2008-12-23 19:59:21 +00:00

940 lines
22 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transfered using a single bulk
* transaction, which helps performance a great deal.
*/
/*
* NOTE: all function names beginning like "cue_cfg_" can only
* be called from within the config thread function !
*/
#include <dev/usb2/include/usb2_devid.h>
#include <dev/usb2/include/usb2_standard.h>
#include <dev/usb2/include/usb2_mfunc.h>
#include <dev/usb2/include/usb2_error.h>
#define usb2_config_td_cc usb2_ether_cc
#define usb2_config_td_softc cue_softc
#define USB_DEBUG_VAR cue_debug
#include <dev/usb2/core/usb2_core.h>
#include <dev/usb2/core/usb2_lookup.h>
#include <dev/usb2/core/usb2_process.h>
#include <dev/usb2/core/usb2_config_td.h>
#include <dev/usb2/core/usb2_debug.h>
#include <dev/usb2/core/usb2_request.h>
#include <dev/usb2/core/usb2_busdma.h>
#include <dev/usb2/core/usb2_util.h>
#include <dev/usb2/ethernet/usb2_ethernet.h>
#include <dev/usb2/ethernet/if_cue2_reg.h>
/*
* Various supported device vendors/products.
*/
/* Belkin F5U111 adapter covered by NETMATE entry */
static const struct usb2_device_id cue_devs[] = {
{USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE, 0)},
{USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2, 0)},
{USB_VPI(USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK, 0)},
};
/* prototypes */
static device_probe_t cue_probe;
static device_attach_t cue_attach;
static device_detach_t cue_detach;
static device_shutdown_t cue_shutdown;
static usb2_callback_t cue_bulk_read_clear_stall_callback;
static usb2_callback_t cue_bulk_read_callback;
static usb2_callback_t cue_bulk_write_clear_stall_callback;
static usb2_callback_t cue_bulk_write_callback;
static usb2_config_td_command_t cue_cfg_promisc_upd;
static usb2_config_td_command_t cue_config_copy;
static usb2_config_td_command_t cue_cfg_first_time_setup;
static usb2_config_td_command_t cue_cfg_tick;
static usb2_config_td_command_t cue_cfg_pre_init;
static usb2_config_td_command_t cue_cfg_init;
static usb2_config_td_command_t cue_cfg_pre_stop;
static usb2_config_td_command_t cue_cfg_stop;
static void cue_cfg_do_request(struct cue_softc *,
struct usb2_device_request *, void *);
static uint8_t cue_cfg_csr_read_1(struct cue_softc *, uint16_t);
static uint16_t cue_cfg_csr_read_2(struct cue_softc *, uint8_t);
static void cue_cfg_csr_write_1(struct cue_softc *, uint16_t, uint16_t);
static void cue_cfg_mem(struct cue_softc *, uint8_t, uint16_t, void *,
uint16_t);
static void cue_cfg_getmac(struct cue_softc *, void *);
static void cue_mchash(struct usb2_config_td_cc *, const uint8_t *);
static void cue_cfg_reset(struct cue_softc *);
static void cue_start_cb(struct ifnet *);
static void cue_start_transfers(struct cue_softc *);
static void cue_init_cb(void *);
static int cue_ioctl_cb(struct ifnet *, u_long, caddr_t);
static void cue_watchdog(void *);
#if USB_DEBUG
static int cue_debug = 0;
SYSCTL_NODE(_hw_usb2, OID_AUTO, cue, CTLFLAG_RW, 0, "USB cue");
SYSCTL_INT(_hw_usb2_cue, OID_AUTO, debug, CTLFLAG_RW, &cue_debug, 0,
"Debug level");
#endif
static const struct usb2_config cue_config[CUE_ENDPT_MAX] = {
[0] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = (MCLBYTES + 2),
.mh.flags = {.pipe_bof = 1,},
.mh.callback = &cue_bulk_write_callback,
.mh.timeout = 10000, /* 10 seconds */
},
[1] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = (MCLBYTES + 2),
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &cue_bulk_read_callback,
},
[2] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &cue_bulk_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[3] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &cue_bulk_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
};
static device_method_t cue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cue_probe),
DEVMETHOD(device_attach, cue_attach),
DEVMETHOD(device_detach, cue_detach),
DEVMETHOD(device_shutdown, cue_shutdown),
{0, 0}
};
static driver_t cue_driver = {
.name = "cue",
.methods = cue_methods,
.size = sizeof(struct cue_softc),
};
static devclass_t cue_devclass;
DRIVER_MODULE(cue, ushub, cue_driver, cue_devclass, NULL, 0);
MODULE_DEPEND(cue, usb2_ethernet, 1, 1, 1);
MODULE_DEPEND(cue, usb2_core, 1, 1, 1);
MODULE_DEPEND(cue, ether, 1, 1, 1);
static void
cue_cfg_do_request(struct cue_softc *sc, struct usb2_device_request *req,
void *data)
{
uint16_t length;
usb2_error_t err;
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto error;
}
err = usb2_do_request_flags
(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000);
if (err) {
DPRINTF("device request failed, err=%s "
"(ignored)\n", usb2_errstr(err));
error:
length = UGETW(req->wLength);
if ((req->bmRequestType & UT_READ) && length) {
bzero(data, length);
}
}
}
#define CUE_CFG_SETBIT(sc, reg, x) \
cue_cfg_csr_write_1(sc, reg, cue_cfg_csr_read_1(sc, reg) | (x))
#define CUE_CFG_CLRBIT(sc, reg, x) \
cue_cfg_csr_write_1(sc, reg, cue_cfg_csr_read_1(sc, reg) & ~(x))
static uint8_t
cue_cfg_csr_read_1(struct cue_softc *sc, uint16_t reg)
{
struct usb2_device_request req;
uint8_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
cue_cfg_do_request(sc, &req, &val);
return (val);
}
static uint16_t
cue_cfg_csr_read_2(struct cue_softc *sc, uint8_t reg)
{
struct usb2_device_request req;
uint16_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
cue_cfg_do_request(sc, &req, &val);
return (le16toh(val));
}
static void
cue_cfg_csr_write_1(struct cue_softc *sc, uint16_t reg, uint16_t val)
{
struct usb2_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
cue_cfg_do_request(sc, &req, NULL);
}
static void
cue_cfg_mem(struct cue_softc *sc, uint8_t cmd, uint16_t addr,
void *buf, uint16_t len)
{
struct usb2_device_request req;
if (cmd == CUE_CMD_READSRAM) {
req.bmRequestType = UT_READ_VENDOR_DEVICE;
} else {
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
}
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
cue_cfg_do_request(sc, &req, buf);
}
static void
cue_cfg_getmac(struct cue_softc *sc, void *buf)
{
struct usb2_device_request req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
cue_cfg_do_request(sc, &req, buf);
}
#define CUE_BITS 9
static void
cue_mchash(struct usb2_config_td_cc *cc, const uint8_t *addr)
{
uint16_t h;
h = ether_crc32_le(addr, ETHER_ADDR_LEN) &
((1 << CUE_BITS) - 1);
cc->if_hash[h >> 3] |= 1 << (h & 0x7);
}
static void
cue_cfg_promisc_upd(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* if we want promiscuous mode, set the allframes bit */
if (cc->if_flags & IFF_PROMISC) {
CUE_CFG_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
} else {
CUE_CFG_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
}
/* write multicast hash-bits */
cue_cfg_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
cc->if_hash, CUE_MCAST_TABLE_LEN);
}
static void
cue_config_copy(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
bzero(cc, sizeof(*cc));
usb2_ether_cc(sc->sc_ifp, &cue_mchash, cc);
}
static void
cue_cfg_reset(struct cue_softc *sc)
{
struct usb2_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
cue_cfg_do_request(sc, &req, NULL);
/*
* wait a little while for the chip to get its brains in order:
*/
(void)usb2_config_td_sleep(&sc->sc_config_td, hz / 100);
}
static int
cue_probe(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb2_mode != USB_MODE_HOST) {
return (ENXIO);
}
if (uaa->info.bConfigIndex != CUE_CONFIG_IDX) {
return (ENXIO);
}
if (uaa->info.bIfaceIndex != CUE_IFACE_IDX) {
return (ENXIO);
}
return (usb2_lookup_id_by_uaa(cue_devs, sizeof(cue_devs), uaa));
}
static int
cue_attach(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
struct cue_softc *sc = device_get_softc(dev);
uint8_t iface_index;
int32_t error;
if (sc == NULL) {
return (ENOMEM);
}
sc->sc_udev = uaa->device;
sc->sc_dev = dev;
sc->sc_unit = device_get_unit(dev);
device_set_usb2_desc(dev);
mtx_init(&sc->sc_mtx, "cue lock", NULL, MTX_DEF | MTX_RECURSE);
usb2_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
iface_index = CUE_IFACE_IDX;
error = usb2_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, cue_config, CUE_ENDPT_MAX, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "allocating USB "
"transfers failed!\n");
goto detach;
}
error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx,
NULL, sizeof(struct usb2_config_td_cc), 16);
if (error) {
device_printf(dev, "could not setup config "
"thread!\n");
goto detach;
}
mtx_lock(&sc->sc_mtx);
/* start setup */
usb2_config_td_queue_command
(&sc->sc_config_td, NULL, &cue_cfg_first_time_setup, 0, 0);
cue_watchdog(sc);
mtx_unlock(&sc->sc_mtx);
return (0); /* success */
detach:
cue_detach(dev);
return (ENXIO); /* failure */
}
static void
cue_cfg_first_time_setup(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint8_t eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
#if 0
/* Reset the adapter. */
cue_cfg_reset(sc);
#endif
/*
* Get station address.
*/
cue_cfg_getmac(sc, eaddr);
mtx_unlock(&sc->sc_mtx);
ifp = if_alloc(IFT_ETHER);
mtx_lock(&sc->sc_mtx);
if (ifp == NULL) {
printf("cue%d: could not if_alloc()\n",
sc->sc_unit);
goto done;
}
sc->sc_evilhack = ifp;
ifp->if_softc = sc;
if_initname(ifp, "cue", sc->sc_unit);
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = cue_ioctl_cb;
ifp->if_start = cue_start_cb;
ifp->if_watchdog = NULL;
ifp->if_init = cue_init_cb;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
sc->sc_ifp = ifp;
mtx_unlock(&sc->sc_mtx);
ether_ifattach(ifp, eaddr);
mtx_lock(&sc->sc_mtx);
done:
return;
}
static int
cue_detach(device_t dev)
{
struct cue_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
usb2_config_td_drain(&sc->sc_config_td);
mtx_lock(&sc->sc_mtx);
usb2_callout_stop(&sc->sc_watchdog);
cue_cfg_pre_stop(sc, NULL, 0);
ifp = sc->sc_ifp;
mtx_unlock(&sc->sc_mtx);
/* stop all USB transfers first */
usb2_transfer_unsetup(sc->sc_xfer, CUE_ENDPT_MAX);
/* get rid of any late children */
bus_generic_detach(dev);
if (ifp) {
ether_ifdetach(ifp);
if_free(ifp);
}
usb2_config_td_unsetup(&sc->sc_config_td);
usb2_callout_drain(&sc->sc_watchdog);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
cue_bulk_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[1];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~CUE_FLAG_READ_STALL;
usb2_transfer_start(xfer_other);
}
}
static void
cue_bulk_read_callback(struct usb2_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m = NULL;
uint8_t buf[2];
uint16_t len;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (xfer->actlen <= (2 + sizeof(struct ether_header))) {
ifp->if_ierrors++;
goto tr_setup;
}
usb2_copy_out(xfer->frbuffers, 0, buf, 2);
len = buf[0] | (buf[1] << 8);
xfer->actlen -= 2;
m = usb2_ether_get_mbuf();
if (m == NULL) {
ifp->if_ierrors++;
goto tr_setup;
}
xfer->actlen = min(xfer->actlen, m->m_len);
xfer->actlen = min(xfer->actlen, len);
usb2_copy_out(xfer->frbuffers, 2, m->m_data, xfer->actlen);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = xfer->actlen;
case USB_ST_SETUP:
tr_setup:
if (sc->sc_flags & CUE_FLAG_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[3]);
} else {
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
}
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "if_input" here, and not some lines up!
*/
if (m) {
mtx_unlock(&sc->sc_mtx);
(ifp->if_input) (ifp, m);
mtx_lock(&sc->sc_mtx);
}
return;
default: /* Error */
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= CUE_FLAG_READ_STALL;
usb2_transfer_start(sc->sc_xfer[3]);
}
DPRINTF("bulk read error, %s\n",
usb2_errstr(xfer->error));
return;
}
}
static void
cue_cfg_tick(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
if ((ifp == NULL)) {
/* not ready */
return;
}
ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_SINGLECOLL);
ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_MULTICOLL);
ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_EXCESSCOLL);
if (cue_cfg_csr_read_2(sc, CUE_RX_FRAMEERR)) {
ifp->if_ierrors++;
}
/* start stopped transfers, if any */
cue_start_transfers(sc);
}
static void
cue_start_cb(struct ifnet *ifp)
{
struct cue_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
cue_start_transfers(sc);
mtx_unlock(&sc->sc_mtx);
}
static void
cue_start_transfers(struct cue_softc *sc)
{
if ((sc->sc_flags & CUE_FLAG_LL_READY) &&
(sc->sc_flags & CUE_FLAG_HL_READY)) {
/*
* start the USB transfers, if not already started:
*/
usb2_transfer_start(sc->sc_xfer[1]);
usb2_transfer_start(sc->sc_xfer[0]);
}
}
static void
cue_bulk_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[0];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~CUE_FLAG_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
}
static void
cue_bulk_write_callback(struct usb2_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
uint8_t buf[2];
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_opackets++;
case USB_ST_SETUP:
if (sc->sc_flags & CUE_FLAG_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[2]);
goto done;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
goto done;
}
if (m->m_pkthdr.len > MCLBYTES) {
m->m_pkthdr.len = MCLBYTES;
}
xfer->frlengths[0] = (m->m_pkthdr.len + 2);
/* the first two bytes are the frame length */
buf[0] = (uint8_t)(m->m_pkthdr.len);
buf[1] = (uint8_t)(m->m_pkthdr.len >> 8);
usb2_copy_in(xfer->frbuffers, 0, buf, 2);
usb2_m_copy_in(xfer->frbuffers, 2,
m, 0, m->m_pkthdr.len);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m);
m_freem(m);
usb2_start_hardware(xfer);
done:
return;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= CUE_FLAG_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[2]);
}
ifp->if_oerrors++;
return;
}
}
static void
cue_init_cb(void *arg)
{
struct cue_softc *sc = arg;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_cfg_pre_init,
&cue_cfg_init, 0, 0);
mtx_unlock(&sc->sc_mtx);
}
static void
cue_cfg_pre_init(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
/* immediate configuration */
cue_cfg_pre_stop(sc, cc, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= CUE_FLAG_HL_READY;
}
static void
cue_cfg_init(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint8_t i;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
cue_cfg_stop(sc, cc, 0);
#if 0
cue_cfg_reset(sc);
#endif
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
cue_cfg_csr_write_1(sc, CUE_PAR0 - i, cc->if_lladdr[i]);
}
/* Enable RX logic. */
cue_cfg_csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON);
/* Load the multicast filter */
cue_cfg_promisc_upd(sc, cc, 0);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
cue_cfg_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
cue_cfg_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
cue_cfg_csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x01);/* 1 wait state */
/* Program the LED operation. */
cue_cfg_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
sc->sc_flags |= (CUE_FLAG_READ_STALL |
CUE_FLAG_WRITE_STALL |
CUE_FLAG_LL_READY);
cue_start_transfers(sc);
}
static int
cue_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data)
{
struct cue_softc *sc = ifp->if_softc;
int error = 0;
switch (command) {
case SIOCSIFFLAGS:
mtx_lock(&sc->sc_mtx);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_config_copy,
&cue_cfg_promisc_upd, 0, 0);
} else {
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_cfg_pre_init,
&cue_cfg_init, 0, 0);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_cfg_pre_stop,
&cue_cfg_stop, 0, 0);
}
}
mtx_unlock(&sc->sc_mtx);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_config_copy,
&cue_cfg_promisc_upd, 0, 0);
mtx_unlock(&sc->sc_mtx);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
cue_watchdog(void *arg)
{
struct cue_softc *sc = arg;
mtx_assert(&sc->sc_mtx, MA_OWNED);
usb2_config_td_queue_command
(&sc->sc_config_td, NULL, &cue_cfg_tick, 0, 0);
usb2_callout_reset(&sc->sc_watchdog,
hz, &cue_watchdog, sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
cue_cfg_pre_stop(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
if (cc) {
/* copy the needed configuration */
cue_config_copy(sc, cc, refcount);
}
/* immediate configuration */
if (ifp) {
/* clear flags */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
sc->sc_flags &= ~(CUE_FLAG_HL_READY |
CUE_FLAG_LL_READY);
/*
* stop all the transfers, if not already stopped:
*/
usb2_transfer_stop(sc->sc_xfer[0]);
usb2_transfer_stop(sc->sc_xfer[1]);
usb2_transfer_stop(sc->sc_xfer[2]);
usb2_transfer_stop(sc->sc_xfer[3]);
}
static void
cue_cfg_stop(struct cue_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
cue_cfg_csr_write_1(sc, CUE_ETHCTL, 0);
cue_cfg_reset(sc);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
cue_shutdown(device_t dev)
{
struct cue_softc *sc = device_get_softc(dev);
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &cue_cfg_pre_stop,
&cue_cfg_stop, 0, 0);
mtx_unlock(&sc->sc_mtx);
return (0);
}