freebsd-nq/sys/pc98/i386/machdep.c
Mike Smith 134c934ce7 Move the initialisation/tuning of nmbclusters from param.c/machdep.c
into uipc_mbuf.c.  This reduces three sets of identical tunable code to
one set, and puts the initialisation with the mbuf code proper.

Make NMBUFs tunable as well.

Move the nmbclusters sysctl here as well.

Move the initialisation of maxsockets from param.c to uipc_socket2.c,
next to its corresponding sysctl.

Use the new tunable macros for the kern.vm.kmem.size tunable (this should have
been in a separate commit, whoops).
1999-07-05 08:52:54 +00:00

2282 lines
62 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
* $Id: machdep.c,v 1.123 1999/07/03 08:31:32 kato Exp $
*/
#include "apm.h"
#include "ether.h"
#include "npx.h"
#include "opt_atalk.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_ipx.h"
#include "opt_maxmem.h"
#include "opt_msgbuf.h"
#include "opt_perfmon.h"
#include "opt_smp.h"
#include "opt_sysvipc.h"
#include "opt_user_ldt.h"
#include "opt_userconfig.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/bus.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <ddb/ddb.h>
#include <net/netisr.h>
#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/clock.h>
#include <machine/specialreg.h>
#include <machine/cons.h>
#include <machine/bootinfo.h>
#include <machine/ipl.h>
#include <machine/md_var.h>
#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
#ifdef SMP
#include <machine/smp.h>
#include <machine/globaldata.h>
#endif
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#ifdef OLD_BUS_ARCH
#include <i386/isa/isa_device.h>
#endif
#include <i386/isa/intr_machdep.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h>
#include <pc98/pc98/pc98.h>
#else
#include <i386/isa/rtc.h>
#endif
#include <machine/vm86.h>
#include <machine/random.h>
#include <sys/ptrace.h>
extern void init386 __P((int first));
extern void dblfault_handler __P((void));
extern void printcpuinfo(void); /* XXX header file */
extern void earlysetcpuclass(void); /* same header file */
extern void finishidentcpu(void);
extern void panicifcpuunsupported(void);
extern void initializecpu(void);
static void cpu_startup __P((void *));
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
#ifdef PC98
int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */
int need_post_dma_flush; /* If 1, use invd after DMA transfer. */
#endif
int _udatasel, _ucodesel;
u_int atdevbase;
#if defined(SWTCH_OPTIM_STATS)
extern int swtch_optim_stats;
SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
CTLFLAG_RD, &swtch_optim_stats, 0, "");
SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
CTLFLAG_RD, &tlb_flush_count, 0, "");
#endif
#ifdef PC98
static int ispc98 = 1;
#else
static int ispc98 = 0;
#endif
SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
int physmem = 0;
int cold = 1;
static int
sysctl_hw_physmem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
return (error);
}
SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_physmem, "I", "");
static int
sysctl_hw_usermem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0,
ctob(physmem - cnt.v_wire_count), req);
return (error);
}
SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_usermem, "I", "");
static int
sysctl_hw_availpages SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0,
i386_btop(avail_end - avail_start), req);
return (error);
}
SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_availpages, "I", "");
static int
sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
{
int error;
/* Unwind the buffer, so that it's linear (possibly starting with
* some initial nulls).
*/
error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
msgbufp->msg_size-msgbufp->msg_bufr,req);
if(error) return(error);
if(msgbufp->msg_bufr>0) {
error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
msgbufp->msg_bufr,req);
}
return(error);
}
SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
static int msgbuf_clear;
static int
sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
req);
if (!error && req->newptr) {
/* Clear the buffer and reset write pointer */
bzero(msgbufp->msg_ptr,msgbufp->msg_size);
msgbufp->msg_bufr=msgbufp->msg_bufx=0;
msgbuf_clear=0;
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
"Clear kernel message buffer");
int bootverbose = 0, Maxmem = 0;
#ifdef PC98
int Maxmem_under16M = 0;
#endif
long dumplo;
vm_offset_t phys_avail[10];
/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
static vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
static vm_offset_t pager_sva, pager_eva;
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
static void
cpu_startup(dummy)
void *dummy;
{
register unsigned i;
register caddr_t v;
vm_offset_t maxaddr;
vm_size_t size = 0;
int firstaddr;
vm_offset_t minaddr;
if (boothowto & RB_VERBOSE)
bootverbose++;
/*
* Good {morning,afternoon,evening,night}.
*/
printf(version);
earlysetcpuclass();
startrtclock();
printcpuinfo();
panicifcpuunsupported();
#ifdef PERFMON
perfmon_init();
#endif
printf("real memory = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
int size1 = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
phys_avail[indx], phys_avail[indx + 1] - 1, size1,
size1 / PAGE_SIZE);
}
}
/*
* Calculate callout wheel size
*/
for (callwheelsize = 1, callwheelbits = 0;
callwheelsize < ncallout;
callwheelsize <<= 1, ++callwheelbits)
;
callwheelmask = callwheelsize - 1;
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
#define valloc(name, type, num) \
(name) = (type *)v; v = (caddr_t)((name)+(num))
#define valloclim(name, type, num, lim) \
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
valloc(callout, struct callout, ncallout);
valloc(callwheel, struct callout_tailq, callwheelsize);
#ifdef SYSVSHM
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
valloc(sema, struct semid_ds, seminfo.semmni);
valloc(sem, struct sem, seminfo.semmns);
/* This is pretty disgusting! */
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
valloc(msgpool, char, msginfo.msgmax);
valloc(msgmaps, struct msgmap, msginfo.msgseg);
valloc(msghdrs, struct msg, msginfo.msgtql);
valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif
if (nbuf == 0) {
nbuf = 30;
if( physmem > 1024)
nbuf += min((physmem - 1024) / 8, 2048);
}
nswbuf = max(min(nbuf/4, 64), 16);
valloc(swbuf, struct buf, nswbuf);
valloc(buf, struct buf, nbuf);
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)(v - firstaddr);
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)(v - firstaddr) != size)
panic("startup: table size inconsistency");
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
(nbuf*BKVASIZE));
pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
(nswbuf*MAXPHYS) + pager_map_size);
pager_map->system_map = 1;
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(16*(ARG_MAX+(PAGE_SIZE*3))));
/*
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
* we use the more space efficient malloc in place of kmem_alloc.
*/
{
vm_offset_t mb_map_size;
mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
bzero(mclrefcnt, mb_map_size / MCLBYTES);
mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
mb_map_size);
mb_map->system_map = 1;
}
/*
* Initialize callouts
*/
SLIST_INIT(&callfree);
for (i = 0; i < ncallout; i++) {
callout_init(&callout[i]);
callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
}
for (i = 0; i < callwheelsize; i++) {
TAILQ_INIT(&callwheel[i]);
}
#if defined(USERCONFIG)
userconfig();
cninit(); /* the preferred console may have changed */
#endif
printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1024);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
#ifdef SMP
/*
* OK, enough kmem_alloc/malloc state should be up, lets get on with it!
*/
mp_start(); /* fire up the APs and APICs */
mp_announce();
#endif /* SMP */
}
int
register_netisr(num, handler)
int num;
netisr_t *handler;
{
if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
printf("register_netisr: bad isr number: %d\n", num);
return (EINVAL);
}
netisrs[num] = handler;
return (0);
}
void
netisr_sysinit(data)
void *data;
{
const struct netisrtab *nit;
nit = (const struct netisrtab *)data;
register_netisr(nit->nit_num, nit->nit_isr);
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* at top to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig, mask;
u_long code;
{
register struct proc *p = curproc;
register struct trapframe *regs;
register struct sigframe *fp;
struct sigframe sf;
struct sigacts *psp = p->p_sigacts;
int oonstack;
regs = p->p_md.md_regs;
oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
/*
* Allocate and validate space for the signal handler context.
*/
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
(psp->ps_sigonstack & sigmask(sig))) {
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
psp->ps_sigstk.ss_size - sizeof(struct sigframe));
psp->ps_sigstk.ss_flags |= SS_ONSTACK;
} else {
fp = (struct sigframe *)regs->tf_esp - 1;
}
/*
* grow() will return FALSE if the fp will not fit inside the stack
* and the stack can not be grown. useracc will return FALSE
* if access is denied.
*/
if ((grow_stack (p, (int)fp) == FALSE) ||
(useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
SIGACTION(p, SIGILL) = SIG_DFL;
sig = sigmask(SIGILL);
p->p_sigignore &= ~sig;
p->p_sigcatch &= ~sig;
p->p_sigmask &= ~sig;
psignal(p, SIGILL);
return;
}
/*
* Build the argument list for the signal handler.
*/
if (p->p_sysent->sv_sigtbl) {
if (sig < p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[sig];
else
sig = p->p_sysent->sv_sigsize + 1;
}
sf.sf_signum = sig;
sf.sf_code = code;
sf.sf_scp = &fp->sf_sc;
sf.sf_addr = (char *) regs->tf_err;
sf.sf_handler = catcher;
/* save scratch registers */
sf.sf_sc.sc_eax = regs->tf_eax;
sf.sf_sc.sc_ebx = regs->tf_ebx;
sf.sf_sc.sc_ecx = regs->tf_ecx;
sf.sf_sc.sc_edx = regs->tf_edx;
sf.sf_sc.sc_esi = regs->tf_esi;
sf.sf_sc.sc_edi = regs->tf_edi;
sf.sf_sc.sc_cs = regs->tf_cs;
sf.sf_sc.sc_ds = regs->tf_ds;
sf.sf_sc.sc_ss = regs->tf_ss;
sf.sf_sc.sc_es = regs->tf_es;
sf.sf_sc.sc_fs = regs->tf_fs;
sf.sf_sc.sc_isp = regs->tf_isp;
/*
* Build the signal context to be used by sigreturn.
*/
sf.sf_sc.sc_onstack = oonstack;
sf.sf_sc.sc_mask = mask;
sf.sf_sc.sc_sp = regs->tf_esp;
sf.sf_sc.sc_fp = regs->tf_ebp;
sf.sf_sc.sc_pc = regs->tf_eip;
sf.sf_sc.sc_ps = regs->tf_eflags;
sf.sf_sc.sc_trapno = regs->tf_trapno;
sf.sf_sc.sc_err = regs->tf_err;
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
sf.sf_sc.sc_gs = tf->tf_vm86_gs;
sf.sf_sc.sc_fs = tf->tf_vm86_fs;
sf.sf_sc.sc_es = tf->tf_vm86_es;
sf.sf_sc.sc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
| (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/*
* We should never have PSL_T set when returning from vm86
* mode. It may be set here if we deliver a signal before
* getting to vm86 mode, so turn it off.
*
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
* syscalls made by the signal handler. This just avoids
* wasting time for our lazy fixup of such faults. PSL_NT
* does nothing in vm86 mode, but vm86 programs can set it
* almost legitimately in probes for old cpu types.
*/
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
/*
* Something is wrong with the stack pointer.
* ...Kill the process.
*/
sigexit(p, SIGILL);
}
regs->tf_esp = (int)fp;
regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_ss = _udatasel;
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*/
int
sigreturn(p, uap)
struct proc *p;
struct sigreturn_args /* {
struct sigcontext *sigcntxp;
} */ *uap;
{
register struct sigcontext *scp;
register struct sigframe *fp;
register struct trapframe *regs = p->p_md.md_regs;
int eflags;
/*
* (XXX old comment) regs->tf_esp points to the return address.
* The user scp pointer is above that.
* The return address is faked in the signal trampoline code
* for consistency.
*/
scp = uap->sigcntxp;
fp = (struct sigframe *)
((caddr_t)scp - offsetof(struct sigframe, sf_sc));
if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
return(EFAULT);
eflags = scp->sc_ps;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (p->p_addr->u_pcb.pcb_ext == 0)
return (EINVAL);
vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* go back to user mode if both flags are set */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
trapsignal(p, SIGBUS, 0);
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
}
tf->tf_vm86_ds = scp->sc_ds;
tf->tf_vm86_es = scp->sc_es;
tf->tf_vm86_fs = scp->sc_fs;
tf->tf_vm86_gs = scp->sc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
#define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
/*
* XXX do allow users to change the privileged flag PSL_RF.
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
* should sometimes set it there too. tf_eflags is kept in
* the signal context during signal handling and there is no
* other place to remember it, so the PSL_RF bit may be
* corrupted by the signal handler without us knowing.
* Corruption of the PSL_RF bit at worst causes one more or
* one less debugger trap, so allowing it is fairly harmless.
*/
if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
#ifdef DEBUG
printf("sigreturn: eflags = 0x%x\n", eflags);
#endif
return(EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
if (!CS_SECURE(scp->sc_cs)) {
#ifdef DEBUG
printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
#endif
trapsignal(p, SIGBUS, T_PROTFLT);
return(EINVAL);
}
regs->tf_ds = scp->sc_ds;
regs->tf_es = scp->sc_es;
regs->tf_fs = scp->sc_fs;
}
/* restore scratch registers */
regs->tf_eax = scp->sc_eax;
regs->tf_ebx = scp->sc_ebx;
regs->tf_ecx = scp->sc_ecx;
regs->tf_edx = scp->sc_edx;
regs->tf_esi = scp->sc_esi;
regs->tf_edi = scp->sc_edi;
regs->tf_cs = scp->sc_cs;
regs->tf_ss = scp->sc_ss;
regs->tf_isp = scp->sc_isp;
if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
return(EINVAL);
if (scp->sc_onstack & 01)
p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
else
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
p->p_sigmask = scp->sc_mask & ~sigcantmask;
regs->tf_ebp = scp->sc_fp;
regs->tf_esp = scp->sc_sp;
regs->tf_eip = scp->sc_pc;
regs->tf_eflags = eflags;
return(EJUSTRETURN);
}
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
__asm__ ("hlt");
}
/*
* Clear registers on exec
*/
void
setregs(p, entry, stack, ps_strings)
struct proc *p;
u_long entry;
u_long stack;
u_long ps_strings;
{
struct trapframe *regs = p->p_md.md_regs;
struct pcb *pcb = &p->p_addr->u_pcb;
#ifdef USER_LDT
/* was i386_user_cleanup() in NetBSD */
if (pcb->pcb_ldt) {
if (pcb == curpcb) {
lldt(_default_ldt);
currentldt = _default_ldt;
}
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
pcb->pcb_ldt_len * sizeof(union descriptor));
pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
}
#endif
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_eip = entry;
regs->tf_esp = stack;
regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
regs->tf_ss = _udatasel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_cs = _ucodesel;
/* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
regs->tf_ebx = ps_strings;
/* reset %gs as well */
pcb->pcb_gs = _udatasel;
if (pcb == curpcb) {
load_gs(_udatasel);
}
/*
* Initialize the math emulator (if any) for the current process.
* Actually, just clear the bit that says that the emulator has
* been initialized. Initialization is delayed until the process
* traps to the emulator (if it is done at all) mainly because
* emulators don't provide an entry point for initialization.
*/
p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
/*
* Arrange to trap the next npx or `fwait' instruction (see npx.c
* for why fwait must be trapped at least if there is an npx or an
* emulator). This is mainly to handle the case where npx0 is not
* configured, since the npx routines normally set up the trap
* otherwise. It should be done only at boot time, but doing it
* here allows modifying `npx_exists' for testing the emulator on
* systems with an npx.
*/
load_cr0(rcr0() | CR0_MP | CR0_TS);
#if NNPX > 0
/* Initialize the npx (if any) for the current process. */
npxinit(__INITIAL_NPXCW__);
#endif
/*
* XXX - Linux emulator
* Make sure sure edx is 0x0 on entry. Linux binaries depend
* on it.
*/
p->p_retval[1] = 0;
}
static int
sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
req);
if (!error && req->newptr)
resettodr();
return (error);
}
SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
CTLFLAG_RW, &disable_rtc_set, 0, "");
SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
CTLFLAG_RD, &bootinfo, bootinfo, "");
SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
CTLFLAG_RW, &wall_cmos_clock, 0, "");
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
int _default_ldt;
#ifdef SMP
union descriptor gdt[NGDT * NCPU]; /* global descriptor table */
#else
union descriptor gdt[NGDT]; /* global descriptor table */
#endif
static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
union descriptor ldt[NLDT]; /* local descriptor table */
#ifdef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
#ifndef SMP
extern struct segment_descriptor common_tssd, *tss_gdt;
#endif
int private_tss; /* flag indicating private tss */
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
extern int has_f00f_bug;
#endif
static struct i386tss dblfault_tss;
static char dblfault_stack[PAGE_SIZE];
extern struct user *proc0paddr;
/* software prototypes -- in more palatable form */
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL 0 Null Descriptor */
{ 0x0, /* segment base address */
0x0, /* length */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GCODE_SEL 1 Code Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GDATA_SEL 2 Data Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GPROC0_SEL 4 Proc 0 Tss Descriptor */
{
0x0, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GLDT_SEL 5 LDT Descriptor */
{ (int) ldt, /* segment base address */
sizeof(ldt)-1, /* length - all address space */
SDT_SYSLDT, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GUSERLDT_SEL 6 User LDT Descriptor per process */
{ (int) ldt, /* segment base address */
(512 * sizeof(union descriptor)-1), /* length */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GTGATE_SEL 7 Null Descriptor - Placeholder */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GPANIC_SEL 8 Panic Tss Descriptor */
{ (int) &dblfault_tss, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GAPMCODE32_SEL 9 APM BIOS 32-bit interface (32bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMCODE16_SEL 10 APM BIOS 32-bit interface (16bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMDATA_SEL 11 APM BIOS 32-bit interface (Data) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
static struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
void
setidt(idx, func, typ, dpl, selec)
int idx;
inthand_t *func;
int typ;
int dpl;
int selec;
{
struct gate_descriptor *ip;
ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = selec;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(syscall), IDTVEC(int0x80_syscall);
void
sdtossd(sd, ssd)
struct segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
#define PHYSMAP_SIZE (2 * 8)
/*
* Populate the (physmap) array with base/length pairs describing the
* available physical memory in the system, then test this memory and
* build the phys_avail array describing the actually-available memory.
*
* Total memory size may be constrained by the kernel environment variable
* hw.physmem or the compile-time define MAXMEM.
*
* If we cannot accurately determine the physical memory map, and the
* value from the RTC seems dubious, trust the value of hw.physmem/MAXMEM
* instead, but require a speculative probe of memory.
*/
static void
getmemsize_pc98(int first)
{
u_int biosbasemem, biosextmem;
u_int pagesinbase, pagesinext;
int pa_indx;
int speculative_mprobe;
#if NNPX > 0
int msize;
#endif
vm_offset_t target_page;
pc98_getmemsize();
biosbasemem = 640; /* 640KB */
biosextmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */
#ifdef SMP
/* make hole for AP bootstrap code */
pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
#else
pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
#endif
pagesinext = biosextmem * 1024 / PAGE_SIZE;
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage".
*/
Maxmem = pagesinext + 0x100000/PAGE_SIZE;
/*
* Indicate that we wish to do a speculative search for memory beyond
* the end of the reported size if the indicated amount is 64MB (0x4000
* pages) - which is the largest amount that the BIOS/bootblocks can
* currently report. If a specific amount of memory is indicated via
* the MAXMEM option or the npx0 "msize", then don't do the speculative
* memory probe.
*/
if (Maxmem >= 0x4000)
speculative_mprobe = TRUE;
else
speculative_mprobe = FALSE;
#ifdef MAXMEM
Maxmem = MAXMEM/4;
speculative_mprobe = FALSE;
#endif
#if NNPX > 0
if (resource_int_value("npx", 0, "msize", &msize) == 0) {
if (msize != 0) {
Maxmem = msize / 4;
speculative_mprobe = FALSE;
}
}
#endif
#ifdef SMP
/* look for the MP hardware - needed for apic addresses */
mp_probe();
#endif
/* call pmap initialization to make new kernel address space */
pmap_bootstrap (first, 0);
/*
* Size up each available chunk of physical memory.
*/
/*
* We currently don't bother testing base memory.
* XXX ...but we probably should.
*/
pa_indx = 0;
if (pagesinbase > 1) {
phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */
phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
physmem = pagesinbase - 1;
} else {
/* point at first chunk end */
pa_indx++;
}
for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
int tmp, page_bad;
page_bad = FALSE;
/* skip system area */
if (target_page>=ptoa(Maxmem_under16M) &&
target_page < ptoa(4096))
page_bad = TRUE;
/*
* map page into kernel: valid, read/write, non-cacheable
*/
if (pc98_machine_type & M_EPSON_PC98) {
switch (epson_machine_id) {
case 0x34: /* PC-486HX */
case 0x35: /* PC-486HG */
case 0x3B: /* PC-486HA */
*(int *)CMAP1 = PG_V | PG_RW | target_page;
break;
default:
#ifdef WB_CACHE
*(int *)CMAP1 = PG_V | PG_RW | target_page;
#else
*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
#endif
break;
}
} else {
*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
}
invltlb();
tmp = *(int *)CADDR1;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)CADDR1 = 0xaaaaaaaa;
if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
page_bad = TRUE;
}
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)CADDR1 = 0x55555555;
if (*(volatile int *)CADDR1 != 0x55555555) {
page_bad = TRUE;
}
/*
* Test for all 1's
*/
*(volatile int *)CADDR1 = 0xffffffff;
if (*(volatile int *)CADDR1 != 0xffffffff) {
page_bad = TRUE;
}
/*
* Test for all 0's
*/
*(volatile int *)CADDR1 = 0x0;
if (*(volatile int *)CADDR1 != 0x0) {
/*
* test of page failed
*/
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)CADDR1 = tmp;
/*
* Adjust array of valid/good pages.
*/
if (page_bad == FALSE) {
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == target_page) {
phys_avail[pa_indx] += PAGE_SIZE;
if (speculative_mprobe == TRUE &&
phys_avail[pa_indx] >= (64*1024*1024))
Maxmem++;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf("Too many holes in the physical address space, giving up\n");
pa_indx--;
break;
}
phys_avail[pa_indx++] = target_page; /* start */
phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */
}
physmem++;
}
}
*(int *)CMAP1 = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
avail_end = phys_avail[pa_indx];
}
#ifndef PC98
static void
getmemsize(int first)
{
int i, physmap_idx, pa_indx;
u_int basemem, extmem;
int speculative_mprobe = FALSE;
struct vm86frame vmf;
struct vm86context vmc;
vm_offset_t pa, physmap[PHYSMAP_SIZE];
pt_entry_t pte;
u_int64_t AllowMem, MaxMem, sanity;
const char *cp, *ep;
struct {
u_int64_t base;
u_int64_t length;
u_int32_t type;
} *smap;
bzero(&vmf, sizeof(struct vm86frame));
bzero(physmap, sizeof(physmap));
/*
* hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
* for the appropriate modifiers.
* After this calculation, AllowMem is either 0 (no memory size cap)
* or the maximum memory size desired in bytes.
*/
AllowMem = 0;
if ((cp = getenv("hw.physmem")) != NULL) {
sanity = AllowMem = strtouq(cp, &ep, 0);
if ((ep != cp) && (*ep != 0)) {
switch(*ep) {
case 'g':
case 'G':
AllowMem <<= 10;
case 'm':
case 'M':
AllowMem <<= 10;
case 'k':
case 'K':
AllowMem <<= 10;
break;
default:
AllowMem = sanity = 0;
}
if (AllowMem < sanity)
AllowMem = 0;
}
if (AllowMem == 0)
printf("Warning: invalid memory limit '%s' specified\n", cp);
}
#ifdef MAXMEM
if (AllowMem == 0)
AllowMem = MAXMEM * (u_int64_t)1024;
#endif
if ((AllowMem != 0) && (boothowto & RB_VERBOSE))
printf("Physical memory use limited to %uk\n", (u_int)(AllowMem / 1024));
MaxMem = AllowMem;
if (AllowMem == 0)
AllowMem = (u_int64_t)1 << 32; /* 4GB limit imposed by 32-bit pmap */
/*
* Perform "base memory" related probes & setup
*/
vm86_intcall(0x12, &vmf);
basemem = vmf.vmf_ax;
if (basemem > 640) {
printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
basemem);
basemem = 640;
}
/*
* XXX if biosbasemem is now < 640, there is a `hole'
* between the end of base memory and the start of
* ISA memory. The hole may be empty or it may
* contain BIOS code or data. Map it read/write so
* that the BIOS can write to it. (Memory from 0 to
* the physical end of the kernel is mapped read-only
* to begin with and then parts of it are remapped.
* The parts that aren't remapped form holes that
* remain read-only and are unused by the kernel.
* The base memory area is below the physical end of
* the kernel and right now forms a read-only hole.
* The part of it from PAGE_SIZE to
* (trunc_page(biosbasemem * 1024) - 1) will be
* remapped and used by the kernel later.)
*
* This code is similar to the code used in
* pmap_mapdev, but since no memory needs to be
* allocated we simply change the mapping.
*/
for (pa = trunc_page(basemem * 1024);
pa < ISA_HOLE_START; pa += PAGE_SIZE) {
pte = (pt_entry_t)vtopte(pa + KERNBASE);
*pte = pa | PG_RW | PG_V;
}
/*
* if basemem != 640, map pages r/w into vm86 page table so
* that the bios can scribble on it.
*/
pte = (pt_entry_t)vm86paddr;
for (i = basemem / 4; i < 160; i++)
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
/*
* map page 1 R/W into the kernel page table so we can use it
* as a buffer. The kernel will unmap this page later.
*/
pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
extmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */
/*
* get memory map with INT 15:E820
*/
#define SMAPSIZ sizeof(*smap)
#define SMAP_SIG 0x534D4150 /* 'SMAP' */
vmc.npages = 0;
smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
physmap_idx = 0;
vmf.vmf_ebx = 0;
do {
vmf.vmf_eax = 0xE820;
vmf.vmf_edx = SMAP_SIG;
vmf.vmf_ecx = SMAPSIZ;
i = vm86_datacall(0x15, &vmf, &vmc);
if (i || vmf.vmf_eax != SMAP_SIG)
break;
if (boothowto & RB_VERBOSE)
printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
smap->type,
*(u_int32_t *)((char *)&smap->base + 4),
(u_int32_t)smap->base,
*(u_int32_t *)((char *)&smap->length + 4),
(u_int32_t)smap->length);
if (smap->type != 0x01)
goto next_run;
if (smap->length == 0)
goto next_run;
if (smap->base >= AllowMem) {
printf("%uk of memory above %uk ignored\n",
(u_int)(smap->length / 1024), (u_int)(AllowMem / 1024));
goto next_run;
}
if ((smap->base + smap->length) >= AllowMem) {
printf("%uk region truncated to %uk to fit %uk limit\n",
(u_int)(smap->length / 1024),
(u_int)((AllowMem - smap->base) / 1024),
(u_int)(AllowMem / 1024));
smap->length = AllowMem - smap->base;
}
for (i = 0; i <= physmap_idx; i += 2) {
if (smap->base < physmap[i + 1]) {
if (boothowto & RB_VERBOSE)
printf(
"Overlapping or non-montonic memory region, ignoring second region\n");
goto next_run;
}
}
if (smap->base == physmap[physmap_idx + 1]) {
physmap[physmap_idx + 1] += smap->length;
goto next_run;
}
physmap_idx += 2;
if (physmap_idx == PHYSMAP_SIZE) {
printf(
"Too many segments in the physical address map, giving up\n");
break;
}
physmap[physmap_idx] = smap->base;
physmap[physmap_idx + 1] = smap->base + smap->length;
next_run:
} while (vmf.vmf_ebx != 0);
/*
* If we failed above, try memory map with INT 15:E801
*/
if (physmap[1] == 0) {
vmf.vmf_ax = 0xE801;
if (vm86_intcall(0x15, &vmf) == 0) {
extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
} else {
#if 0
vmf.vmf_ah = 0x88;
vm86_intcall(0x15, &vmf);
extmem = vmf.vmf_ax;
#else
/*
* Prefer the RTC value for extended memory, or
* hw.physmem/MAXMEM overrides.
*/
if (MaxMem > (1024 * 1024)) { /* < 1MB is insane */
extmem = (MaxMem / 1024) - 1024;
} else {
extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
}
/*
* If the value from the RTC is >= 16M, there is a good
* chance that it's lying. Compaq systems never report
* more than 16M, and no system can honestly report more
* than 64M. We should end up here only on extremely
* old and broken systems. In any case, qualify the value
* that we've got here by actually checking for physical
* memory later on.
*/
if (extmem >= 16 * 1024)
speculative_mprobe = TRUE;
#endif
}
/*
* Special hack for chipsets that still remap the 384k hole when
* there's 16MB of memory - this really confuses people that
* are trying to use bus mastering ISA controllers with the
* "16MB limit"; they only have 16MB, but the remapping puts
* them beyond the limit.
*
* If extended memory is between 15-16MB (16-17MB phys address range),
* chop it to 15MB.
*/
if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
extmem = 15 * 1024;
physmap[0] = 0;
physmap[1] = basemem * 1024;
physmap_idx = 2;
physmap[physmap_idx] = 0x100000;
physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
}
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage". We fiddle it again
* later based on the results of the memory test.
*/
Maxmem = physmap[physmap_idx + 1] / PAGE_SIZE;
/*
* Now, physmap contains a map of physical memory.
*/
#ifdef SMP
/* make hole for AP bootstrap code */
physmap[1] = mp_bootaddress(physmap[1] / 1024);
/* look for the MP hardware - needed for apic addresses */
mp_probe();
#endif
/* call pmap initialization to make new kernel address space */
pmap_bootstrap(first, 0);
/*
* Size up each available chunk of physical memory.
*/
physmap[0] = PAGE_SIZE; /* mask off page 0 */
pa_indx = 0;
phys_avail[pa_indx++] = physmap[0];
phys_avail[pa_indx] = physmap[0];
#if 0
pte = (pt_entry_t)vtopte(KERNBASE);
#else
pte = (pt_entry_t)CMAP1;
#endif
/*
* physmap is in bytes, so when converting to page boundaries,
* round up the start address and round down the end address.
*/
for (i = 0; i <= physmap_idx; i += 2) {
vm_offset_t end;
if (boothowto & RB_VERBOSE)
printf("Testing memory %uk to %uk\n",
(u_int)(physmap[i] / 1024),
(u_int)((physmap[i] + physmap[i+1]) / 1024));
end = ptoa(Maxmem);
if (physmap[i + 1] < end)
end = trunc_page(physmap[i + 1]);
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
int tmp, page_bad;
#if 0
int *ptr = 0;
#else
int *ptr = (int *)CADDR1;
#endif
/*
* block out kernel memory as not available.
*/
if (pa >= 0x100000 && pa < first)
continue;
page_bad = FALSE;
/*
* map page into kernel: valid, read/write,non-cacheable
*/
*pte = pa | PG_V | PG_RW | PG_N;
invltlb();
tmp = *(int *)ptr;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)ptr = 0xaaaaaaaa;
if (*(volatile int *)ptr != 0xaaaaaaaa) {
page_bad = TRUE;
}
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)ptr = 0x55555555;
if (*(volatile int *)ptr != 0x55555555) {
page_bad = TRUE;
}
/*
* Test for all 1's
*/
*(volatile int *)ptr = 0xffffffff;
if (*(volatile int *)ptr != 0xffffffff) {
page_bad = TRUE;
}
/*
* Test for all 0's
*/
*(volatile int *)ptr = 0x0;
if (*(volatile int *)ptr != 0x0) {
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)ptr = tmp;
/*
* Adjust array of valid/good pages.
*/
if (page_bad == TRUE) {
continue;
}
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == pa) {
phys_avail[pa_indx] += PAGE_SIZE;
if (speculative_mprobe == TRUE &&
phys_avail[pa_indx] >= (64*1024*1024))
end += PAGE_SIZE;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf("Too many holes in the physical address space, giving up\n");
pa_indx--;
break;
}
phys_avail[pa_indx++] = pa; /* start */
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
}
physmem++;
}
}
*pte = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
avail_end = phys_avail[pa_indx];
}
#endif
void
init386(first)
int first;
{
int x;
struct gate_descriptor *gdp;
int gsel_tss;
#ifndef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
int off;
/*
* Prevent lowering of the ipl if we call tsleep() early.
*/
safepri = cpl;
proc0.p_addr = proc0paddr;
atdevbase = ISA_HOLE_START + KERNBASE;
#ifdef PC98
/*
* Initialize DMAC
*/
pc98_init_dmac();
#endif
if (bootinfo.bi_modulep) {
preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
preload_bootstrap_relocate(KERNBASE);
}
if (bootinfo.bi_envp)
kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
/*
* make gdt memory segments, the code segment goes up to end of the
* page with etext in it, the data segment goes to the end of
* the address space
*/
/*
* XXX text protection is temporarily (?) disabled. The limit was
* i386_btop(round_page(etext)) - 1.
*/
gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
#ifdef SMP
gdt_segs[GPRIV_SEL].ssd_limit =
i386_btop(sizeof(struct privatespace)) - 1;
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
gdt_segs[GPROC0_SEL].ssd_base =
(int) &SMP_prvspace[0].globaldata.gd_common_tss;
SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
#else
gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
#endif
for (x = 0; x < NGDT; x++) {
#ifdef BDE_DEBUGGER
/* avoid overwriting db entries with APM ones */
if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
continue;
#endif
ssdtosd(&gdt_segs[x], &gdt[x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) gdt;
lgdt(&r_gdt);
/* make ldt memory segments */
/*
* The data segment limit must not cover the user area because we
* don't want the user area to be writable in copyout() etc. (page
* level protection is lost in kernel mode on 386's). Also, we
* don't want the user area to be writable directly (page level
* protection of the user area is not available on 486's with
* CR0_WP set, because there is no user-read/kernel-write mode).
*
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
* should be spelled ...MAX_USER...
*/
#define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS
/*
* The code segment limit has to cover the user area until we move
* the signal trampoline out of the user area. This is safe because
* the code segment cannot be written to directly.
*/
#define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
ssdtosd(&ldt_segs[x], &ldt[x].sd);
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
lldt(_default_ldt);
#ifdef USER_LDT
currentldt = _default_ldt;
#endif
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0x80, &IDTVEC(int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
r_idt.rd_limit = sizeof(idt0) - 1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
/*
* Initialize the console before we print anything out.
*/
cninit();
#include "isa.h"
#if NISA >0
isa_defaultirq();
#endif
rand_initialize();
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB)
Debugger("Boot flags requested debugger");
#endif
finishidentcpu(); /* Final stage of CPU initialization */
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
initializecpu(); /* Initialize CPU registers */
/* make an initial tss so cpu can get interrupt stack on syscall! */
common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
private_tss = 0;
tss_gdt = &gdt[GPROC0_SEL].sd;
common_tssd = *tss_gdt;
common_tss.tss_ioopt = (sizeof common_tss) << 16;
ltr(gsel_tss);
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_cr3 = (int)IdlePTD;
dblfault_tss.tss_eip = (int) dblfault_handler;
dblfault_tss.tss_eflags = PSL_KERNEL;
dblfault_tss.tss_ds = dblfault_tss.tss_es =
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
vm86_initialize();
#ifdef PC98
getmemsize_pc98(first);
#else
getmemsize(first);
#endif
/* now running on new page tables, configured,and u/iom is accessible */
/* Map the message buffer. */
for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
msgbufinit(msgbufp, MSGBUF_SIZE);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(syscall);
gdp->gd_looffset = x++;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 1;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
/* XXX does this work? */
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
/* transfer to user mode */
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
proc0.p_addr->u_pcb.pcb_flags = 0;
proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
#ifdef SMP
proc0.p_addr->u_pcb.pcb_mpnest = 1;
#endif
proc0.p_addr->u_pcb.pcb_ext = 0;
}
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
static void f00f_hack(void *unused);
SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
static void
f00f_hack(void *unused) {
struct gate_descriptor *new_idt;
#ifndef SMP
struct region_descriptor r_idt;
#endif
vm_offset_t tmp;
if (!has_f00f_bug)
return;
printf("Intel Pentium detected, installing workaround for F00F bug\n");
r_idt.rd_limit = sizeof(idt0) - 1;
tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
if (tmp == 0)
panic("kmem_alloc returned 0");
if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
panic("kmem_alloc returned non-page-aligned memory");
/* Put the first seven entries in the lower page */
new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
bcopy(idt, new_idt, sizeof(idt0));
r_idt.rd_base = (int)new_idt;
lidt(&r_idt);
idt = new_idt;
if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
VM_PROT_READ, FALSE) != KERN_SUCCESS)
panic("vm_map_protect failed");
return;
}
#endif /* defined(I586_CPU) && !NO_F00F_HACK */
int
ptrace_set_pc(p, addr)
struct proc *p;
unsigned long addr;
{
p->p_md.md_regs->tf_eip = addr;
return (0);
}
int
ptrace_single_step(p)
struct proc *p;
{
p->p_md.md_regs->tf_eflags |= PSL_T;
return (0);
}
int ptrace_read_u_check(p, addr, len)
struct proc *p;
vm_offset_t addr;
size_t len;
{
vm_offset_t gap;
if ((vm_offset_t) (addr + len) < addr)
return EPERM;
if ((vm_offset_t) (addr + len) <= sizeof(struct user))
return 0;
gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
if ((vm_offset_t) addr < gap)
return EPERM;
if ((vm_offset_t) (addr + len) <=
(vm_offset_t) (gap + sizeof(struct trapframe)))
return 0;
return EPERM;
}
int ptrace_write_u(p, off, data)
struct proc *p;
vm_offset_t off;
long data;
{
struct trapframe frame_copy;
vm_offset_t min;
struct trapframe *tp;
/*
* Privileged kernel state is scattered all over the user area.
* Only allow write access to parts of regs and to fpregs.
*/
min = (char *)p->p_md.md_regs - (char *)p->p_addr;
if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
tp = p->p_md.md_regs;
frame_copy = *tp;
*(int *)((char *)&frame_copy + (off - min)) = data;
if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
!CS_SECURE(frame_copy.tf_cs))
return (EINVAL);
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
return (EFAULT);
}
int
fill_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
regs->r_fs = tp->tf_fs;
regs->r_es = tp->tf_es;
regs->r_ds = tp->tf_ds;
regs->r_edi = tp->tf_edi;
regs->r_esi = tp->tf_esi;
regs->r_ebp = tp->tf_ebp;
regs->r_ebx = tp->tf_ebx;
regs->r_edx = tp->tf_edx;
regs->r_ecx = tp->tf_ecx;
regs->r_eax = tp->tf_eax;
regs->r_eip = tp->tf_eip;
regs->r_cs = tp->tf_cs;
regs->r_eflags = tp->tf_eflags;
regs->r_esp = tp->tf_esp;
regs->r_ss = tp->tf_ss;
pcb = &p->p_addr->u_pcb;
regs->r_gs = pcb->pcb_gs;
return (0);
}
int
set_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
!CS_SECURE(regs->r_cs))
return (EINVAL);
tp->tf_fs = regs->r_fs;
tp->tf_es = regs->r_es;
tp->tf_ds = regs->r_ds;
tp->tf_edi = regs->r_edi;
tp->tf_esi = regs->r_esi;
tp->tf_ebp = regs->r_ebp;
tp->tf_ebx = regs->r_ebx;
tp->tf_edx = regs->r_edx;
tp->tf_ecx = regs->r_ecx;
tp->tf_eax = regs->r_eax;
tp->tf_eip = regs->r_eip;
tp->tf_cs = regs->r_cs;
tp->tf_eflags = regs->r_eflags;
tp->tf_esp = regs->r_esp;
tp->tf_ss = regs->r_ss;
pcb = &p->p_addr->u_pcb;
pcb->pcb_gs = regs->r_gs;
return (0);
}
int
fill_fpregs(p, fpregs)
struct proc *p;
struct fpreg *fpregs;
{
bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
return (0);
}
int
set_fpregs(p, fpregs)
struct proc *p;
struct fpreg *fpregs;
{
bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
return (0);
}
#ifndef DDB
void
Debugger(const char *msg)
{
printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */
#include <sys/disklabel.h>
/*
* Determine the size of the transfer, and make sure it is
* within the boundaries of the partition. Adjust transfer
* if needed, and signal errors or early completion.
*/
int
bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
{
struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
int labelsect = lp->d_partitions[0].p_offset;
int maxsz = p->p_size,
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
/* overwriting disk label ? */
/* XXX should also protect bootstrap in first 8K */
if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#if defined(DOSBBSECTOR) && defined(notyet)
/* overwriting master boot record? */
if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#endif
/* beyond partition? */
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
/* if exactly at end of disk, return an EOF */
if (bp->b_blkno == maxsz) {
bp->b_resid = bp->b_bcount;
return(0);
}
/* or truncate if part of it fits */
sz = maxsz - bp->b_blkno;
if (sz <= 0) {
bp->b_error = EINVAL;
goto bad;
}
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_pblkno = bp->b_blkno + p->p_offset;
return(1);
bad:
bp->b_flags |= B_ERROR;
return(-1);
}
#ifdef DDB
/*
* Provide inb() and outb() as functions. They are normally only
* available as macros calling inlined functions, thus cannot be
* called inside DDB.
*
* The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
*/
#undef inb
#undef outb
/* silence compiler warnings */
u_char inb(u_int);
void outb(u_int, u_char);
u_char
inb(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
void
outb(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
#endif /* DDB */