mirror_init_disk(sc, pp, md, &error);
if (disk == NULL)
return (error);
error = g_mirror_event_send(disk, G_MIRROR_DISK_STATE_NEW,
G_MIRROR_EVENT_WAIT);
if (error != 0)
return (error);
if (md->md_version < G_MIRROR_VERSION) {
G_MIRROR_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
pp->name, md->md_version, G_MIRROR_VERSION);
g_mirror_update_metadata(disk);
}
return (0);
}
static void
g_mirror_destroy_delayed(void *arg, int flag)
{
struct g_mirror_softc *sc;
int error;
if (flag == EV_CANCEL) {
G_MIRROR_DEBUG(1, "Destroying canceled.");
return;
}
sc = arg;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) == 0,
("DESTROY flag set on %s.", sc->sc_name));
KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0,
("CLOSEWAIT flag not set on %s.", sc->sc_name));
G_MIRROR_DEBUG(1, "Destroying %s (delayed).", sc->sc_name);
error = g_mirror_destroy(sc, G_MIRROR_DESTROY_SOFT);
if (error != 0) {
G_MIRROR_DEBUG(0, "Cannot destroy %s (error=%d).",
sc->sc_name, error);
sx_xunlock(&sc->sc_lock);
}
g_topology_lock();
}
static int
g_mirror_access(struct g_provider *pp, int acr, int acw, int ace)
{
struct g_mirror_softc *sc;
int error = 0;
g_topology_assert();
G_MIRROR_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
acw, ace);
sc = pp->private;
KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
g_topology_unlock();
sx_xlock(&sc->sc_lock);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0 ||
(sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0 ||
LIST_EMPTY(&sc->sc_disks)) {
if (acr > 0 || acw > 0 || ace > 0)
error = ENXIO;
goto end;
}
sc->sc_provider_open += acr + acw + ace;
if (pp->acw + acw == 0)
g_mirror_idle(sc, 0);
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0 &&
sc->sc_provider_open == 0)
g_post_event(g_mirror_destroy_delayed, sc, M_WAITOK, sc, NULL);
end:
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
static void
g_mirror_reinit_from_metadata(struct g_mirror_softc *sc,
const struct g_mirror_metadata *md)
{
sc->sc_genid = md->md_genid;
sc->sc_syncid = md->md_syncid;
sc->sc_slice = md->md_slice;
sc->sc_balance = md->md_balance;
sc->sc_mediasize = md->md_mediasize;
sc->sc_ndisks = md->md_all;
sc->sc_flags &= ~G_MIRROR_DEVICE_FLAG_MASK;
sc->sc_flags |= (md->md_mflags & G_MIRROR_DEVICE_FLAG_MASK);
}
struct g_geom *
g_mirror_create(struct g_class *mp, const struct g_mirror_metadata *md,
u_int type)
{
struct g_mirror_softc *sc;
struct g_geom *gp;
int error, timeout;
g_topology_assert();
G_MIRROR_DEBUG(1, "Creating device %s (id=%u).", md->md_name,
md->md_mid);
/* One disk is minimum. */
if (md->md_all < 1)
return (NULL);
/*
* Action geom.
*/
gp = g_new_geomf(mp, "%s", md->md_name);
sc = malloc(sizeof(*sc), M_MIRROR, M_WAITOK | M_ZERO);
gp->start = g_mirror_start;
gp->orphan = g_mirror_orphan;
gp->access = g_mirror_access;
gp->dumpconf = g_mirror_dumpconf;
sc->sc_type = type;
sc->sc_id = md->md_mid;
g_mirror_reinit_from_metadata(sc, md);
sc->sc_sectorsize = md->md_sectorsize;
sc->sc_bump_id = 0;
sc->sc_idle = 1;
sc->sc_last_write = time_uptime;
sc->sc_writes = 0;
sc->sc_refcnt = 1;
sx_init(&sc->sc_lock, "gmirror:lock");
TAILQ_INIT(&sc->sc_queue);
mtx_init(&sc->sc_queue_mtx, "gmirror:queue", NULL, MTX_DEF);
TAILQ_INIT(&sc->sc_regular_delayed);
TAILQ_INIT(&sc->sc_inflight);
TAILQ_INIT(&sc->sc_sync_delayed);
LIST_INIT(&sc->sc_disks);
TAILQ_INIT(&sc->sc_events);
mtx_init(&sc->sc_events_mtx, "gmirror:events", NULL, MTX_DEF);
callout_init(&sc->sc_callout, 1);
mtx_init(&sc->sc_done_mtx, "gmirror:done", NULL, MTX_DEF);
sc->sc_state = G_MIRROR_DEVICE_STATE_STARTING;
gp->softc = sc;
sc->sc_geom = gp;
sc->sc_provider = NULL;
sc->sc_provider_open = 0;
/*
* Synchronization geom.
*/
gp = g_new_geomf(mp, "%s.sync", md->md_name);
gp->softc = sc;
gp->orphan = g_mirror_orphan;
sc->sc_sync.ds_geom = gp;
sc->sc_sync.ds_ndisks = 0;
error = kproc_create(g_mirror_worker, sc, &sc->sc_worker, 0, 0,
"g_mirror %s", md->md_name);
if (error != 0) {
G_MIRROR_DEBUG(1, "Cannot create kernel thread for %s.",
sc->sc_name);
g_destroy_geom(sc->sc_sync.ds_geom);
g_destroy_geom(sc->sc_geom);
g_mirror_free_device(sc);
return (NULL);
}
G_MIRROR_DEBUG(1, "Device %s created (%u components, id=%u).",
sc->sc_name, sc->sc_ndisks, sc->sc_id);
sc->sc_rootmount = root_mount_hold("GMIRROR");
G_MIRROR_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
/*
* Schedule startup timeout.
*/
timeout = g_mirror_timeout * hz;
sc->sc_timeout_event = malloc(sizeof(struct g_mirror_event), M_MIRROR,
M_WAITOK);
callout_reset(&sc->sc_callout, timeout, g_mirror_go, sc);
return (sc->sc_geom);
}
int
g_mirror_destroy(struct g_mirror_softc *sc, int how)
{
struct g_mirror_disk *disk;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (sc->sc_provider_open != 0) {
switch (how) {
case G_MIRROR_DESTROY_SOFT:
G_MIRROR_DEBUG(1,
"Device %s is still open (%d).", sc->sc_name,
sc->sc_provider_open);
return (EBUSY);
case G_MIRROR_DESTROY_DELAYED:
G_MIRROR_DEBUG(1,
"Device %s will be destroyed on last close.",
sc->sc_name);
LIST_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state ==
G_MIRROR_DISK_STATE_SYNCHRONIZING) {
g_mirror_sync_stop(disk, 1);
}
}
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_CLOSEWAIT;
return (EBUSY);
case G_MIRROR_DESTROY_HARD:
G_MIRROR_DEBUG(1, "Device %s is still open, so it "
"can't be definitely removed.", sc->sc_name);
}
}
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
sx_xunlock(&sc->sc_lock);
return (0);
}
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY;
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DRAIN;
G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc);
sx_xunlock(&sc->sc_lock);
mtx_lock(&sc->sc_queue_mtx);
wakeup(sc);
mtx_unlock(&sc->sc_queue_mtx);
G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
while (sc->sc_worker != NULL)
tsleep(&sc->sc_worker, PRIBIO, "m:destroy", hz / 5);
G_MIRROR_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
sx_xlock(&sc->sc_lock);
g_mirror_destroy_device(sc);
return (0);
}
static void
g_mirror_taste_orphan(struct g_consumer *cp)
{
KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
cp->provider->name));
}
static struct g_geom *
g_mirror_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
{
struct g_mirror_metadata md;
struct g_mirror_softc *sc;
struct g_consumer *cp;
struct g_geom *gp;
int error;
g_topology_assert();
g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
G_MIRROR_DEBUG(2, "Tasting %s.", pp->name);
gp = g_new_geomf(mp, "mirror:taste");
/*
* This orphan function should be never called.
*/
gp->orphan = g_mirror_taste_orphan;
cp = g_new_consumer(gp);
cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
error = g_attach(cp, pp);
if (error == 0) {
error = g_mirror_read_metadata(cp, &md);
g_detach(cp);
}
g_destroy_consumer(cp);
g_destroy_geom(gp);
if (error != 0)
return (NULL);
gp = NULL;
if (md.md_provider[0] != '\0' &&
!g_compare_names(md.md_provider, pp->name))
return (NULL);
if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
return (NULL);
if ((md.md_dflags & G_MIRROR_DISK_FLAG_INACTIVE) != 0) {
G_MIRROR_DEBUG(0,
"Device %s: provider %s marked as inactive, skipping.",
md.md_name, pp->name);
return (NULL);
}
if (g_mirror_debug >= 2)
mirror_metadata_dump(&md);
/*
* Let's check if device already exists.
*/
sc = NULL;
LIST_FOREACH(gp, &mp->geom, geom) {
sc = gp->softc;
if (sc == NULL)
continue;
if (sc->sc_type != G_MIRROR_TYPE_AUTOMATIC)
continue;
if (sc->sc_sync.ds_geom == gp)
continue;
if (strcmp(md.md_name, sc->sc_name) != 0)
continue;
if (md.md_mid != sc->sc_id) {
G_MIRROR_DEBUG(0, "Device %s already configured.",
sc->sc_name);
return (NULL);
}
break;
}
if (gp == NULL) {
gp = g_mirror_create(mp, &md, G_MIRROR_TYPE_AUTOMATIC);
if (gp == NULL) {
G_MIRROR_DEBUG(0, "Cannot create device %s.",
md.md_name);
return (NULL);
}
sc = gp->softc;
}
G_MIRROR_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
g_topology_unlock();
sx_xlock(&sc->sc_lock);
sc->sc_flags |= G_MIRROR_DEVICE_FLAG_TASTING;
error = g_mirror_add_disk(sc, pp, &md);
sc->sc_flags &= ~G_MIRROR_DEVICE_FLAG_TASTING;
if (error != 0) {
G_MIRROR_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
pp->name, gp->name, error);
if (LIST_EMPTY(&sc->sc_disks)) {
g_cancel_event(sc);
g_mirror_destroy(sc, G_MIRROR_DESTROY_HARD);
g_topology_lock();
return (NULL);
}
gp = NULL;
}
if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) {
g_mirror_destroy(sc, G_MIRROR_DESTROY_HARD);
g_topology_lock();
return (NULL);
}
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (gp);
}
static void
g_mirror_resize(struct g_consumer *cp)
{
struct g_mirror_disk *disk;
g_topology_assert();
g_trace(G_T_TOPOLOGY, "%s(%s)", __func__, cp->provider->name);
disk = cp->private;
if (disk == NULL)
return;
g_topology_unlock();
g_mirror_update_metadata(disk);
g_topology_lock();
}
static int
g_mirror_destroy_geom(struct gctl_req *req __unused,
struct g_class *mp __unused, struct g_geom *gp)
{
struct g_mirror_softc *sc;
int error;
g_topology_unlock();
sc = gp->softc;
sx_xlock(&sc->sc_lock);
g_cancel_event(sc);
error = g_mirror_destroy(gp->softc, G_MIRROR_DESTROY_SOFT);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
static void
g_mirror_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
struct g_consumer *cp, struct g_provider *pp)
{
struct g_mirror_softc *sc;
g_topology_assert();
sc = gp->softc;
if (sc == NULL)
return;
/* Skip synchronization geom. */
if (gp == sc->sc_sync.ds_geom)
return;
if (pp != NULL) {
/* Nothing here. */
} else if (cp != NULL) {
struct g_mirror_disk *disk;
disk = cp->private;
if (disk == NULL)
return;
sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)disk->d_id);
if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) {
sbuf_printf(sb, "%s<Synchronized>", indent);
if (disk->d_sync.ds_offset == 0)
sbuf_cat(sb, "0%");
else
sbuf_printf(sb, "%u%%",
(u_int)((disk->d_sync.ds_offset * 100) /
sc->sc_mediasize));
sbuf_cat(sb, "</Synchronized>\n");
if (disk->d_sync.ds_offset > 0)
sbuf_printf(sb, "%s<BytesSynced>%jd"
"</BytesSynced>\n", indent,
(intmax_t)disk->d_sync.ds_offset);
}
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
disk->d_sync.ds_syncid);
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent,
disk->d_genid);
sbuf_printf(sb, "%s<Flags>", indent);
if (disk->d_flags == 0)
sbuf_cat(sb, "NONE");
else {
int first = 1;
#define ADD_FLAG(flag, name) do { \
if ((disk->d_flags & (flag)) != 0) { \
if (!first) \
sbuf_cat(sb, ", "); \
else \
first = 0; \
sbuf_cat(sb, name); \
} \
} while (0)
ADD_FLAG(G_MIRROR_DISK_FLAG_DIRTY, "DIRTY");
ADD_FLAG(G_MIRROR_DISK_FLAG_HARDCODED, "HARDCODED");
ADD_FLAG(G_MIRROR_DISK_FLAG_INACTIVE, "INACTIVE");
ADD_FLAG(G_MIRROR_DISK_FLAG_SYNCHRONIZING,
"SYNCHRONIZING");
ADD_FLAG(G_MIRROR_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
ADD_FLAG(G_MIRROR_DISK_FLAG_BROKEN, "BROKEN");
#undef ADD_FLAG
}
sbuf_cat(sb, "</Flags>\n");
sbuf_printf(sb, "%s<Priority>%u</Priority>\n", indent,
disk->d_priority);
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
g_mirror_disk_state2str(disk->d_state));
} else {
sbuf_printf(sb, "%s<Type>", indent);
switch (sc->sc_type) {
case G_MIRROR_TYPE_AUTOMATIC:
sbuf_cat(sb, "AUTOMATIC");
break;
case G_MIRROR_TYPE_MANUAL:
sbuf_cat(sb, "MANUAL");
break;
default:
sbuf_cat(sb, "UNKNOWN");
break;
}
sbuf_cat(sb, "</Type>\n");
sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
sbuf_printf(sb, "%s<Flags>", indent);
if (sc->sc_flags == 0)
sbuf_cat(sb, "NONE");
else {
int first = 1;
#define ADD_FLAG(flag, name) do { \
if ((sc->sc_flags & (flag)) != 0) { \
if (!first) \
sbuf_cat(sb, ", "); \
else \
first = 0; \
sbuf_cat(sb, name); \
} \
} while (0)
ADD_FLAG(G_MIRROR_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
ADD_FLAG(G_MIRROR_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
#undef ADD_FLAG
}
sbuf_cat(sb, "</Flags>\n");
sbuf_printf(sb, "%s<Slice>%u</Slice>\n", indent,
(u_int)sc->sc_slice);
sbuf_printf(sb, "%s<Balance>%s</Balance>\n", indent,
balance_name(sc->sc_balance));
sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
sc->sc_ndisks);
sbuf_printf(sb, "%s<State>", indent);
if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING)
sbuf_printf(sb, "%s", "STARTING");
else if (sc->sc_ndisks ==
g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE))
sbuf_printf(sb, "%s", "COMPLETE");
else
sbuf_printf(sb, "%s", "DEGRADED");
sbuf_cat(sb, "</State>\n");
}
}
static void
g_mirror_shutdown_post_sync(void *arg, int howto)
{
struct g_class *mp;
struct g_geom *gp, *gp2;
struct g_mirror_softc *sc;
int error;
if (KERNEL_PANICKED())
return;
mp = arg;
g_topology_lock();
g_mirror_shutdown = 1;
LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
if ((sc = gp->softc) == NULL)
continue;
/* Skip synchronization geom. */
if (gp == sc->sc_sync.ds_geom)
continue;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
g_mirror_idle(sc, -1);
g_cancel_event(sc);
error = g_mirror_destroy(sc, G_MIRROR_DESTROY_DELAYED);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
}
g_topology_unlock();
}
static void
g_mirror_init(struct g_class *mp)
{
g_mirror_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
g_mirror_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
if (g_mirror_post_sync == NULL)
G_MIRROR_DEBUG(0, "Warning! Cannot register shutdown event.");
}
static void
g_mirror_fini(struct g_class *mp)
{
if (g_mirror_post_sync != NULL)
EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_mirror_post_sync);
}
/*
* Refresh the mirror device's metadata when gmirror encounters a newer
* generation as the individual components are being added to the mirror set.
*/
static int
g_mirror_refresh_device(struct g_mirror_softc *sc, const struct g_provider *pp,
const struct g_mirror_metadata *md)
{
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(sc->sc_genid <= md->md_genid,
("%s: attempted to refresh from stale component %s (device %s) "
"(%u < %u).", __func__, pp->name, sc->sc_name, md->md_genid,
sc->sc_genid));
if (sc->sc_genid > md->md_genid || (sc->sc_genid == md->md_genid &&
sc->sc_syncid >= md->md_syncid))
return (0);
G_MIRROR_DEBUG(0, "Found newer version for device %s (genid: curr=%u "
"new=%u; syncid: curr=%u new=%u; ndisks: curr=%u new=%u; "
"provider=%s).", sc->sc_name, sc->sc_genid, md->md_genid,
sc->sc_syncid, md->md_syncid, sc->sc_ndisks, md->md_all, pp->name);
if (sc->sc_state != G_MIRROR_DEVICE_STATE_STARTING) {
/* Probable data corruption detected */
G_MIRROR_DEBUG(0, "Cannot refresh metadata in %s state "
"(device=%s genid=%u). A stale mirror device was launched.",
g_mirror_device_state2str(sc->sc_state), sc->sc_name,
sc->sc_genid);
return (EINVAL);
}
/* Update softc */
g_mirror_reinit_from_metadata(sc, md);
G_MIRROR_DEBUG(1, "Refresh device %s (id=%u, state=%s) from disk %s "
"(genid=%u syncid=%u md_all=%u).", sc->sc_name, md->md_mid,
g_mirror_device_state2str(sc->sc_state), pp->name, md->md_genid,
md->md_syncid, (unsigned)md->md_all);
return (0);
}
DECLARE_GEOM_CLASS(g_mirror_class, g_mirror);
MODULE_VERSION(geom_mirror, 0);