freebsd-nq/sys/dev/ipw/if_ipw.c
Sam Leffler fa393cd523 allow net80211 to fillin rate sets
MFC after:	2 weeks
2007-03-11 22:43:35 +00:00

2216 lines
55 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2004-2006
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Intel(R) PRO/Wireless 2100 MiniPCI driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ipw/if_ipwreg.h>
#include <dev/ipw/if_ipwvar.h>
#ifdef IPW_DEBUG
#define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0)
int ipw_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(ipw, pci, 1, 1, 1);
MODULE_DEPEND(ipw, wlan, 1, 1, 1);
MODULE_DEPEND(ipw, firmware, 1, 1, 1);
struct ipw_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct ipw_ident ipw_ident_table[] = {
{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
{ 0, 0, NULL }
};
static int ipw_dma_alloc(struct ipw_softc *);
static void ipw_release(struct ipw_softc *);
static int ipw_media_change(struct ifnet *);
static void ipw_media_status(struct ifnet *, struct ifmediareq *);
static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
struct ipw_soft_bd *, struct ipw_soft_buf *);
static void ipw_rx_intr(struct ipw_softc *);
static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
static void ipw_tx_intr(struct ipw_softc *);
static void ipw_intr(void *);
static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
static int ipw_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *);
static void ipw_start(struct ifnet *);
static void ipw_watchdog(struct ifnet *);
static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
static void ipw_stop_master(struct ipw_softc *);
static int ipw_reset(struct ipw_softc *);
static int ipw_load_ucode(struct ipw_softc *, const char *, int);
static int ipw_load_firmware(struct ipw_softc *, const char *, int);
static int ipw_config(struct ipw_softc *);
static void ipw_init_task(void *, int);
static void ipw_init(void *);
static void ipw_stop(void *);
static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
static int ipw_read_table2(struct ipw_softc *, uint32_t, void *,
uint32_t *);
static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
static void ipw_write_mem_1(struct ipw_softc *, bus_size_t,
const uint8_t *, bus_size_t);
static int ipw_probe(device_t);
static int ipw_attach(device_t);
static int ipw_detach(device_t);
static int ipw_shutdown(device_t);
static int ipw_suspend(device_t);
static int ipw_resume(device_t);
static device_method_t ipw_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ipw_probe),
DEVMETHOD(device_attach, ipw_attach),
DEVMETHOD(device_detach, ipw_detach),
DEVMETHOD(device_shutdown, ipw_shutdown),
DEVMETHOD(device_suspend, ipw_suspend),
DEVMETHOD(device_resume, ipw_resume),
{ 0, 0 }
};
static driver_t ipw_driver = {
"ipw",
ipw_methods,
sizeof (struct ipw_softc)
};
static devclass_t ipw_devclass;
DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
static int
ipw_probe(device_t dev)
{
const struct ipw_ident *ident;
for (ident = ipw_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
/* Base Address Register */
#define IPW_PCI_BAR0 0x10
static int
ipw_attach(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error, i;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
sc->mem_rid = IPW_PCI_BAR0;
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
goto fail;
}
if (ipw_reset(sc) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail;
}
if (ipw_dma_alloc(sc) != 0) {
device_printf(dev, "could not allocate DMA resources\n");
goto fail;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ipw_init;
ifp->if_ioctl = ipw_ioctl;
ifp->if_start = ipw_start;
ifp->if_watchdog = ipw_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
/* read MAC address from EEPROM */
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val >> 8;
ic->ic_myaddr[1] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val >> 8;
ic->ic_myaddr[3] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val >> 8;
ic->ic_myaddr[5] = val & 0xff;
/* set supported .11b channels */
for (i = 1; i < 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
}
/* check support for radio transmitter switch in EEPROM */
if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
ieee80211_ifattach(ic);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ipw_newstate;
ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
sc->dwelltime = 100;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
"radio transmitter switch state (0=off, 1=on)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
"statistics");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
CTLFLAG_RW, &sc->dwelltime, 0,
"channel dwell time (ms) for AP/station scanning");
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ipw_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail: ipw_detach(dev);
return ENXIO;
}
static int
ipw_detach(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
ipw_stop(sc);
if (ifp != NULL) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
}
ipw_release(sc);
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
}
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
if (sc->sc_firmware != NULL) {
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = NULL;
}
mtx_destroy(&sc->sc_mtx);
return 0;
}
static int
ipw_dma_alloc(struct ipw_softc *sc)
{
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
bus_addr_t physaddr;
int error, i;
/*
* Allocate and map tx ring.
*/
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
NULL, &sc->tbd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate tx ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
goto fail;
}
/*
* Allocate and map rx ring.
*/
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
NULL, &sc->rbd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate rx ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
goto fail;
}
/*
* Allocate and map status ring.
*/
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
NULL, NULL, &sc->status_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create status ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate status ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->status_dmat, sc->status_map,
sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map status ring DMA memory\n");
goto fail;
}
/*
* Allocate command DMA map.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create command DMA tag\n");
goto fail;
}
error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create command DMA map\n");
goto fail;
}
/*
* Allocate headers DMA maps.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create header DMA tag\n");
goto fail;
}
SLIST_INIT(&sc->free_shdr);
for (i = 0; i < IPW_NDATA; i++) {
shdr = &sc->shdr_list[i];
error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create header DMA map\n");
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
}
/*
* Allocate tx buffers DMA maps.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
NULL, NULL, &sc->txbuf_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create tx DMA tag\n");
goto fail;
}
SLIST_INIT(&sc->free_sbuf);
for (i = 0; i < IPW_NDATA; i++) {
sbuf = &sc->tx_sbuf_list[i];
error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create tx DMA map\n");
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
}
/*
* Initialize tx ring.
*/
for (i = 0; i < IPW_NTBD; i++) {
sbd = &sc->stbd_list[i];
sbd->bd = &sc->tbd_list[i];
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
/*
* Pre-allocate rx buffers and DMA maps.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &sc->rxbuf_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create rx DMA tag\n");
goto fail;
}
for (i = 0; i < IPW_NRBD; i++) {
sbd = &sc->srbd_list[i];
sbuf = &sc->rx_sbuf_list[i];
sbd->bd = &sc->rbd_list[i];
sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (sbuf->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create rx DMA map\n");
goto fail;
}
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map rx DMA memory\n");
goto fail;
}
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(MCLBYTES);
}
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: ipw_release(sc);
return error;
}
static void
ipw_release(struct ipw_softc *sc)
{
struct ipw_soft_buf *sbuf;
int i;
if (sc->tbd_dmat != NULL) {
if (sc->stbd_list != NULL) {
bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
sc->tbd_map);
}
bus_dma_tag_destroy(sc->tbd_dmat);
}
if (sc->rbd_dmat != NULL) {
if (sc->rbd_list != NULL) {
bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
sc->rbd_map);
}
bus_dma_tag_destroy(sc->rbd_dmat);
}
if (sc->status_dmat != NULL) {
if (sc->status_list != NULL) {
bus_dmamap_unload(sc->status_dmat, sc->status_map);
bus_dmamem_free(sc->status_dmat, sc->status_list,
sc->status_map);
}
bus_dma_tag_destroy(sc->status_dmat);
}
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
if (sc->cmd_dmat != NULL) {
bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
bus_dma_tag_destroy(sc->cmd_dmat);
}
if (sc->hdr_dmat != NULL) {
for (i = 0; i < IPW_NDATA; i++)
bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
bus_dma_tag_destroy(sc->hdr_dmat);
}
if (sc->txbuf_dmat != NULL) {
for (i = 0; i < IPW_NDATA; i++) {
bus_dmamap_destroy(sc->txbuf_dmat,
sc->tx_sbuf_list[i].map);
}
bus_dma_tag_destroy(sc->txbuf_dmat);
}
if (sc->rxbuf_dmat != NULL) {
for (i = 0; i < IPW_NRBD; i++) {
sbuf = &sc->rx_sbuf_list[i];
if (sbuf->m != NULL) {
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
m_freem(sbuf->m);
}
bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
}
bus_dma_tag_destroy(sc->rxbuf_dmat);
}
}
static int
ipw_shutdown(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
ipw_stop(sc);
return 0;
}
static int
ipw_suspend(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
ipw_stop(sc);
return 0;
}
static int
ipw_resume(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
mtx_lock(&sc->sc_mtx);
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP) {
ifp->if_init(ifp->if_softc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_start(ifp);
}
mtx_unlock(&sc->sc_mtx);
return 0;
}
static int
ipw_media_change(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
int error;
mtx_lock(&sc->sc_mtx);
error = ieee80211_media_change(ifp);
if (error != ENETRESET) {
mtx_unlock(&sc->sc_mtx);
return error;
}
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
ipw_init(sc);
mtx_unlock(&sc->sc_mtx);
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
static const struct {
uint32_t val;
int rate;
} rates[] = {
{ IPW_RATE_DS1, 2 },
{ IPW_RATE_DS2, 4 },
{ IPW_RATE_DS5, 11 },
{ IPW_RATE_DS11, 22 },
};
uint32_t val;
int rate, i;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
/* convert ipw rate to 802.11 rate */
for (i = 0; i < N(rates) && rates[i].val != val; i++);
rate = (i < N(rates)) ? rates[i].rate : 0;
imr->ifm_active |= IFM_IEEE80211_11B;
imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_IBSS;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
/* should not get there */
break;
}
#undef N
}
static int
ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
uint8_t macaddr[IEEE80211_ADDR_LEN];
uint32_t len;
switch (nstate) {
case IEEE80211_S_RUN:
DELAY(200); /* firmware needs a short delay here */
len = IEEE80211_ADDR_LEN;
ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
ni = ieee80211_find_node(&ic->ic_scan, macaddr);
if (ni == NULL)
break;
ieee80211_ref_node(ni);
ieee80211_sta_join(ic, ni);
ieee80211_node_authorize(ni);
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_notify_node_join(ic, ni, 1);
break;
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
}
ic->ic_state = nstate;
return 0;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* write start bit (1) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
/* write READ opcode (10) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
}
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
}
IPW_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
return le16toh(val);
}
static void
ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ipw_cmd *cmd;
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
cmd = mtod(sbuf->m, struct ipw_cmd *);
DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
le32toh(cmd->status)));
wakeup(sc);
}
static void
ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t state;
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
state = le32toh(*mtod(sbuf->m, uint32_t *));
DPRINTFN(2, ("entering state %u\n", state));
switch (state) {
case IPW_STATE_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IPW_STATE_SCANNING:
/* don't leave run state on background scan */
if (ic->ic_state != IEEE80211_S_RUN)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
ic->ic_flags |= IEEE80211_F_SCAN;
break;
case IPW_STATE_SCAN_COMPLETE:
ieee80211_notify_scan_done(ic);
ic->ic_flags &= ~IEEE80211_F_SCAN;
break;
case IPW_STATE_ASSOCIATION_LOST:
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
break;
case IPW_STATE_RADIO_DISABLED:
ic->ic_ifp->if_flags &= ~IFF_UP;
ipw_stop(sc);
break;
}
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static void
ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct mbuf *mnew, *m;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
bus_addr_t physaddr;
int error;
DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
status->rssi));
if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
le32toh(status->len) > MCLBYTES)
return;
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
&physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = sbuf->m;
sbuf->m = mnew;
sbd->bd->physaddr = htole32(physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = le32toh(status->len);
if (bpf_peers_present(sc->sc_drvbpf)) {
struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antsignal = status->rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
if (ic->ic_state == IEEE80211_S_SCAN)
ipw_fix_channel(ic, m);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, status->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
}
static void
ipw_rx_intr(struct ipw_softc *sc)
{
struct ipw_status *status;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_RX_READ);
bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
status = &sc->status_list[i];
sbd = &sc->srbd_list[i];
sbuf = sbd->priv;
switch (le16toh(status->code) & 0xf) {
case IPW_STATUS_CODE_COMMAND:
ipw_command_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_NEWSTATE:
ipw_newstate_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_DATA_802_3:
case IPW_STATUS_CODE_DATA_802_11:
ipw_data_intr(sc, status, sbd, sbuf);
break;
case IPW_STATUS_CODE_NOTIFICATION:
DPRINTFN(2, ("received notification\n"));
break;
default:
device_printf(sc->sc_dev, "unknown status code %u\n",
le16toh(status->code));
}
/* firmware was killed, stop processing received frames */
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
sbd->bd->flags = 0;
}
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
/* kick the firmware */
sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
}
static void
ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
{
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
switch (sbd->type) {
case IPW_SBD_TYPE_COMMAND:
bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
break;
case IPW_SBD_TYPE_HEADER:
shdr = sbd->priv;
bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->hdr_dmat, shdr->map);
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
break;
case IPW_SBD_TYPE_DATA:
sbuf = sbd->priv;
bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
m_freem(sbuf->m);
ieee80211_free_node(sbuf->ni);
sc->sc_tx_timer = 0;
break;
}
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
static void
ipw_tx_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct ipw_soft_bd *sbd;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_TX_READ);
for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
sbd = &sc->stbd_list[i];
if (sbd->type == IPW_SBD_TYPE_DATA)
ifp->if_opackets++;
ipw_release_sbd(sc, sbd);
sc->txfree++;
}
/* remember what the firmware has processed */
sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ipw_start(ifp);
}
static void
ipw_intr(void *arg)
{
struct ipw_softc *sc = arg;
uint32_t r;
mtx_lock(&sc->sc_mtx);
if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
mtx_unlock(&sc->sc_mtx);
return;
}
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
/* acknowledge all interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR, r);
if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
device_printf(sc->sc_dev, "firmware error\n");
taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
r = 0; /* don't process more interrupts */
}
if (r & IPW_INTR_FW_INIT_DONE)
wakeup(sc);
if (r & IPW_INTR_RX_TRANSFER)
ipw_rx_intr(sc);
if (r & IPW_INTR_TX_TRANSFER)
ipw_tx_intr(sc);
/* re-enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
mtx_unlock(&sc->sc_mtx);
}
static void
ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
/*
* Send a command to the firmware and wait for the acknowledgement.
*/
static int
ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
{
struct ipw_soft_bd *sbd;
bus_addr_t physaddr;
int error;
sbd = &sc->stbd_list[sc->txcur];
error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map command DMA memory\n");
return error;
}
sc->cmd.type = htole32(type);
sc->cmd.subtype = 0;
sc->cmd.len = htole32(len);
sc->cmd.seq = 0;
memcpy(sc->cmd.data, data, len);
sbd->type = IPW_SBD_TYPE_COMMAND;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(sizeof (struct ipw_cmd));
sbd->bd->nfrag = 1;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
IPW_BD_FLAG_TX_LAST_FRAGMENT;
bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
/* kick firmware */
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
/* wait at most one second for command to complete */
return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
}
static int
ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
struct ieee80211_key *k;
struct mbuf *mnew;
bus_dma_segment_t segs[IPW_MAX_NSEG];
bus_addr_t physaddr;
int nsegs, error, i;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (bpf_peers_present(sc->sc_drvbpf)) {
struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
shdr = SLIST_FIRST(&sc->free_shdr);
sbuf = SLIST_FIRST(&sc->free_sbuf);
KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
shdr->hdr.subtype = 0;
shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
shdr->hdr.encrypt = 0;
shdr->hdr.keyidx = 0;
shdr->hdr.keysz = 0;
shdr->hdr.fragmentsz = 0;
IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
if (ic->ic_opmode == IEEE80211_M_STA)
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
else
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
/* trim IEEE802.11 header */
m_adj(m0, sizeof (struct ieee80211_frame));
error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map header DMA memory\n");
bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
m_freem(m0);
return error;
}
SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
SLIST_REMOVE_HEAD(&sc->free_shdr, next);
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_HEADER;
sbd->priv = shdr;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(sizeof (struct ipw_hdr));
sbd->bd->nfrag = 1 + nsegs;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
":"));
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sbuf->m = m0;
sbuf->ni = ni;
for (i = 0; i < nsegs; i++) {
sbd = &sc->stbd_list[sc->txcur];
sbd->bd->physaddr = htole32(segs[i].ds_addr);
sbd->bd->len = htole32(segs[i].ds_len);
sbd->bd->nfrag = 0;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
if (i == nsegs - 1) {
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
} else {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
}
DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
}
bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
/* kick firmware */
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
return 0;
}
static void
ipw_start(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
mtx_lock(&sc->sc_mtx);
if (ic->ic_state != IEEE80211_S_RUN) {
mtx_unlock(&sc->sc_mtx);
return;
}
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->txfree < 1 + IPW_MAX_NSEG) {
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
if (m0->m_len < sizeof (struct ether_header) &&
(m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
if (bpf_peers_present(ic->ic_rawbpf))
bpf_mtap(ic->ic_rawbpf, m0);
if (ipw_tx_start(ifp, m0, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
mtx_unlock(&sc->sc_mtx);
}
static void
ipw_watchdog(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
mtx_lock(&sc->sc_mtx);
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
ifp->if_oerrors++;
taskqueue_enqueue_fast(taskqueue_fast,
&sc->sc_init_task);
mtx_unlock(&sc->sc_mtx);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
mtx_unlock(&sc->sc_mtx);
}
static int
ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
mtx_lock(&sc->sc_mtx);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
ipw_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ipw_stop(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING))
ipw_init(sc);
error = 0;
}
mtx_unlock(&sc->sc_mtx);
return error;
}
static void
ipw_stop_master(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
for (ntries = 0; ntries < 50; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 50)
device_printf(sc->sc_dev, "timeout waiting for master\n");
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
sc->flags &= ~IPW_FLAG_FW_INITED;
}
static int
ipw_reset(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
ipw_stop_master(sc);
/* move adapter to D0 state */
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
return 0;
}
/*
* Upload the microcode to the device.
*/
static int
ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
{
int ntries;
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
for (ntries = 0; ntries < 10; ntries++) {
if (MEM_READ_1(sc, 0x210000) & 1)
break;
DELAY(10);
}
if (ntries == 10) {
device_printf(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0);
return 0;
}
/* set of macros to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
#define GETLE16(p) ((p)[0] | (p)[1] << 8)
static int
ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
{
const uint8_t *p, *end;
uint32_t tmp, dst;
uint16_t len;
int error;
p = fw;
end = fw + size;
while (p < end) {
dst = GETLE32(p); p += 4;
len = GETLE16(p); p += 2;
ipw_write_mem_1(sc, dst, p, len);
p += len;
}
CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
IPW_IO_LED_OFF);
/* enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
/* kick the firmware */
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
device_printf(sc->sc_dev, "timeout waiting for firmware "
"initialization to complete\n");
return error;
}
tmp = CSR_READ_4(sc, IPW_CSR_IO);
CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
IPW_IO_GPIO3_MASK);
return 0;
}
static int
ipw_config(struct ipw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ipw_security security;
struct ieee80211_key *k;
struct ipw_wep_key wepkey;
struct ipw_scan_options options;
struct ipw_configuration config;
uint32_t data;
int error, i;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_HOSTAP:
data = htole32(IPW_MODE_BSS);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
data = htole32(IPW_MODE_IBSS);
break;
case IEEE80211_M_MONITOR:
data = htole32(IPW_MODE_MONITOR);
break;
}
DPRINTF(("Setting mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
DPRINTF(("Setting channel to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
if (error != 0)
return error;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
if (ic->ic_opmode == IEEE80211_M_IBSS)
config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
if (ifp->if_flags & IFF_PROMISC)
config.flags |= htole32(IPW_CFG_PROMISCUOUS);
config.bss_chan = htole32(0x3fff); /* channels 1-14 */
config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
if (error != 0)
return error;
data = htole32(0x3); /* 1, 2 */
DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(IPW_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(32); /* default value */
DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
#ifdef IPW_DEBUG
if (ipw_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
printf("\n");
}
#endif
error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen);
if (error != 0)
return error;
/* no mandatory BSSID */
DPRINTF(("Setting mandatory BSSID to null\n"));
error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_DESBSSID) {
DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
":"));
error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
ic->ic_des_bssid, IEEE80211_ADDR_LEN);
if (error != 0)
return error;
}
memset(&security, 0, sizeof security);
security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
IPW_AUTH_SHARED : IPW_AUTH_OPEN;
security.ciphers = htole32(IPW_CIPHER_NONE);
DPRINTF(("Setting authmode to %u\n", security.authmode));
error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
sizeof security);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
k = ic->ic_crypto.cs_nw_keys;
for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
if (k->wk_keylen == 0)
continue;
wepkey.idx = i;
wepkey.len = k->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, k->wk_key, k->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n",
wepkey.idx, wepkey.len));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
data = htole32(ic->ic_crypto.cs_def_txkey);
DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
if (error != 0)
return error;
#if 0
struct ipw_wpa_ie ie;
memset(&ie, 0, sizeof ie);
ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
DPRINTF(("Setting wpa ie\n"));
error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
if (error != 0)
return error;
#endif
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(ic->ic_bintval);
DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
sizeof data);
if (error != 0)
return error;
}
options.flags = 0;
options.channels = htole32(0x3fff); /* scan channels 1-14 */
DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
if (error != 0)
return error;
/* finally, enable adapter (start scanning for an access point) */
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
/*
* Handler for sc_init_task. This is a simple wrapper around ipw_init().
* It is called on firmware panics or on watchdog timeouts.
*/
static void
ipw_init_task(void *context, int pending)
{
ipw_init(context);
}
static void
ipw_init(void *priv)
{
struct ipw_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
const struct firmware *fp;
const struct ipw_firmware_hdr *hdr;
const char *imagename, *fw;
int owned;
/*
* ipw_init() is exposed through ifp->if_init so it might be called
* without the driver's lock held. Since msleep() doesn't like being
* called on a recursed mutex, we acquire the driver's lock only if
* we're not already holding it.
*/
if (!(owned = mtx_owned(&sc->sc_mtx)))
mtx_lock(&sc->sc_mtx);
/*
* Avoid re-entrant calls. We need to release the mutex in ipw_init()
* when loading the firmware and we don't want to be called during this
* operation.
*/
if (sc->flags & IPW_FLAG_INIT_LOCKED) {
if (!owned)
mtx_unlock(&sc->sc_mtx);
return;
}
sc->flags |= IPW_FLAG_INIT_LOCKED;
ipw_stop(sc);
if (ipw_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset adapter\n");
goto fail1;
}
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
imagename = "ipw_bss";
break;
case IEEE80211_M_IBSS:
imagename = "ipw_ibss";
break;
case IEEE80211_M_MONITOR:
imagename = "ipw_monitor";
break;
default:
imagename = NULL; /* should not get there */
}
/*
* Load firmware image using the firmware(9) subsystem. We need to
* release the driver's lock first.
*/
if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name,
imagename) != 0) {
mtx_unlock(&sc->sc_mtx);
if (sc->sc_firmware != NULL)
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = firmware_get(imagename);
mtx_lock(&sc->sc_mtx);
}
if (sc->sc_firmware == NULL) {
device_printf(sc->sc_dev,
"could not load firmware image '%s'\n", imagename);
goto fail1;
}
fp = sc->sc_firmware;
if (fp->datasize < sizeof *hdr) {
device_printf(sc->sc_dev,
"firmware image too short %zu\n", fp->datasize);
goto fail2;
}
hdr = (const struct ipw_firmware_hdr *)fp->data;
if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
le32toh(hdr->ucodesz)) {
device_printf(sc->sc_dev,
"firmware image too short %zu\n", fp->datasize);
goto fail2;
}
fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
device_printf(sc->sc_dev, "could not load microcode\n");
goto fail2;
}
ipw_stop_master(sc);
/*
* Setup tx, rx and status rings.
*/
sc->txold = IPW_NTBD - 1;
sc->txcur = 0;
sc->txfree = IPW_NTBD - 2;
sc->rxcur = IPW_NRBD - 1;
CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys);
CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys);
CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
fw = (const char *)fp->data + sizeof *hdr;
if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
device_printf(sc->sc_dev, "could not load firmware\n");
goto fail2;
}
sc->flags |= IPW_FLAG_FW_INITED;
/* retrieve information tables base addresses */
sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
ipw_write_table1(sc, IPW_INFO_LOCK, 0);
if (ipw_config(sc) != 0) {
device_printf(sc->sc_dev, "device configuration failed\n");
goto fail1;
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->flags &=~ IPW_FLAG_INIT_LOCKED;
if (!owned)
mtx_unlock(&sc->sc_mtx);
return;
fail2: firmware_put(fp, FIRMWARE_UNLOAD);
sc->sc_firmware = NULL;
fail1: ifp->if_flags &= ~IFF_UP;
ipw_stop(sc);
sc->flags &=~ IPW_FLAG_INIT_LOCKED;
if (!owned)
mtx_unlock(&sc->sc_mtx);
}
static void
ipw_stop(void *priv)
{
struct ipw_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
int i;
mtx_lock(&sc->sc_mtx);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ipw_stop_master(sc);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
/*
* Release tx buffers.
*/
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
mtx_unlock(&sc->sc_mtx);
}
static int
ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct ipw_softc *sc = arg1;
uint32_t i, size, buf[256];
if (!(sc->flags & IPW_FLAG_FW_INITED)) {
memset(buf, 0, sizeof buf);
return SYSCTL_OUT(req, buf, sizeof buf);
}
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
for (i = 1; i < size; i++)
buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
return SYSCTL_OUT(req, buf, sizeof buf);
}
static int
ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
{
struct ipw_softc *sc = arg1;
int val;
val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
(CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
return SYSCTL_OUT(req, &val, sizeof val);
}
static uint32_t
ipw_read_table1(struct ipw_softc *sc, uint32_t off)
{
return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
}
static void
ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
{
MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
}
static int
ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
{
uint32_t addr, info;
uint16_t count, size;
uint32_t total;
/* addr[4] + count[2] + size[2] */
addr = MEM_READ_4(sc, sc->table2_base + off);
info = MEM_READ_4(sc, sc->table2_base + off + 4);
count = info >> 16;
size = info & 0xffff;
total = count * size;
if (total > *len) {
*len = total;
return EINVAL;
}
*len = total;
ipw_read_mem_1(sc, addr, buf, total);
return 0;
}
static void
ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
}
}
static void
ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
}
}