Dimitry Andric f785676f2a Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.

The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3.  The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.

Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>

MFC after:	1 month
2014-02-16 19:44:07 +00:00

2510 lines
78 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/ADT/APInt.h"
using namespace llvm;
namespace llvm {
class MCInstrInfo;
}
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions() : aTReg(1), reorder(true), macro(true) {}
unsigned getATRegNum() { return aTReg; }
bool setATReg(unsigned Reg);
bool isReorder() { return reorder; }
void setReorder() { reorder = true; }
void setNoreorder() { reorder = false; }
bool isMacro() { return macro; }
void setMacro() { macro = true; }
void setNomacro() { macro = false; }
private:
unsigned aTReg;
bool reorder;
bool macro;
};
}
namespace {
class MipsAsmParser : public MCTargetAsmParser {
MipsTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = Parser.getStreamer().getTargetStreamer();
return static_cast<MipsTargetStreamer &>(TS);
}
MCSubtargetInfo &STI;
MCAsmParser &Parser;
MipsAssemblerOptions Options;
bool hasConsumedDollar;
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand *> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool ParseDirective(AsmToken DirectiveID);
MipsAsmParser::OperandMatchResultTy
parseRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands, int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMSARegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands, int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMSACtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMemOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind);
MipsAsmParser::OperandMatchResultTy
parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseGPR32(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseGPR64(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHWRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseAFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGR32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGRH32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFCCRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseACC64DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseLO32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHI32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCOP2(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128BRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128HRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128WRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128DRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128CtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseInvNum(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseLSAImm(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool searchSymbolAlias(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
unsigned RegKind);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand *> &,
StringRef Mnemonic);
int tryParseRegister(bool is64BitReg);
bool tryParseRegisterOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
bool is64BitReg);
bool needsExpansion(MCInst &Inst);
void expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad,
bool isImmOpnd);
bool reportParseError(StringRef ErrorMsg);
bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
bool parseRelocOperand(const MCExpr *&Res);
const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
bool parseDirectiveSet();
bool parseDirectiveMipsHackStocg();
bool parseDirectiveMipsHackELFFlags();
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
bool parseSetAssignment();
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveGpWord();
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool isMips64() const {
return (STI.getFeatureBits() & Mips::FeatureMips64) != 0;
}
bool isFP64() const {
return (STI.getFeatureBits() & Mips::FeatureFP64Bit) != 0;
}
bool isN64() const { return STI.getFeatureBits() & Mips::FeatureN64; }
int matchRegisterName(StringRef Symbol, bool is64BitReg);
int matchCPURegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
int matchFPURegisterName(StringRef Name);
int matchFCCRegisterName(StringRef Name);
int matchACRegisterName(StringRef Name);
int matchMSA128RegisterName(StringRef Name);
int matchMSA128CtrlRegisterName(StringRef Name);
int regKindToRegClass(int RegKind);
unsigned getReg(int RC, int RegNo);
int getATReg();
bool processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
// Helper function that checks if the value of a vector index is within the
// boundaries of accepted values for each RegisterKind
// Example: INSERT.B $w0[n], $1 => 16 > n >= 0
bool validateMSAIndex(int Val, int RegKind);
public:
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII)
: MCTargetAsmParser(), STI(sti), Parser(parser),
hasConsumedDollar(false) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
Kind_None,
Kind_GPR32,
Kind_GPR64,
Kind_HWRegs,
Kind_FGR32Regs,
Kind_FGRH32Regs,
Kind_FGR64Regs,
Kind_AFGR64Regs,
Kind_CCRRegs,
Kind_FCCRegs,
Kind_ACC64DSP,
Kind_LO32DSP,
Kind_HI32DSP,
Kind_COP2,
Kind_MSA128BRegs,
Kind_MSA128HRegs,
Kind_MSA128WRegs,
Kind_MSA128DRegs,
Kind_MSA128CtrlRegs
};
private:
enum KindTy {
k_CondCode,
k_CoprocNum,
k_Immediate,
k_Memory,
k_PostIndexRegister,
k_Register,
k_PtrReg,
k_Token,
k_LSAImm
} Kind;
MipsOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
RegisterKind Kind;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
unsigned Base;
const MCExpr *Off;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
SMLoc StartLoc, EndLoc;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addPtrRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getPtrReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isToken() const { return Kind == k_Token; }
bool isMem() const { return Kind == k_Memory; }
bool isPtrReg() const { return Kind == k_PtrReg; }
bool isInvNum() const { return Kind == k_Immediate; }
bool isLSAImm() const { return Kind == k_LSAImm; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
unsigned getPtrReg() const {
assert((Kind == k_PtrReg) && "Invalid access!");
return Reg.RegNum;
}
void setRegKind(RegisterKind RegKind) {
assert((Kind == k_Register || Kind == k_PtrReg) && "Invalid access!");
Reg.Kind = RegKind;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate || Kind == k_LSAImm) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
static MipsOperand *CreateToken(StringRef Str, SMLoc S) {
MipsOperand *Op = new MipsOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static MipsOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreatePtrReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_PtrReg);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateLSAImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_LSAImm);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateMem(unsigned Base, const MCExpr *Off,
SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Memory);
Op->Mem.Base = Base;
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
bool isGPR32Asm() const {
return Kind == k_Register && Reg.Kind == Kind_GPR32;
}
void addRegAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isGPR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_GPR64;
}
bool isHWRegsAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_HWRegs;
}
bool isCCRAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_CCRRegs;
}
bool isAFGR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_AFGR64Regs;
}
bool isFGR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_FGR64Regs;
}
bool isFGR32Asm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FGR32Regs;
}
bool isFGRH32Asm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FGRH32Regs;
}
bool isFCCRegsAsm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FCCRegs;
}
bool isACC64DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_ACC64DSP;
}
bool isLO32DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_LO32DSP;
}
bool isHI32DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_HI32DSP;
}
bool isCOP2Asm() const { return Kind == k_Register && Reg.Kind == Kind_COP2; }
bool isMSA128BAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128BRegs;
}
bool isMSA128HAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128HRegs;
}
bool isMSA128WAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128WRegs;
}
bool isMSA128DAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128DRegs;
}
bool isMSA128CRAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128CtrlRegs;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
virtual void print(raw_ostream &OS) const {
llvm_unreachable("unimplemented!");
}
}; // class MipsOperand
} // namespace
namespace llvm {
extern const MCInstrDesc MipsInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
Inst.setLoc(IDLoc);
if (MCID.hasDelaySlot() && Options.isReorder()) {
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
Instructions.push_back(Inst);
MCInst NopInst;
NopInst.setOpcode(Mips::SLL);
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateImm(0));
Instructions.push_back(NopInst);
return false;
}
if (MCID.mayLoad() || MCID.mayStore()) {
// Check the offset of memory operand, if it is a symbol
// reference or immediate we may have to expand instructions.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
if (MemOffset < -32768 || MemOffset > 32767) {
// Offset can't exceed 16bit value.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
return false;
}
} else if (Op.isExpr()) {
const MCExpr *Expr = Op.getExpr();
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *SR =
static_cast<const MCSymbolRefExpr *>(Expr);
if (SR->getKind() == MCSymbolRefExpr::VK_None) {
// Expand symbol.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
} else if (!isEvaluated(Expr)) {
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
}
}
} // for
} // if load/store
if (needsExpansion(Inst))
expandInstruction(Inst, IDLoc, Instructions);
else
Instructions.push_back(Inst);
return false;
}
bool MipsAsmParser::needsExpansion(MCInst &Inst) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
case Mips::LoadAddr32Imm:
case Mips::LoadAddr32Reg:
return true;
default:
return false;
}
}
void MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
return expandLoadImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Imm:
return expandLoadAddressImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Reg:
return expandLoadAddressReg(Inst, IDLoc, Instructions);
}
}
void MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
tmpInst.setLoc(IDLoc);
if (0 <= ImmValue && ImmValue <= 65535) {
// For 0 <= j <= 65535.
// li d,j => ori d,$zero,j
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else if (ImmValue < 0 && ImmValue >= -32768) {
// For -32768 <= j < 0.
// li d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// li d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
}
void
MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(2);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j(s) => addiu d,s,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j(s) => lui d,hi16(j)
// ori d,d,lo16(j)
// addu d,d,s
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ADDu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
Instructions.push_back(tmpInst);
}
}
void
MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad, bool isImmOpnd) {
const MCSymbolRefExpr *SR;
MCInst TempInst;
unsigned ImmOffset, HiOffset, LoOffset;
const MCExpr *ExprOffset;
unsigned TmpRegNum;
unsigned AtRegNum = getReg(
(isMips64()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, getATReg());
// 1st operand is either the source or destination register.
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
unsigned RegOpNum = Inst.getOperand(0).getReg();
// 2nd operand is the base register.
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
unsigned BaseRegNum = Inst.getOperand(1).getReg();
// 3rd operand is either an immediate or expression.
if (isImmOpnd) {
assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
ImmOffset = Inst.getOperand(2).getImm();
LoOffset = ImmOffset & 0x0000ffff;
HiOffset = (ImmOffset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset.
if (LoOffset & 0x8000)
HiOffset++;
} else
ExprOffset = Inst.getOperand(2).getExpr();
// All instructions will have the same location.
TempInst.setLoc(IDLoc);
// 1st instruction in expansion is LUi. For load instruction we can use
// the dst register as a temporary if base and dst are different,
// but for stores we must use $at.
TmpRegNum = (isLoad && (BaseRegNum != RegOpNum)) ? RegOpNum : AtRegNum;
TempInst.setOpcode(Mips::LUi);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(HiOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
SR = static_cast<const MCSymbolRefExpr *>(ExprOffset);
const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_HI,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
} else {
const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
}
}
// Add the instruction to the list.
Instructions.push_back(TempInst);
// Prepare TempInst for next instruction.
TempInst.clear();
// Add temp register to base.
TempInst.setOpcode(Mips::ADDu);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(BaseRegNum));
Instructions.push_back(TempInst);
TempInst.clear();
// And finaly, create original instruction with low part
// of offset and new base.
TempInst.setOpcode(Inst.getOpcode());
TempInst.addOperand(MCOperand::CreateReg(RegOpNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(LoOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_LO,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
} else {
const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
}
}
Instructions.push_back(TempInst);
TempInst.clear();
}
bool MipsAsmParser::MatchAndEmitInstruction(
SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand *> &Operands, MCStreamer &Out,
unsigned &ErrorInfo, bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
default:
break;
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
for (unsigned i = 0; i < Instructions.size(); i++)
Out.EmitInstruction(Instructions[i]);
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((MipsOperand *)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
return true;
}
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
if (Name == "at")
return getATReg();
CC = StringSwitch<unsigned>(Name)
.Case("zero", 0)
.Case("a0", 4)
.Case("a1", 5)
.Case("a2", 6)
.Case("a3", 7)
.Case("v0", 2)
.Case("v1", 3)
.Case("s0", 16)
.Case("s1", 17)
.Case("s2", 18)
.Case("s3", 19)
.Case("s4", 20)
.Case("s5", 21)
.Case("s6", 22)
.Case("s7", 23)
.Case("k0", 26)
.Case("k1", 27)
.Case("sp", 29)
.Case("fp", 30)
.Case("gp", 28)
.Case("ra", 31)
.Case("t0", 8)
.Case("t1", 9)
.Case("t2", 10)
.Case("t3", 11)
.Case("t4", 12)
.Case("t5", 13)
.Case("t6", 14)
.Case("t7", 15)
.Case("t8", 24)
.Case("t9", 25)
.Default(-1);
// Although SGI documentation just cuts out t0-t3 for n32/n64,
// GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
// We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
if (isMips64() && 8 <= CC && CC <= 11)
CC += 4;
if (CC == -1 && isMips64())
CC = StringSwitch<unsigned>(Name)
.Case("a4", 8)
.Case("a5", 9)
.Case("a6", 10)
.Case("a7", 11)
.Case("kt0", 26)
.Case("kt1", 27)
.Case("s8", 30)
.Default(-1);
return CC;
}
int MipsAsmParser::matchFPURegisterName(StringRef Name) {
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 31) // Maximum index for fpu register.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
if (Name.startswith("fcc")) {
StringRef NumString = Name.substr(3);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 7) // There are only 8 fcc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchACRegisterName(StringRef Name) {
if (Name.startswith("ac")) {
StringRef NumString = Name.substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 3) // There are only 3 acc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
unsigned IntVal;
if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
return -1;
if (IntVal > 31)
return -1;
return IntVal;
}
int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("msair", 0)
.Case("msacsr", 1)
.Case("msaaccess", 2)
.Case("msasave", 3)
.Case("msamodify", 4)
.Case("msarequest", 5)
.Case("msamap", 6)
.Case("msaunmap", 7)
.Default(-1);
return CC;
}
int MipsAsmParser::matchRegisterName(StringRef Name, bool is64BitReg) {
int CC;
CC = matchCPURegisterName(Name);
if (CC != -1)
return matchRegisterByNumber(CC, is64BitReg ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
CC = matchFPURegisterName(Name);
// TODO: decide about fpu register class
if (CC != -1)
return matchRegisterByNumber(CC, isFP64() ? Mips::FGR64RegClassID
: Mips::FGR32RegClassID);
return matchMSA128RegisterName(Name);
}
int MipsAsmParser::regKindToRegClass(int RegKind) {
switch (RegKind) {
case MipsOperand::Kind_GPR32:
return Mips::GPR32RegClassID;
case MipsOperand::Kind_GPR64:
return Mips::GPR64RegClassID;
case MipsOperand::Kind_HWRegs:
return Mips::HWRegsRegClassID;
case MipsOperand::Kind_FGR32Regs:
return Mips::FGR32RegClassID;
case MipsOperand::Kind_FGRH32Regs:
return Mips::FGRH32RegClassID;
case MipsOperand::Kind_FGR64Regs:
return Mips::FGR64RegClassID;
case MipsOperand::Kind_AFGR64Regs:
return Mips::AFGR64RegClassID;
case MipsOperand::Kind_CCRRegs:
return Mips::CCRRegClassID;
case MipsOperand::Kind_ACC64DSP:
return Mips::ACC64DSPRegClassID;
case MipsOperand::Kind_FCCRegs:
return Mips::FCCRegClassID;
case MipsOperand::Kind_MSA128BRegs:
return Mips::MSA128BRegClassID;
case MipsOperand::Kind_MSA128HRegs:
return Mips::MSA128HRegClassID;
case MipsOperand::Kind_MSA128WRegs:
return Mips::MSA128WRegClassID;
case MipsOperand::Kind_MSA128DRegs:
return Mips::MSA128DRegClassID;
case MipsOperand::Kind_MSA128CtrlRegs:
return Mips::MSACtrlRegClassID;
default:
return -1;
}
}
bool MipsAssemblerOptions::setATReg(unsigned Reg) {
if (Reg > 31)
return false;
aTReg = Reg;
return true;
}
int MipsAsmParser::getATReg() { return Options.getATRegNum(); }
unsigned MipsAsmParser::getReg(int RC, int RegNo) {
return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
if (RegNum >
getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs())
return -1;
return getReg(RegClass, RegNum);
}
int MipsAsmParser::tryParseRegister(bool is64BitReg) {
const AsmToken &Tok = Parser.getTok();
int RegNum = -1;
if (Tok.is(AsmToken::Identifier)) {
std::string lowerCase = Tok.getString().lower();
RegNum = matchRegisterName(lowerCase, is64BitReg);
} else if (Tok.is(AsmToken::Integer))
RegNum = matchRegisterByNumber(static_cast<unsigned>(Tok.getIntVal()),
is64BitReg ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
return RegNum;
}
bool MipsAsmParser::tryParseRegisterOperand(
SmallVectorImpl<MCParsedAsmOperand *> &Operands, bool is64BitReg) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = -1;
RegNo = tryParseRegister(is64BitReg);
if (RegNo == -1)
return true;
Operands.push_back(
MipsOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool
MipsAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// Parse the register.
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat dollar token.
// Parse the register operand.
if (!tryParseRegisterOperand(Operands, isMips64())) {
if (getLexer().is(AsmToken::LParen)) {
// Check if it is indexed addressing operand.
Operands.push_back(MipsOperand::CreateToken("(", S));
Parser.Lex(); // Eat the parenthesis.
if (getLexer().isNot(AsmToken::Dollar))
return true;
Parser.Lex(); // Eat the dollar
if (tryParseRegisterOperand(Operands, isMips64()))
return true;
if (!getLexer().is(AsmToken::RParen))
return true;
S = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateToken(")", S));
Parser.Lex();
}
return false;
}
// Maybe it is a symbol reference.
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
case AsmToken::Identifier:
// For instruction aliases like "bc1f $Label" dedicated parser will
// eat the '$' sign before failing. So in order to look for appropriate
// label we must check first if we have already consumed '$'.
if (hasConsumedDollar) {
hasConsumedDollar = false;
SMLoc S = Parser.getTok().getLoc();
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
// Look for the existing symbol, we should check if
// we need to assigne the propper RegisterKind.
if (searchSymbolAlias(Operands, MipsOperand::Kind_None))
return false;
// Else drop to expression parsing.
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String: {
// Quoted label names.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::Percent: {
// It is a symbol reference or constant expression.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
StringRef RelocStr) {
const MCExpr *Res;
// Check the type of the expression.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
// It's a constant, evaluate lo or hi value.
if (RelocStr == "lo") {
short Val = MCE->getValue();
Res = MCConstantExpr::Create(Val, getContext());
} else if (RelocStr == "hi") {
int Val = MCE->getValue();
int LoSign = Val & 0x8000;
Val = (Val & 0xffff0000) >> 16;
// Lower part is treated as a signed int, so if it is negative
// we must add 1 to the hi part to compensate.
if (LoSign)
Val++;
Res = MCConstantExpr::Create(Val, getContext());
} else {
llvm_unreachable("Invalid RelocStr value");
}
return Res;
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
// It's a symbol, create a symbolic expression from the symbol.
StringRef Symbol = MSRE->getSymbol().getName();
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
Res = MCSymbolRefExpr::Create(Symbol, VK, getContext());
return Res;
}
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
Res = MCBinaryExpr::Create(BE->getOpcode(), LExp, RExp, getContext());
return Res;
}
if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
Res = MCUnaryExpr::Create(UN->getOpcode(), UnExp, getContext());
return Res;
}
// Just return the original expression.
return Expr;
}
bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Constant:
return true;
case MCExpr::SymbolRef:
return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
case MCExpr::Binary:
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
if (!isEvaluated(BE->getLHS()))
return false;
return isEvaluated(BE->getRHS());
}
case MCExpr::Unary:
return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
default:
return false;
}
return false;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier().str();
Parser.Lex(); // Eat the identifier.
// Now make an expression from the rest of the operand.
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // Eat the '(' token.
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // Eat the % token.
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // Eat the identifier.
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().parseParenExpression(IdVal, EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // Eat the ')' token.
} else
return true; // Parenthesis must follow the relocation operand.
Res = evaluateRelocExpr(IdVal, Str);
return false;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = tryParseRegister(isMips64());
EndLoc = Parser.getTok().getLoc();
return (RegNo == (unsigned)-1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
SMLoc S;
bool Result = true;
while (getLexer().getKind() == AsmToken::LParen)
Parser.Lex();
switch (getLexer().getKind()) {
default:
return true;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
if (isParenExpr)
Result = getParser().parseParenExpression(Res, S);
else
Result = (getParser().parseExpression(Res));
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex();
break;
case AsmToken::Percent:
Result = parseRelocOperand(Res);
}
return Result;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMemOperand(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
const MCExpr *IdVal = 0;
SMLoc S;
bool isParenExpr = false;
MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
// First operand is the offset.
S = Parser.getTok().getLoc();
if (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
isParenExpr = true;
}
if (getLexer().getKind() != AsmToken::Dollar) {
if (parseMemOffset(IdVal, isParenExpr))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand *Mnemonic = static_cast<MipsOperand *>(Operands[0]);
if (Mnemonic->getToken() == "la") {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::EndOfStatement)) {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// Zero register assumed, add a memory operand with ZERO as its base.
Operands.push_back(MipsOperand::CreateMem(
isMips64() ? Mips::ZERO_64 : Mips::ZERO, IdVal, S, E));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the '(' token.
}
Res = parseRegs(Operands, isMips64() ? (int)MipsOperand::Kind_GPR64
: (int)MipsOperand::Kind_GPR32);
if (Res != MatchOperand_Success)
return Res;
if (Parser.getTok().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat the ')' token.
if (IdVal == 0)
IdVal = MCConstantExpr::Create(0, getContext());
// Replace the register operand with the memory operand.
MipsOperand *op = static_cast<MipsOperand *>(Operands.back());
int RegNo = op->getReg();
// Remove the register from the operands.
Operands.pop_back();
// Add the memory operand.
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
int64_t Imm;
if (IdVal->EvaluateAsAbsolute(Imm))
IdVal = MCConstantExpr::Create(Imm, getContext());
else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
IdVal = MCBinaryExpr::Create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
getContext());
}
Operands.push_back(MipsOperand::CreateMem(RegNo, IdVal, S, E));
delete op;
return MatchOperand_Success;
}
bool MipsAsmParser::parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return false;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex();
AsmToken::TokenKind TkKind = getLexer().getKind();
int Reg;
if (TkKind == AsmToken::Integer) {
Reg = matchRegisterByNumber(Parser.getTok().getIntVal(),
regKindToRegClass(RegKind));
if (Reg == -1)
return false;
} else if (TkKind == AsmToken::Identifier) {
if ((Reg = matchCPURegisterName(Parser.getTok().getString().lower())) == -1)
return false;
Reg = getReg(regKindToRegClass(RegKind), Reg);
} else {
return false;
}
MipsOperand *Op = MipsOperand::CreatePtrReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind((MipsOperand::RegisterKind)RegKind);
Operands.push_back(Op);
Parser.Lex();
return true;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
MipsOperand::RegisterKind RegKind =
isN64() ? MipsOperand::Kind_GPR64 : MipsOperand::Kind_GPR32;
// Parse index register.
if (!parsePtrReg(Operands, RegKind))
return MatchOperand_NoMatch;
// Parse '('.
if (Parser.getTok().isNot(AsmToken::LParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken("(", getLexer().getLoc()));
Parser.Lex();
// Parse base register.
if (!parsePtrReg(Operands, RegKind))
return MatchOperand_NoMatch;
// Parse ')'.
if (Parser.getTok().isNot(AsmToken::RParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken(")", getLexer().getLoc()));
Parser.Lex();
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (getLexer().getKind() == AsmToken::Identifier && !hasConsumedDollar) {
if (searchSymbolAlias(Operands, Kind))
return MatchOperand_Success;
return MatchOperand_NoMatch;
}
SMLoc S = Parser.getTok().getLoc();
// If the first token is not '$', we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar) && !hasConsumedDollar)
return MatchOperand_NoMatch;
if (!hasConsumedDollar) {
Parser.Lex(); // Eat the '$'
hasConsumedDollar = true;
}
if (getLexer().getKind() == AsmToken::Identifier) {
int RegNum = -1;
std::string RegName = Parser.getTok().getString().lower();
// Match register by name
switch (RegKind) {
case MipsOperand::Kind_GPR32:
case MipsOperand::Kind_GPR64:
RegNum = matchCPURegisterName(RegName);
break;
case MipsOperand::Kind_AFGR64Regs:
case MipsOperand::Kind_FGR64Regs:
case MipsOperand::Kind_FGR32Regs:
case MipsOperand::Kind_FGRH32Regs:
RegNum = matchFPURegisterName(RegName);
if (RegKind == MipsOperand::Kind_AFGR64Regs)
RegNum /= 2;
else if (RegKind == MipsOperand::Kind_FGRH32Regs && !isFP64())
if (RegNum != -1 && RegNum % 2 != 0)
Warning(S, "Float register should be even.");
break;
case MipsOperand::Kind_FCCRegs:
RegNum = matchFCCRegisterName(RegName);
break;
case MipsOperand::Kind_ACC64DSP:
RegNum = matchACRegisterName(RegName);
break;
default:
break; // No match, value is set to -1.
}
// No match found, return _NoMatch to give a chance to other round.
if (RegNum < 0)
return MatchOperand_NoMatch;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_NoMatch;
MipsOperand *Op =
MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
hasConsumedDollar = false;
Parser.Lex(); // Eat the register name.
return MatchOperand_Success;
} else if (getLexer().getKind() == AsmToken::Integer) {
unsigned RegNum = Parser.getTok().getIntVal();
if (Kind == MipsOperand::Kind_HWRegs) {
if (RegNum != 29)
return MatchOperand_NoMatch;
// Only hwreg 29 is supported, found at index 0.
RegNum = 0;
}
int Reg = matchRegisterByNumber(RegNum, regKindToRegClass(Kind));
if (Reg == -1)
return MatchOperand_NoMatch;
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
hasConsumedDollar = false;
Parser.Lex(); // Eat the register number.
if ((RegKind == MipsOperand::Kind_GPR32) &&
(getLexer().is(AsmToken::LParen))) {
// Check if it is indexed addressing operand.
Operands.push_back(MipsOperand::CreateToken("(", getLexer().getLoc()));
Parser.Lex(); // Eat the parenthesis.
if (parseRegs(Operands, RegKind) != MatchOperand_Success)
return MatchOperand_NoMatch;
if (getLexer().isNot(AsmToken::RParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken(")", getLexer().getLoc()));
Parser.Lex();
}
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
bool MipsAsmParser::validateMSAIndex(int Val, int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (Val < 0)
return false;
switch (Kind) {
default:
return false;
case MipsOperand::Kind_MSA128BRegs:
return Val < 16;
case MipsOperand::Kind_MSA128HRegs:
return Val < 8;
case MipsOperand::Kind_MSA128WRegs:
return Val < 4;
case MipsOperand::Kind_MSA128DRegs:
return Val < 2;
}
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMSARegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
SMLoc S = Parser.getTok().getLoc();
std::string RegName;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
switch (RegKind) {
default:
return MatchOperand_ParseFail;
case MipsOperand::Kind_MSA128BRegs:
case MipsOperand::Kind_MSA128HRegs:
case MipsOperand::Kind_MSA128WRegs:
case MipsOperand::Kind_MSA128DRegs:
break;
}
Parser.Lex(); // Eat the '$'.
if (getLexer().getKind() == AsmToken::Identifier)
RegName = Parser.getTok().getString().lower();
else
return MatchOperand_ParseFail;
int RegNum = matchMSA128RegisterName(RegName);
if (RegNum < 0 || RegNum > 31)
return MatchOperand_ParseFail;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_ParseFail;
MipsOperand *Op = MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
Parser.Lex(); // Eat the register identifier.
// MSA registers may be suffixed with an index in the form of:
// 1) Immediate expression.
// 2) General Purpose Register.
// Examples:
// 1) copy_s.b $29,$w0[0]
// 2) sld.b $w0,$w1[$1]
if (Parser.getTok().isNot(AsmToken::LBrac))
return MatchOperand_Success;
MipsOperand *Mnemonic = static_cast<MipsOperand *>(Operands[0]);
Operands.push_back(MipsOperand::CreateToken("[", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the '[' token.
if (Parser.getTok().is(AsmToken::Dollar)) {
// This must be a GPR.
MipsOperand *RegOp;
SMLoc VIdx = Parser.getTok().getLoc();
Parser.Lex(); // Parse the '$' token.
// GPR have aliases and we must account for that. Example: $30 == $fp
if (getLexer().getKind() == AsmToken::Integer) {
unsigned RegNum = Parser.getTok().getIntVal();
int Reg = matchRegisterByNumber(
RegNum, regKindToRegClass(MipsOperand::Kind_GPR32));
if (Reg == -1) {
Error(VIdx, "invalid general purpose register");
return MatchOperand_ParseFail;
}
RegOp = MipsOperand::CreateReg(Reg, VIdx, Parser.getTok().getLoc());
} else if (getLexer().getKind() == AsmToken::Identifier) {
int RegNum = -1;
std::string RegName = Parser.getTok().getString().lower();
RegNum = matchCPURegisterName(RegName);
if (RegNum == -1) {
Error(VIdx, "general purpose register expected");
return MatchOperand_ParseFail;
}
RegNum = getReg(regKindToRegClass(MipsOperand::Kind_GPR32), RegNum);
RegOp = MipsOperand::CreateReg(RegNum, VIdx, Parser.getTok().getLoc());
} else
return MatchOperand_ParseFail;
RegOp->setRegKind(MipsOperand::Kind_GPR32);
Operands.push_back(RegOp);
Parser.Lex(); // Eat the register identifier.
if (Parser.getTok().isNot(AsmToken::RBrac))
return MatchOperand_ParseFail;
Operands.push_back(MipsOperand::CreateToken("]", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the ']' token.
return MatchOperand_Success;
}
// The index must be a constant expression then.
SMLoc VIdx = Parser.getTok().getLoc();
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *expr = dyn_cast<MCConstantExpr>(ImmVal);
if (!expr || !validateMSAIndex((int)expr->getValue(), Kind)) {
Error(VIdx, "invalid immediate value");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getEndLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return MatchOperand_ParseFail;
bool insve =
Mnemonic->getToken() == "insve.b" || Mnemonic->getToken() == "insve.h" ||
Mnemonic->getToken() == "insve.w" || Mnemonic->getToken() == "insve.d";
// The second vector index of insve instructions is always 0.
if (insve && Operands.size() > 6) {
if (expr->getValue() != 0) {
Error(VIdx, "immediate value must be 0");
return MatchOperand_ParseFail;
}
Operands.push_back(MipsOperand::CreateToken("0", VIdx));
} else
Operands.push_back(MipsOperand::CreateImm(expr, VIdx, E));
Operands.push_back(MipsOperand::CreateToken("]", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the ']' token.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMSACtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (Kind != MipsOperand::Kind_MSA128CtrlRegs)
return MatchOperand_NoMatch;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$' symbol.
int RegNum = -1;
if (getLexer().getKind() == AsmToken::Identifier)
RegNum = matchMSA128CtrlRegisterName(Parser.getTok().getString().lower());
else if (getLexer().getKind() == AsmToken::Integer)
RegNum = Parser.getTok().getIntVal();
else
return MatchOperand_ParseFail;
if (RegNum < 0 || RegNum > 7)
return MatchOperand_ParseFail;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_ParseFail;
MipsOperand *RegOp =
MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
RegOp->setRegKind(MipsOperand::Kind_MSA128CtrlRegs);
Operands.push_back(RegOp);
Parser.Lex(); // Eat the register identifier.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseGPR64(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (!isMips64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_GPR64);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseGPR32(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_GPR32);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseAFGR64Regs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (isFP64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_AFGR64Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (!isFP64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_FGR64Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFGR32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FGR32Regs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseFGRH32Regs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FGRH32Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFCCRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FCCRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseACC64DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_ACC64DSP);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLO32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
if (!Tok.getIdentifier().startswith("ac"))
return MatchOperand_NoMatch;
StringRef NumString = Tok.getIdentifier().substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return MatchOperand_NoMatch;
unsigned Reg = matchRegisterByNumber(IntVal, Mips::LO32DSPRegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_LO32DSP);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHI32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
if (!Tok.getIdentifier().startswith("ac"))
return MatchOperand_NoMatch;
StringRef NumString = Tok.getIdentifier().substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return MatchOperand_NoMatch;
unsigned Reg = matchRegisterByNumber(IntVal, Mips::HI32DSPRegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_HI32DSP);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCOP2(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Integer))
return MatchOperand_NoMatch;
unsigned IntVal = Tok.getIntVal();
unsigned Reg = matchRegisterByNumber(IntVal, Mips::COP2RegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_COP2);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128BRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128BRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128HRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128HRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128WRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128WRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128DRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128DRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128CtrlRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSACtrlRegs(Operands, (int)MipsOperand::Kind_MSA128CtrlRegs);
}
bool MipsAsmParser::searchSymbolAlias(
SmallVectorImpl<MCParsedAsmOperand *> &Operands, unsigned RegKind) {
MCSymbol *Sym = getContext().LookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
const MCExpr *Expr;
if (Sym->isVariable())
Expr = Sym->getVariableValue();
else
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
const StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
int RegNum = -1;
APInt IntVal(32, -1);
if (!DefSymbol.substr(1).getAsInteger(10, IntVal))
RegNum = matchRegisterByNumber(IntVal.getZExtValue(),
isMips64() ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
else {
// Lookup for the register with the corresponding name.
switch (Kind) {
case MipsOperand::Kind_AFGR64Regs:
case MipsOperand::Kind_FGR64Regs:
RegNum = matchFPURegisterName(DefSymbol.substr(1));
break;
case MipsOperand::Kind_FGR32Regs:
RegNum = matchFPURegisterName(DefSymbol.substr(1));
break;
case MipsOperand::Kind_GPR64:
case MipsOperand::Kind_GPR32:
default:
RegNum = matchCPURegisterName(DefSymbol.substr(1));
break;
}
if (RegNum > -1)
RegNum = getReg(regKindToRegClass(Kind), RegNum);
}
if (RegNum > -1) {
Parser.Lex();
MipsOperand *op =
MipsOperand::CreateReg(RegNum, S, Parser.getTok().getLoc());
op->setRegKind(Kind);
Operands.push_back(op);
return true;
}
}
} else if (Expr->getKind() == MCExpr::Constant) {
Parser.Lex();
const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
MipsOperand *op =
MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc());
Operands.push_back(op);
return true;
}
}
return false;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHWRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_HWRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_CCRRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseInvNum(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
const MCExpr *IdVal;
// If the first token is '$' we may have register operand.
if (Parser.getTok().is(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
assert(MCE && "Unexpected MCExpr type.");
int64_t Val = MCE->getValue();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(
MCConstantExpr::Create(0 - Val, getContext()), S, E));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLSAImm(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
break;
}
const MCExpr *Expr;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
int64_t Val;
if (!Expr->EvaluateAsAbsolute(Val)) {
Error(S, "expected immediate value");
return MatchOperand_ParseFail;
}
// The LSA instruction allows a 2-bit unsigned immediate. For this reason
// and because the CPU always adds one to the immediate field, the allowed
// range becomes 1..4. We'll only check the range here and will deal
// with the addition/subtraction when actually decoding/encoding
// the instruction.
if (Val < 1 || Val > 4) {
Error(S, "immediate not in range (1..4)");
return MatchOperand_ParseFail;
}
Operands.push_back(MipsOperand::CreateLSAImm(Expr, S,
Parser.getTok().getLoc()));
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK =
StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Default(MCSymbolRefExpr::VK_None);
return VK;
}
bool MipsAsmParser::ParseInstruction(
ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// Check if we have valid mnemonic
if (!mnemonicIsValid(Name, 0)) {
Parser.eatToEndOfStatement();
return Error(NameLoc, "Unknown instruction");
}
// First operand in MCInst is instruction mnemonic.
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::reportParseError(StringRef ErrorMsg) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
// Line should look like: ".set noat".
// set at reg to 0.
Options.setATReg(0);
// eat noat
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// Line can be .set at - defaults to $1
// or .set at=$reg
int AtRegNo;
getParser().Lex();
if (getLexer().is(AsmToken::EndOfStatement)) {
Options.setATReg(1);
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else if (getLexer().is(AsmToken::Equal)) {
getParser().Lex(); // Eat the '='.
if (getLexer().isNot(AsmToken::Dollar)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Eat the '$'.
const AsmToken &Reg = Parser.getTok();
if (Reg.is(AsmToken::Identifier)) {
AtRegNo = matchCPURegisterName(Reg.getIdentifier());
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
reportParseError("unexpected token in statement");
return false;
}
if (AtRegNo < 1 || AtRegNo > 31) {
reportParseError("unexpected token in statement");
return false;
}
if (!Options.setATReg(AtRegNo)) {
reportParseError("unexpected token in statement");
return false;
}
getParser().Lex(); // Eat the register.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else {
reportParseError("unexpected token in statement");
return false;
}
}
bool MipsAsmParser::parseSetReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setNoreorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
if (Options.isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
Options.setNomacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
return reportParseError("unexpected token in .set directive");
Lex(); // Eat comma
if (getLexer().is(AsmToken::Dollar)) {
MCSymbol *Symbol;
SMLoc DollarLoc = getLexer().getLoc();
// Consume the dollar sign, and check for a following identifier.
Parser.Lex();
// We have a '$' followed by something, make sure they are adjacent.
if (DollarLoc.getPointer() + 1 != getTok().getLoc().getPointer())
return true;
StringRef Res =
StringRef(DollarLoc.getPointer(),
getTok().getEndLoc().getPointer() - DollarLoc.getPointer());
Symbol = getContext().GetOrCreateSymbol(Res);
Parser.Lex();
Value =
MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None, getContext());
} else if (Parser.parseExpression(Value))
return reportParseError("expected valid expression after comma");
// Check if the Name already exists as a symbol.
MCSymbol *Sym = getContext().LookupSymbol(Name);
if (Sym)
return reportParseError("symbol already defined");
Sym = getContext().GetOrCreateSymbol(Name);
Sym->setVariableValue(Value);
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
// Get the next token.
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "nomips16") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "nomicromips") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
return false;
}
return true;
}
bool MipsAsmParser::parseDirectiveMipsHackStocg() {
MCAsmParser &Parser = getParser();
StringRef Name;
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier");
MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
if (getLexer().isNot(AsmToken::Comma))
return TokError("unexpected token");
Lex();
int64_t Flags = 0;
if (Parser.parseAbsoluteExpression(Flags))
return TokError("unexpected token");
getTargetStreamer().emitMipsHackSTOCG(Sym, Flags);
return false;
}
bool MipsAsmParser::parseDirectiveMipsHackELFFlags() {
int64_t Flags = 0;
if (Parser.parseAbsoluteExpression(Flags))
return TokError("unexpected token");
getTargetStreamer().emitMipsHackELFFlags(Flags);
return false;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveGpWord
/// ::= .gpword local_sym
bool MipsAsmParser::parseDirectiveGpWord() {
const MCExpr *Value;
// EmitGPRel32Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel32Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(), "unexpected token in directive");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".ent") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".end") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".frame") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".set") {
return parseDirectiveSet();
}
if (IDVal == ".fmask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".mask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".gpword") {
// Ignore this directive for now.
parseDirectiveGpWord();
return false;
}
if (IDVal == ".word") {
parseDirectiveWord(4, DirectiveID.getLoc());
return false;
}
if (IDVal == ".mips_hack_stocg")
return parseDirectiveMipsHackStocg();
if (IDVal == ".mips_hack_elf_flags")
return parseDirectiveMipsHackELFFlags();
return true;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"