freebsd-nq/contrib/gcc/config/alpha/elf.h
John Birrell 0f4140c055 Add the alpha MD files for gcc to product ELF for FreeBSD/Alpha.
See freebsd.h and freebsd-elf.h for the silly comment that cgd@netbsd.org
wanted me to add about his claim that uncommented source files that
have been publicly available for ftp for nearly a year; that are
configuration patches to a GPL'ed program; are owned by his previous
employer who refuses to release them. Well... I did as he said. As if
that makes a difference!

At this point we've got cpp, gcc, g++ ported to FreeBSD/Alpha so all
the code that uses __FreeBSD__ is correctly pre-processed. Yay.

I'll commit the bootstrap makefile next to let others play, then on
to libc.
1998-01-11 04:39:46 +00:00

525 lines
19 KiB
C

/* Definitions of target machine for GNU compiler, for DEC Alpha w/ELF.
Copyright (C) 1996 Free Software Foundation, Inc.
Contributed by Richard Henderson (rth@tamu.edu).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This is used on Alpha platforms that use the ELF format.
Currently only Linux uses this. */
#if 0
#include "alpha/linux.h"
#endif
#undef TARGET_VERSION
#define TARGET_VERSION fprintf (stderr, " (Alpha Linux/ELF)");
#undef OBJECT_FORMAT_COFF
#undef EXTENDED_COFF
#define OBJECT_FORMAT_ELF
#define SDB_DEBUGGING_INFO
#undef ASM_FINAL_SPEC
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "\
-D__alpha -D__alpha__ -D__linux__ -D__linux -D_LONGLONG -Dlinux -Dunix \
-Asystem(linux) -Acpu(alpha) -Amachine(alpha) -D__ELF__"
#undef LINK_SPEC
#define LINK_SPEC "-m elf64alpha -G 8 %{O*:-O3} %{!O*:-O1} \
%{shared:-shared} \
%{!shared: \
%{!static: \
%{rdynamic:-export-dynamic} \
%{!dynamic-linker:-dynamic-linker /lib/ld.so.1}} \
%{static:-static}}"
/* Output at beginning of assembler file. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) \
{ \
alpha_write_verstamp (FILE); \
output_file_directive (FILE, main_input_filename); \
fprintf (FILE, "\t.version\t\"01.01\"\n"); \
fprintf (FILE, "\t.set noat\n"); \
}
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
alpha_output_lineno (STREAM, LINE)
extern void alpha_output_lineno ();
extern void output_file_directive ();
/* Attach a special .ident directive to the end of the file to identify
the version of GCC which compiled this code. The format of the
.ident string is patterned after the ones produced by native svr4
C compilers. */
#define IDENT_ASM_OP ".ident"
#ifdef IDENTIFY_WITH_IDENT
#define ASM_IDENTIFY_GCC(FILE) /* nothing */
#define ASM_IDENTIFY_LANGUAGE(FILE) \
fprintf(FILE, "\t%s \"GCC (%s) %s\"\n", IDENT_ASM_OP, \
lang_identify(), version_string)
#else
#define ASM_FILE_END(FILE) \
do { \
fprintf ((FILE), "\t%s\t\"GCC: (GNU) %s\"\n", \
IDENT_ASM_OP, version_string); \
} while (0)
#endif
/* Allow #sccs in preprocessor. */
#define SCCS_DIRECTIVE
/* Output #ident as a .ident. */
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
/* This is how to allocate empty space in some section. The .zero
pseudo-op is used for this on most svr4 assemblers. */
#define SKIP_ASM_OP ".zero"
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t%s\t%u\n", SKIP_ASM_OP, (SIZE))
/* Output the label which precedes a jumptable. Note that for all svr4
systems where we actually generate jumptables (which is to say every
svr4 target except i386, where we use casesi instead) we put the jump-
tables into the .rodata section and since other stuff could have been
put into the .rodata section prior to any given jumptable, we have to
make sure that the location counter for the .rodata section gets pro-
perly re-aligned prior to the actual beginning of the jump table. */
#define ALIGN_ASM_OP ".align"
#ifndef ASM_OUTPUT_BEFORE_CASE_LABEL
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
ASM_OUTPUT_ALIGN ((FILE), 2);
#endif
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,JUMPTABLE) \
do { \
ASM_OUTPUT_BEFORE_CASE_LABEL (FILE, PREFIX, NUM, JUMPTABLE) \
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
} while (0)
/* The standard SVR4 assembler seems to require that certain builtin
library routines (e.g. .udiv) be explicitly declared as .globl
in each assembly file where they are referenced. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
ASM_GLOBALIZE_LABEL (FILE, XSTR (FUN, 0))
/* This says how to output assembler code to declare an
uninitialized external linkage data object. Under SVR4,
the linker seems to want the alignment of data objects
to depend on their types. We do exactly that here. */
#define COMMON_ASM_OP ".comm"
#undef ASM_OUTPUT_ALIGNED_COMMON
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
do { \
fprintf ((FILE), "\t%s\t", COMMON_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
} while (0)
/* This says how to output assembler code to declare an
uninitialized internal linkage data object. Under SVR4,
the linker seems to want the alignment of data objects
to depend on their types. We do exactly that here. */
#define LOCAL_ASM_OP ".local"
#undef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
do { \
fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), "\n"); \
ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
} while (0)
/* This is the pseudo-op used to generate a 64-bit word of data with a
specific value in some section. */
#define INT_ASM_OP ".quad"
/* This is the pseudo-op used to generate a contiguous sequence of byte
values from a double-quoted string WITHOUT HAVING A TERMINATING NUL
AUTOMATICALLY APPENDED. This is the same for most svr4 assemblers. */
#undef ASCII_DATA_ASM_OP
#define ASCII_DATA_ASM_OP ".ascii"
/* Support const sections and the ctors and dtors sections for g++.
Note that there appears to be two different ways to support const
sections at the moment. You can either #define the symbol
READONLY_DATA_SECTION (giving it some code which switches to the
readonly data section) or else you can #define the symbols
EXTRA_SECTIONS, EXTRA_SECTION_FUNCTIONS, SELECT_SECTION, and
SELECT_RTX_SECTION. We do both here just to be on the safe side. */
#define USE_CONST_SECTION 1
#define CONST_SECTION_ASM_OP ".section\t.rodata"
/* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
Note that we want to give these sections the SHF_WRITE attribute
because these sections will actually contain data (i.e. tables of
addresses of functions in the current root executable or shared library
file) and, in the case of a shared library, the relocatable addresses
will have to be properly resolved/relocated (and then written into) by
the dynamic linker when it actually attaches the given shared library
to the executing process. (Note that on SVR4, you may wish to use the
`-z text' option to the ELF linker, when building a shared library, as
an additional check that you are doing everything right. But if you do
use the `-z text' option when building a shared library, you will get
errors unless the .ctors and .dtors sections are marked as writable
via the SHF_WRITE attribute.) */
#define CTORS_SECTION_ASM_OP ".section\t.ctors,\"aw\""
#define DTORS_SECTION_ASM_OP ".section\t.dtors,\"aw\""
/* On svr4, we *do* have support for the .init and .fini sections, and we
can put stuff in there to be executed before and after `main'. We let
crtstuff.c and other files know this by defining the following symbols.
The definitions say how to change sections to the .init and .fini
sections. This is the same for all known svr4 assemblers. */
#define INIT_SECTION_ASM_OP ".section\t.init"
#define FINI_SECTION_ASM_OP ".section\t.fini"
/* Support non-common, uninitialized data in the .bss section. */
#define BSS_SECTION_ASM_OP ".section\t.bss"
/* A default list of other sections which we might be "in" at any given
time. For targets that use additional sections (e.g. .tdesc) you
should override this definition in the target-specific file which
includes this file. */
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_const, in_ctors, in_dtors, in_bss
/* A default list of extra section function definitions. For targets
that use additional sections (e.g. .tdesc) you should override this
definition in the target-specific file which includes this file. */
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
CONST_SECTION_FUNCTION \
CTORS_SECTION_FUNCTION \
DTORS_SECTION_FUNCTION \
BSS_SECTION_FUNCTION
#undef READONLY_DATA_SECTION
#define READONLY_DATA_SECTION() const_section ()
extern void text_section ();
#define CONST_SECTION_FUNCTION \
void \
const_section () \
{ \
if (!USE_CONST_SECTION) \
text_section(); \
else if (in_section != in_const) \
{ \
fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
in_section = in_const; \
} \
}
#define CTORS_SECTION_FUNCTION \
void \
ctors_section () \
{ \
if (in_section != in_ctors) \
{ \
fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
in_section = in_ctors; \
} \
}
#define DTORS_SECTION_FUNCTION \
void \
dtors_section () \
{ \
if (in_section != in_dtors) \
{ \
fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
in_section = in_dtors; \
} \
}
#define BSS_SECTION_FUNCTION \
void \
bss_section () \
{ \
if (in_section != in_bss) \
{ \
fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
in_section = in_bss; \
} \
}
/* Switch into a generic section.
This is currently only used to support section attributes.
We make the section read-only and executable for a function decl,
read-only for a const data decl, and writable for a non-const data decl. */
#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
fprintf (FILE, ".section\t%s,\"%s\",@progbits\n", NAME, \
(DECL) && TREE_CODE (DECL) == FUNCTION_DECL ? "ax" : \
(DECL) && TREE_READONLY (DECL) ? "a" : "aw")
/* A C statement (sans semicolon) to output an element in the table of
global constructors. */
#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
do { \
ctors_section (); \
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
assemble_name (FILE, NAME); \
fprintf (FILE, "\n"); \
} while (0)
/* A C statement (sans semicolon) to output an element in the table of
global destructors. */
#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
do { \
dtors_section (); \
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
assemble_name (FILE, NAME); \
fprintf (FILE, "\n"); \
} while (0)
/* A C statement or statements to switch to the appropriate
section for output of DECL. DECL is either a `VAR_DECL' node
or a constant of some sort. RELOC indicates whether forming
the initial value of DECL requires link-time relocations. */
#define SELECT_SECTION(DECL,RELOC) \
{ \
if (TREE_CODE (DECL) == STRING_CST) \
{ \
if (! flag_writable_strings) \
const_section (); \
else \
data_section (); \
} \
else if (TREE_CODE (DECL) == VAR_DECL) \
{ \
if ((flag_pic && RELOC) \
|| !TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL) \
|| !DECL_INITIAL (DECL) \
|| (DECL_INITIAL (DECL) != error_mark_node \
&& !TREE_CONSTANT (DECL_INITIAL (DECL)))) \
{ \
if (DECL_COMMON (DECL) \
&& !DECL_INITIAL (DECL)) \
/* || DECL_INITIAL (DECL) == error_mark_node)) */ \
bss_section(); \
else \
data_section (); \
} \
else \
const_section (); \
} \
else \
const_section (); \
}
/* A C statement or statements to switch to the appropriate
section for output of RTX in mode MODE. RTX is some kind
of constant in RTL. The argument MODE is redundant except
in the case of a `const_int' rtx. Currently, these always
go into the const section. */
#undef SELECT_RTX_SECTION
#define SELECT_RTX_SECTION(MODE,RTX) const_section()
/* Define the strings used for the special svr4 .type and .size directives.
These strings generally do not vary from one system running svr4 to
another, but if a given system (e.g. m88k running svr) needs to use
different pseudo-op names for these, they may be overridden in the
file which includes this one. */
#define TYPE_ASM_OP ".type"
#define SIZE_ASM_OP ".size"
/* This is how we tell the assembler that a symbol is weak. */
#define ASM_WEAKEN_LABEL(FILE,NAME) \
do { fputs ("\t.weak\t", FILE); assemble_name (FILE, NAME); \
fputc ('\n', FILE); } while (0)
/* This is how we tell the assembler that two symbols have the same value. */
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
do { assemble_name(FILE, NAME1); \
fputs(" = ", FILE); \
assemble_name(FILE, NAME2); \
fputc('\n', FILE); } while (0)
/* The following macro defines the format used to output the second
operand of the .type assembler directive. Different svr4 assemblers
expect various different forms for this operand. The one given here
is just a default. You may need to override it in your machine-
specific tm.h file (depending upon the particulars of your assembler). */
#define TYPE_OPERAND_FMT "@%s"
/* Write the extra assembler code needed to declare a function's result.
Most svr4 assemblers don't require any special declaration of the
result value, but there are exceptions. */
#ifndef ASM_DECLARE_RESULT
#define ASM_DECLARE_RESULT(FILE, RESULT)
#endif
/* These macros generate the special .type and .size directives which
are used to set the corresponding fields of the linker symbol table
entries in an ELF object file under SVR4. These macros also output
the starting labels for the relevant functions/objects. */
/* Write the extra assembler code needed to declare an object properly. */
#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
do { \
fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, TYPE_OPERAND_FMT, "object"); \
putc ('\n', FILE); \
size_directive_output = 0; \
if (!flag_inhibit_size_directive && DECL_SIZE (DECL)) \
{ \
size_directive_output = 1; \
fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
assemble_name (FILE, NAME); \
fprintf (FILE, ",%d\n", int_size_in_bytes (TREE_TYPE (DECL))); \
} \
ASM_OUTPUT_LABEL(FILE, NAME); \
} while (0)
/* Output the size directive for a decl in rest_of_decl_compilation
in the case where we did not do so before the initializer.
Once we find the error_mark_node, we know that the value of
size_directive_output was set
by ASM_DECLARE_OBJECT_NAME when it was run for the same decl. */
#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END) \
do { \
char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
if (!flag_inhibit_size_directive && DECL_SIZE (DECL) \
&& ! AT_END && TOP_LEVEL \
&& DECL_INITIAL (DECL) == error_mark_node \
&& !size_directive_output) \
{ \
size_directive_output = 1; \
fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
assemble_name (FILE, name); \
fprintf (FILE, ",%d\n", int_size_in_bytes (TREE_TYPE (DECL))); \
} \
} while (0)
/* A table of bytes codes used by the ASM_OUTPUT_ASCII and
ASM_OUTPUT_LIMITED_STRING macros. Each byte in the table
corresponds to a particular byte value [0..255]. For any
given byte value, if the value in the corresponding table
position is zero, the given character can be output directly.
If the table value is 1, the byte must be output as a \ooo
octal escape. If the tables value is anything else, then the
byte value should be output as a \ followed by the value
in the table. Note that we can use standard UN*X escape
sequences for many control characters, but we don't use
\a to represent BEL because some svr4 assemblers (e.g. on
the i386) don't know about that. Also, we don't use \v
since some versions of gas, such as 2.2 did not accept it. */
#define ESCAPES \
"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
/* Some svr4 assemblers have a limit on the number of characters which
can appear in the operand of a .string directive. If your assembler
has such a limitation, you should define STRING_LIMIT to reflect that
limit. Note that at least some svr4 assemblers have a limit on the
actual number of bytes in the double-quoted string, and that they
count each character in an escape sequence as one byte. Thus, an
escape sequence like \377 would count as four bytes.
If your target assembler doesn't support the .string directive, you
should define this to zero.
*/
#define STRING_LIMIT ((unsigned) 256)
#define STRING_ASM_OP ".string"
/*
* We always use gas here, so we don't worry about ECOFF assembler problems.
*/
#undef TARGET_GAS
#define TARGET_GAS (1)
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
/* Provide a STARTFILE_SPEC appropriate for Linux. Here we add
the Linux magical crtbegin.o file (see crtstuff.c) which
provides part of the support for getting C++ file-scope static
object constructed before entering `main'. */
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{!shared: \
%{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} %{!p:crt1.o%s}}}\
crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}"
/* Provide a ENDFILE_SPEC appropriate for Linux. Here we tack on
the Linux magical crtend.o file (see crtstuff.c) which
provides part of the support for getting C++ file-scope static
object constructed before entering `main', followed by a normal
Linux "finalizer" file, `crtn.o'. */
#undef ENDFILE_SPEC
#define ENDFILE_SPEC \
"%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s"