freebsd-nq/sys/dev/acpica/acpi_thermal.c
2020-09-01 21:32:41 +00:00

1221 lines
36 KiB
C

/*-
* Copyright (c) 2000, 2001 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/power.h>
#include "cpufreq_if.h"
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
/* Hooks for the ACPI CA debugging infrastructure */
#define _COMPONENT ACPI_THERMAL
ACPI_MODULE_NAME("THERMAL")
#define TZ_ZEROC 2731
#define TZ_KELVTOC(x) (((x) - TZ_ZEROC) / 10), abs(((x) - TZ_ZEROC) % 10)
#define TZ_NOTIFY_TEMPERATURE 0x80 /* Temperature changed. */
#define TZ_NOTIFY_LEVELS 0x81 /* Cooling levels changed. */
#define TZ_NOTIFY_DEVICES 0x82 /* Device lists changed. */
#define TZ_NOTIFY_CRITICAL 0xcc /* Fake notify that _CRT/_HOT reached. */
/* Check for temperature changes every 10 seconds by default */
#define TZ_POLLRATE 10
/* Make sure the reported temperature is valid for this number of polls. */
#define TZ_VALIDCHECKS 3
/* Notify the user we will be shutting down in one more poll cycle. */
#define TZ_NOTIFYCOUNT (TZ_VALIDCHECKS - 1)
/* ACPI spec defines this */
#define TZ_NUMLEVELS 10
struct acpi_tz_zone {
int ac[TZ_NUMLEVELS];
ACPI_BUFFER al[TZ_NUMLEVELS];
int crt;
int hot;
ACPI_BUFFER psl;
int psv;
int tc1;
int tc2;
int tsp;
int tzp;
};
struct acpi_tz_softc {
device_t tz_dev;
ACPI_HANDLE tz_handle; /*Thermal zone handle*/
int tz_temperature; /*Current temperature*/
int tz_active; /*Current active cooling*/
#define TZ_ACTIVE_NONE -1
#define TZ_ACTIVE_UNKNOWN -2
int tz_requested; /*Minimum active cooling*/
int tz_thflags; /*Current temp-related flags*/
#define TZ_THFLAG_NONE 0
#define TZ_THFLAG_PSV (1<<0)
#define TZ_THFLAG_HOT (1<<2)
#define TZ_THFLAG_CRT (1<<3)
int tz_flags;
#define TZ_FLAG_NO_SCP (1<<0) /*No _SCP method*/
#define TZ_FLAG_GETPROFILE (1<<1) /*Get power_profile in timeout*/
#define TZ_FLAG_GETSETTINGS (1<<2) /*Get devs/setpoints*/
struct timespec tz_cooling_started;
/*Current cooling starting time*/
struct sysctl_ctx_list tz_sysctl_ctx;
struct sysctl_oid *tz_sysctl_tree;
eventhandler_tag tz_event;
struct acpi_tz_zone tz_zone; /*Thermal zone parameters*/
int tz_validchecks;
int tz_insane_tmp_notified;
/* passive cooling */
struct proc *tz_cooling_proc;
int tz_cooling_proc_running;
int tz_cooling_enabled;
int tz_cooling_active;
int tz_cooling_updated;
int tz_cooling_saved_freq;
};
#define TZ_ACTIVE_LEVEL(act) ((act) >= 0 ? (act) : TZ_NUMLEVELS)
#define CPUFREQ_MAX_LEVELS 64 /* XXX cpufreq should export this */
static int acpi_tz_probe(device_t dev);
static int acpi_tz_attach(device_t dev);
static int acpi_tz_establish(struct acpi_tz_softc *sc);
static void acpi_tz_monitor(void *Context);
static void acpi_tz_switch_cooler_off(ACPI_OBJECT *obj, void *arg);
static void acpi_tz_switch_cooler_on(ACPI_OBJECT *obj, void *arg);
static void acpi_tz_getparam(struct acpi_tz_softc *sc, char *node,
int *data);
static void acpi_tz_sanity(struct acpi_tz_softc *sc, int *val, char *what);
static int acpi_tz_active_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_tz_cooling_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_tz_temp_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_tz_passive_sysctl(SYSCTL_HANDLER_ARGS);
static void acpi_tz_notify_handler(ACPI_HANDLE h, UINT32 notify,
void *context);
static void acpi_tz_signal(struct acpi_tz_softc *sc, int flags);
static void acpi_tz_timeout(struct acpi_tz_softc *sc, int flags);
static void acpi_tz_power_profile(void *arg);
static void acpi_tz_thread(void *arg);
static int acpi_tz_cooling_is_available(struct acpi_tz_softc *sc);
static int acpi_tz_cooling_thread_start(struct acpi_tz_softc *sc);
static device_method_t acpi_tz_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, acpi_tz_probe),
DEVMETHOD(device_attach, acpi_tz_attach),
DEVMETHOD_END
};
static driver_t acpi_tz_driver = {
"acpi_tz",
acpi_tz_methods,
sizeof(struct acpi_tz_softc),
};
static char *acpi_tz_tmp_name = "_TMP";
static devclass_t acpi_tz_devclass;
DRIVER_MODULE(acpi_tz, acpi, acpi_tz_driver, acpi_tz_devclass, 0, 0);
MODULE_DEPEND(acpi_tz, acpi, 1, 1, 1);
static struct sysctl_ctx_list acpi_tz_sysctl_ctx;
static struct sysctl_oid *acpi_tz_sysctl_tree;
/* Minimum cooling run time */
static int acpi_tz_min_runtime;
static int acpi_tz_polling_rate = TZ_POLLRATE;
static int acpi_tz_override;
/* Timezone polling thread */
static struct proc *acpi_tz_proc;
ACPI_LOCK_DECL(thermal, "ACPI thermal zone");
static int acpi_tz_cooling_unit = -1;
static int
acpi_tz_probe(device_t dev)
{
int result;
if (acpi_get_type(dev) == ACPI_TYPE_THERMAL && !acpi_disabled("thermal")) {
device_set_desc(dev, "Thermal Zone");
result = -10;
} else
result = ENXIO;
return (result);
}
static int
acpi_tz_attach(device_t dev)
{
struct acpi_tz_softc *sc;
struct acpi_softc *acpi_sc;
int error;
char oidname[8];
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = device_get_softc(dev);
sc->tz_dev = dev;
sc->tz_handle = acpi_get_handle(dev);
sc->tz_requested = TZ_ACTIVE_NONE;
sc->tz_active = TZ_ACTIVE_UNKNOWN;
sc->tz_thflags = TZ_THFLAG_NONE;
sc->tz_cooling_proc = NULL;
sc->tz_cooling_proc_running = FALSE;
sc->tz_cooling_active = FALSE;
sc->tz_cooling_updated = FALSE;
sc->tz_cooling_enabled = FALSE;
/*
* Parse the current state of the thermal zone and build control
* structures. We don't need to worry about interference with the
* control thread since we haven't fully attached this device yet.
*/
if ((error = acpi_tz_establish(sc)) != 0)
return (error);
/*
* Register for any Notify events sent to this zone.
*/
AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY,
acpi_tz_notify_handler, sc);
/*
* Create our sysctl nodes.
*
* XXX we need a mechanism for adding nodes under ACPI.
*/
if (device_get_unit(dev) == 0) {
acpi_sc = acpi_device_get_parent_softc(dev);
sysctl_ctx_init(&acpi_tz_sysctl_ctx);
acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx,
SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "thermal",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
OID_AUTO, "min_runtime", CTLFLAG_RW,
&acpi_tz_min_runtime, 0,
"minimum cooling run time in sec");
SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
OID_AUTO, "polling_rate", CTLFLAG_RW,
&acpi_tz_polling_rate, 0, "monitor polling interval in seconds");
SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO,
"user_override", CTLFLAG_RW, &acpi_tz_override, 0,
"allow override of thermal settings");
}
sysctl_ctx_init(&sc->tz_sysctl_ctx);
sprintf(oidname, "tz%d", device_get_unit(dev));
sc->tz_sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&sc->tz_sysctl_ctx,
SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, oidname,
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "", "thermal_zone");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
&sc->tz_temperature, 0, sysctl_handle_int, "IK",
"current thermal zone temperature");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
0, acpi_tz_active_sysctl, "I", "cooling is active");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "passive_cooling",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
acpi_tz_cooling_sysctl, "I",
"enable passive (speed reduction) cooling");
SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "thermal_flags", CTLFLAG_RD,
&sc->tz_thflags, 0, "thermal zone flags");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.psv), acpi_tz_temp_sysctl, "IK",
"passive cooling temp setpoint");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.hot), acpi_tz_temp_sysctl, "IK",
"too hot temp setpoint (suspend now)");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.crt), acpi_tz_temp_sysctl, "IK",
"critical temp setpoint (shutdown now)");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
&sc->tz_zone.ac, sizeof(sc->tz_zone.ac), sysctl_handle_opaque, "IK",
"");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.tc1), acpi_tz_passive_sysctl,
"I", "thermal constant 1 for passive cooling");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.tc2), acpi_tz_passive_sysctl,
"I", "thermal constant 2 for passive cooling");
SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
offsetof(struct acpi_tz_softc, tz_zone.tsp), acpi_tz_passive_sysctl,
"I", "thermal sampling period for passive cooling");
/*
* Register our power profile event handler.
*/
sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change,
acpi_tz_power_profile, sc, 0);
/*
* Flag the event handler for a manual invocation by our timeout.
* We defer it like this so that the rest of the subsystem has time
* to come up. Don't bother evaluating/printing the temperature at
* this point; on many systems it'll be bogus until the EC is running.
*/
sc->tz_flags |= TZ_FLAG_GETPROFILE;
return_VALUE (0);
}
static void
acpi_tz_startup(void *arg __unused)
{
struct acpi_tz_softc *sc;
device_t *devs;
int devcount, error, i;
devclass_get_devices(acpi_tz_devclass, &devs, &devcount);
if (devcount == 0) {
free(devs, M_TEMP);
return;
}
/*
* Create thread to service all of the thermal zones.
*/
error = kproc_create(acpi_tz_thread, NULL, &acpi_tz_proc, RFHIGHPID, 0,
"acpi_thermal");
if (error != 0)
printf("acpi_tz: could not create thread - %d", error);
/*
* Create a thread to handle passive cooling for 1st zone which
* has _PSV, _TSP, _TC1 and _TC2. Users can enable it for other
* zones manually for now.
*
* XXX We enable only one zone to avoid multiple zones conflict
* with each other since cpufreq currently sets all CPUs to the
* given frequency whereas it's possible for different thermal
* zones to specify independent settings for multiple CPUs.
*/
for (i = 0; i < devcount; i++) {
sc = device_get_softc(devs[i]);
if (acpi_tz_cooling_is_available(sc)) {
sc->tz_cooling_enabled = TRUE;
error = acpi_tz_cooling_thread_start(sc);
if (error != 0) {
sc->tz_cooling_enabled = FALSE;
break;
}
acpi_tz_cooling_unit = device_get_unit(devs[i]);
break;
}
}
free(devs, M_TEMP);
}
SYSINIT(acpi_tz, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, acpi_tz_startup, NULL);
/*
* Parse the current state of this thermal zone and set up to use it.
*
* Note that we may have previous state, which will have to be discarded.
*/
static int
acpi_tz_establish(struct acpi_tz_softc *sc)
{
ACPI_OBJECT *obj;
int i;
char nbuf[8];
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Erase any existing state. */
for (i = 0; i < TZ_NUMLEVELS; i++)
if (sc->tz_zone.al[i].Pointer != NULL)
AcpiOsFree(sc->tz_zone.al[i].Pointer);
if (sc->tz_zone.psl.Pointer != NULL)
AcpiOsFree(sc->tz_zone.psl.Pointer);
/*
* XXX: We initialize only ACPI_BUFFER to avoid race condition
* with passive cooling thread which refers psv, tc1, tc2 and tsp.
*/
bzero(sc->tz_zone.ac, sizeof(sc->tz_zone.ac));
bzero(sc->tz_zone.al, sizeof(sc->tz_zone.al));
bzero(&sc->tz_zone.psl, sizeof(sc->tz_zone.psl));
/* Evaluate thermal zone parameters. */
for (i = 0; i < TZ_NUMLEVELS; i++) {
sprintf(nbuf, "_AC%d", i);
acpi_tz_getparam(sc, nbuf, &sc->tz_zone.ac[i]);
sprintf(nbuf, "_AL%d", i);
sc->tz_zone.al[i].Length = ACPI_ALLOCATE_BUFFER;
sc->tz_zone.al[i].Pointer = NULL;
AcpiEvaluateObject(sc->tz_handle, nbuf, NULL, &sc->tz_zone.al[i]);
obj = (ACPI_OBJECT *)sc->tz_zone.al[i].Pointer;
if (obj != NULL) {
/* Should be a package containing a list of power objects */
if (obj->Type != ACPI_TYPE_PACKAGE) {
device_printf(sc->tz_dev, "%s has unknown type %d, rejecting\n",
nbuf, obj->Type);
return_VALUE (ENXIO);
}
}
}
acpi_tz_getparam(sc, "_CRT", &sc->tz_zone.crt);
acpi_tz_getparam(sc, "_HOT", &sc->tz_zone.hot);
sc->tz_zone.psl.Length = ACPI_ALLOCATE_BUFFER;
sc->tz_zone.psl.Pointer = NULL;
AcpiEvaluateObject(sc->tz_handle, "_PSL", NULL, &sc->tz_zone.psl);
acpi_tz_getparam(sc, "_PSV", &sc->tz_zone.psv);
acpi_tz_getparam(sc, "_TC1", &sc->tz_zone.tc1);
acpi_tz_getparam(sc, "_TC2", &sc->tz_zone.tc2);
acpi_tz_getparam(sc, "_TSP", &sc->tz_zone.tsp);
acpi_tz_getparam(sc, "_TZP", &sc->tz_zone.tzp);
/*
* Sanity-check the values we've been given.
*
* XXX what do we do about systems that give us the same value for
* more than one of these setpoints?
*/
acpi_tz_sanity(sc, &sc->tz_zone.crt, "_CRT");
acpi_tz_sanity(sc, &sc->tz_zone.hot, "_HOT");
acpi_tz_sanity(sc, &sc->tz_zone.psv, "_PSV");
for (i = 0; i < TZ_NUMLEVELS; i++)
acpi_tz_sanity(sc, &sc->tz_zone.ac[i], "_ACx");
return_VALUE (0);
}
static char *aclevel_string[] = {
"NONE", "_AC0", "_AC1", "_AC2", "_AC3", "_AC4",
"_AC5", "_AC6", "_AC7", "_AC8", "_AC9"
};
static __inline const char *
acpi_tz_aclevel_string(int active)
{
if (active < -1 || active >= TZ_NUMLEVELS)
return (aclevel_string[0]);
return (aclevel_string[active + 1]);
}
/*
* Get the current temperature.
*/
static int
acpi_tz_get_temperature(struct acpi_tz_softc *sc)
{
int temp;
ACPI_STATUS status;
ACPI_FUNCTION_NAME ("acpi_tz_get_temperature");
/* Evaluate the thermal zone's _TMP method. */
status = acpi_GetInteger(sc->tz_handle, acpi_tz_tmp_name, &temp);
if (ACPI_FAILURE(status)) {
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"error fetching current temperature -- %s\n",
AcpiFormatException(status));
return (FALSE);
}
/* Check it for validity. */
acpi_tz_sanity(sc, &temp, acpi_tz_tmp_name);
if (temp == -1)
return (FALSE);
ACPI_DEBUG_PRINT((ACPI_DB_VALUES, "got %d.%dC\n", TZ_KELVTOC(temp)));
sc->tz_temperature = temp;
return (TRUE);
}
/*
* Evaluate the condition of a thermal zone, take appropriate actions.
*/
static void
acpi_tz_monitor(void *Context)
{
struct acpi_tz_softc *sc;
struct timespec curtime;
int temp;
int i;
int newactive, newflags;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = (struct acpi_tz_softc *)Context;
/* Get the current temperature. */
if (!acpi_tz_get_temperature(sc)) {
/* XXX disable zone? go to max cooling? */
return_VOID;
}
temp = sc->tz_temperature;
/*
* Work out what we ought to be doing right now.
*
* Note that the _ACx levels sort from hot to cold.
*/
newactive = TZ_ACTIVE_NONE;
for (i = TZ_NUMLEVELS - 1; i >= 0; i--) {
if (sc->tz_zone.ac[i] != -1 && temp >= sc->tz_zone.ac[i])
newactive = i;
}
/*
* We are going to get _ACx level down (colder side), but give a guaranteed
* minimum cooling run time if requested.
*/
if (acpi_tz_min_runtime > 0 && sc->tz_active != TZ_ACTIVE_NONE &&
sc->tz_active != TZ_ACTIVE_UNKNOWN &&
(newactive == TZ_ACTIVE_NONE || newactive > sc->tz_active)) {
getnanotime(&curtime);
timespecsub(&curtime, &sc->tz_cooling_started, &curtime);
if (curtime.tv_sec < acpi_tz_min_runtime)
newactive = sc->tz_active;
}
/* Handle user override of active mode */
if (sc->tz_requested != TZ_ACTIVE_NONE && (newactive == TZ_ACTIVE_NONE
|| sc->tz_requested < newactive))
newactive = sc->tz_requested;
/* update temperature-related flags */
newflags = TZ_THFLAG_NONE;
if (sc->tz_zone.psv != -1 && temp >= sc->tz_zone.psv)
newflags |= TZ_THFLAG_PSV;
if (sc->tz_zone.hot != -1 && temp >= sc->tz_zone.hot)
newflags |= TZ_THFLAG_HOT;
if (sc->tz_zone.crt != -1 && temp >= sc->tz_zone.crt)
newflags |= TZ_THFLAG_CRT;
/* If the active cooling state has changed, we have to switch things. */
if (sc->tz_active == TZ_ACTIVE_UNKNOWN) {
/*
* We don't know which cooling device is on or off,
* so stop them all, because we now know which
* should be on (if any).
*/
for (i = 0; i < TZ_NUMLEVELS; i++) {
if (sc->tz_zone.al[i].Pointer != NULL) {
acpi_ForeachPackageObject(
(ACPI_OBJECT *)sc->tz_zone.al[i].Pointer,
acpi_tz_switch_cooler_off, sc);
}
}
/* now we know that all devices are off */
sc->tz_active = TZ_ACTIVE_NONE;
}
if (newactive != sc->tz_active) {
/* Turn off unneeded cooling devices that are on, if any are */
for (i = TZ_ACTIVE_LEVEL(sc->tz_active);
i < TZ_ACTIVE_LEVEL(newactive); i++) {
acpi_ForeachPackageObject(
(ACPI_OBJECT *)sc->tz_zone.al[i].Pointer,
acpi_tz_switch_cooler_off, sc);
}
/* Turn on cooling devices that are required, if any are */
for (i = TZ_ACTIVE_LEVEL(sc->tz_active) - 1;
i >= TZ_ACTIVE_LEVEL(newactive); i--) {
acpi_ForeachPackageObject(
(ACPI_OBJECT *)sc->tz_zone.al[i].Pointer,
acpi_tz_switch_cooler_on, sc);
}
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"switched from %s to %s: %d.%dC\n",
acpi_tz_aclevel_string(sc->tz_active),
acpi_tz_aclevel_string(newactive), TZ_KELVTOC(temp));
sc->tz_active = newactive;
getnanotime(&sc->tz_cooling_started);
}
/* XXX (de)activate any passive cooling that may be required. */
/*
* If the temperature is at _HOT or _CRT, increment our event count.
* If it has occurred enough times, shutdown the system. This is
* needed because some systems will report an invalid high temperature
* for one poll cycle. It is suspected this is due to the embedded
* controller timing out. A typical value is 138C for one cycle on
* a system that is otherwise 65C.
*
* If we're almost at that threshold, notify the user through devd(8).
*/
if ((newflags & (TZ_THFLAG_HOT | TZ_THFLAG_CRT)) != 0) {
sc->tz_validchecks++;
if (sc->tz_validchecks == TZ_VALIDCHECKS) {
device_printf(sc->tz_dev,
"WARNING - current temperature (%d.%dC) exceeds safe limits\n",
TZ_KELVTOC(sc->tz_temperature));
shutdown_nice(RB_POWEROFF);
} else if (sc->tz_validchecks == TZ_NOTIFYCOUNT)
acpi_UserNotify("Thermal", sc->tz_handle, TZ_NOTIFY_CRITICAL);
} else {
sc->tz_validchecks = 0;
}
sc->tz_thflags = newflags;
return_VOID;
}
/*
* Given an object, verify that it's a reference to a device of some sort,
* and try to switch it off.
*/
static void
acpi_tz_switch_cooler_off(ACPI_OBJECT *obj, void *arg)
{
ACPI_HANDLE cooler;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
cooler = acpi_GetReference(NULL, obj);
if (cooler == NULL) {
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "can't get handle\n"));
return_VOID;
}
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "called to turn %s off\n",
acpi_name(cooler)));
acpi_pwr_switch_consumer(cooler, ACPI_STATE_D3);
return_VOID;
}
/*
* Given an object, verify that it's a reference to a device of some sort,
* and try to switch it on.
*
* XXX replication of off/on function code is bad.
*/
static void
acpi_tz_switch_cooler_on(ACPI_OBJECT *obj, void *arg)
{
struct acpi_tz_softc *sc = (struct acpi_tz_softc *)arg;
ACPI_HANDLE cooler;
ACPI_STATUS status;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
cooler = acpi_GetReference(NULL, obj);
if (cooler == NULL) {
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "can't get handle\n"));
return_VOID;
}
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "called to turn %s on\n",
acpi_name(cooler)));
status = acpi_pwr_switch_consumer(cooler, ACPI_STATE_D0);
if (ACPI_FAILURE(status)) {
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"failed to activate %s - %s\n", acpi_name(cooler),
AcpiFormatException(status));
}
return_VOID;
}
/*
* Read/debug-print a parameter, default it to -1.
*/
static void
acpi_tz_getparam(struct acpi_tz_softc *sc, char *node, int *data)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
if (ACPI_FAILURE(acpi_GetInteger(sc->tz_handle, node, data))) {
*data = -1;
} else {
ACPI_DEBUG_PRINT((ACPI_DB_VALUES, "%s.%s = %d\n",
acpi_name(sc->tz_handle), node, *data));
}
return_VOID;
}
/*
* Sanity-check a temperature value. Assume that setpoints
* should be between 0C and 200C.
*/
static void
acpi_tz_sanity(struct acpi_tz_softc *sc, int *val, char *what)
{
if (*val != -1 && (*val < TZ_ZEROC || *val > TZ_ZEROC + 2000)) {
/*
* If the value we are checking is _TMP, warn the user only
* once. This avoids spamming messages if, for instance, the
* sensor is broken and always returns an invalid temperature.
*
* This is only done for _TMP; other values always emit a
* warning.
*/
if (what != acpi_tz_tmp_name || !sc->tz_insane_tmp_notified) {
device_printf(sc->tz_dev, "%s value is absurd, ignored (%d.%dC)\n",
what, TZ_KELVTOC(*val));
/* Don't warn the user again if the read value doesn't improve. */
if (what == acpi_tz_tmp_name)
sc->tz_insane_tmp_notified = 1;
}
*val = -1;
return;
}
/* This value is correct. Warn if it's incorrect again. */
if (what == acpi_tz_tmp_name)
sc->tz_insane_tmp_notified = 0;
}
/*
* Respond to a sysctl on the active state node.
*/
static int
acpi_tz_active_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_tz_softc *sc;
int active;
int error;
sc = (struct acpi_tz_softc *)oidp->oid_arg1;
active = sc->tz_active;
error = sysctl_handle_int(oidp, &active, 0, req);
/* Error or no new value */
if (error != 0 || req->newptr == NULL)
return (error);
if (active < -1 || active >= TZ_NUMLEVELS)
return (EINVAL);
/* Set new preferred level and re-switch */
sc->tz_requested = active;
acpi_tz_signal(sc, 0);
return (0);
}
static int
acpi_tz_cooling_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_tz_softc *sc;
int enabled, error;
sc = (struct acpi_tz_softc *)oidp->oid_arg1;
enabled = sc->tz_cooling_enabled;
error = sysctl_handle_int(oidp, &enabled, 0, req);
/* Error or no new value */
if (error != 0 || req->newptr == NULL)
return (error);
if (enabled != TRUE && enabled != FALSE)
return (EINVAL);
if (enabled) {
if (acpi_tz_cooling_is_available(sc))
error = acpi_tz_cooling_thread_start(sc);
else
error = ENODEV;
if (error)
enabled = FALSE;
}
sc->tz_cooling_enabled = enabled;
return (error);
}
static int
acpi_tz_temp_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_tz_softc *sc;
int temp, *temp_ptr;
int error;
sc = oidp->oid_arg1;
temp_ptr = (int *)(void *)(uintptr_t)((uintptr_t)sc + oidp->oid_arg2);
temp = *temp_ptr;
error = sysctl_handle_int(oidp, &temp, 0, req);
/* Error or no new value */
if (error != 0 || req->newptr == NULL)
return (error);
/* Only allow changing settings if override is set. */
if (!acpi_tz_override)
return (EPERM);
/* Check user-supplied value for sanity. */
acpi_tz_sanity(sc, &temp, "user-supplied temp");
if (temp == -1)
return (EINVAL);
*temp_ptr = temp;
return (0);
}
static int
acpi_tz_passive_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_tz_softc *sc;
int val, *val_ptr;
int error;
sc = oidp->oid_arg1;
val_ptr = (int *)(void *)(uintptr_t)((uintptr_t)sc + oidp->oid_arg2);
val = *val_ptr;
error = sysctl_handle_int(oidp, &val, 0, req);
/* Error or no new value */
if (error != 0 || req->newptr == NULL)
return (error);
/* Only allow changing settings if override is set. */
if (!acpi_tz_override)
return (EPERM);
*val_ptr = val;
return (0);
}
static void
acpi_tz_notify_handler(ACPI_HANDLE h, UINT32 notify, void *context)
{
struct acpi_tz_softc *sc = (struct acpi_tz_softc *)context;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
switch (notify) {
case TZ_NOTIFY_TEMPERATURE:
/* Temperature change occurred */
acpi_tz_signal(sc, 0);
break;
case TZ_NOTIFY_DEVICES:
case TZ_NOTIFY_LEVELS:
/* Zone devices/setpoints changed */
acpi_tz_signal(sc, TZ_FLAG_GETSETTINGS);
break;
default:
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"unknown Notify event 0x%x\n", notify);
break;
}
acpi_UserNotify("Thermal", h, notify);
return_VOID;
}
static void
acpi_tz_signal(struct acpi_tz_softc *sc, int flags)
{
ACPI_LOCK(thermal);
sc->tz_flags |= flags;
ACPI_UNLOCK(thermal);
wakeup(&acpi_tz_proc);
}
/*
* Notifies can be generated asynchronously but have also been seen to be
* triggered by other thermal methods. One system generates a notify of
* 0x81 when the fan is turned on or off. Another generates it when _SCP
* is called. To handle these situations, we check the zone via
* acpi_tz_monitor() before evaluating changes to setpoints or the cooling
* policy.
*/
static void
acpi_tz_timeout(struct acpi_tz_softc *sc, int flags)
{
/* Check the current temperature and take action based on it */
acpi_tz_monitor(sc);
/* If requested, get the power profile settings. */
if (flags & TZ_FLAG_GETPROFILE)
acpi_tz_power_profile(sc);
/*
* If requested, check for new devices/setpoints. After finding them,
* check if we need to switch fans based on the new values.
*/
if (flags & TZ_FLAG_GETSETTINGS) {
acpi_tz_establish(sc);
acpi_tz_monitor(sc);
}
/* XXX passive cooling actions? */
}
/*
* System power profile may have changed; fetch and notify the
* thermal zone accordingly.
*
* Since this can be called from an arbitrary eventhandler, it needs
* to get the ACPI lock itself.
*/
static void
acpi_tz_power_profile(void *arg)
{
ACPI_STATUS status;
struct acpi_tz_softc *sc = (struct acpi_tz_softc *)arg;
int state;
state = power_profile_get_state();
if (state != POWER_PROFILE_PERFORMANCE && state != POWER_PROFILE_ECONOMY)
return;
/* check that we haven't decided there's no _SCP method */
if ((sc->tz_flags & TZ_FLAG_NO_SCP) == 0) {
/* Call _SCP to set the new profile */
status = acpi_SetInteger(sc->tz_handle, "_SCP",
(state == POWER_PROFILE_PERFORMANCE) ? 0 : 1);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND)
ACPI_VPRINT(sc->tz_dev,
acpi_device_get_parent_softc(sc->tz_dev),
"can't evaluate %s._SCP - %s\n",
acpi_name(sc->tz_handle),
AcpiFormatException(status));
sc->tz_flags |= TZ_FLAG_NO_SCP;
} else {
/* We have to re-evaluate the entire zone now */
acpi_tz_signal(sc, TZ_FLAG_GETSETTINGS);
}
}
}
/*
* Thermal zone monitor thread.
*/
static void
acpi_tz_thread(void *arg)
{
device_t *devs;
int devcount, i;
int flags;
struct acpi_tz_softc **sc;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
devs = NULL;
devcount = 0;
sc = NULL;
for (;;) {
/* If the number of devices has changed, re-evaluate. */
if (devclass_get_count(acpi_tz_devclass) != devcount) {
if (devs != NULL) {
free(devs, M_TEMP);
free(sc, M_TEMP);
}
devclass_get_devices(acpi_tz_devclass, &devs, &devcount);
sc = malloc(sizeof(struct acpi_tz_softc *) * devcount, M_TEMP,
M_WAITOK | M_ZERO);
for (i = 0; i < devcount; i++)
sc[i] = device_get_softc(devs[i]);
}
/* Check for temperature events and act on them. */
for (i = 0; i < devcount; i++) {
ACPI_LOCK(thermal);
flags = sc[i]->tz_flags;
sc[i]->tz_flags &= TZ_FLAG_NO_SCP;
ACPI_UNLOCK(thermal);
acpi_tz_timeout(sc[i], flags);
}
/* If more work to do, don't go to sleep yet. */
ACPI_LOCK(thermal);
for (i = 0; i < devcount; i++) {
if (sc[i]->tz_flags & ~TZ_FLAG_NO_SCP)
break;
}
/*
* If we have no more work, sleep for a while, setting PDROP so that
* the mutex will not be reacquired. Otherwise, drop the mutex and
* loop to handle more events.
*/
if (i == devcount)
msleep(&acpi_tz_proc, &thermal_mutex, PZERO | PDROP, "tzpoll",
hz * acpi_tz_polling_rate);
else
ACPI_UNLOCK(thermal);
}
}
static int
acpi_tz_cpufreq_restore(struct acpi_tz_softc *sc)
{
device_t dev;
int error;
if (!sc->tz_cooling_updated)
return (0);
if ((dev = devclass_get_device(devclass_find("cpufreq"), 0)) == NULL)
return (ENXIO);
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"temperature %d.%dC: resuming previous clock speed (%d MHz)\n",
TZ_KELVTOC(sc->tz_temperature), sc->tz_cooling_saved_freq);
error = CPUFREQ_SET(dev, NULL, CPUFREQ_PRIO_KERN);
if (error == 0)
sc->tz_cooling_updated = FALSE;
return (error);
}
static int
acpi_tz_cpufreq_update(struct acpi_tz_softc *sc, int req)
{
device_t dev;
struct cf_level *levels;
int num_levels, error, freq, desired_freq, perf, i;
levels = malloc(CPUFREQ_MAX_LEVELS * sizeof(*levels), M_TEMP, M_NOWAIT);
if (levels == NULL)
return (ENOMEM);
/*
* Find the main device, cpufreq0. We don't yet support independent
* CPU frequency control on SMP.
*/
if ((dev = devclass_get_device(devclass_find("cpufreq"), 0)) == NULL) {
error = ENXIO;
goto out;
}
/* Get the current frequency. */
error = CPUFREQ_GET(dev, &levels[0]);
if (error)
goto out;
freq = levels[0].total_set.freq;
/* Get the current available frequency levels. */
num_levels = CPUFREQ_MAX_LEVELS;
error = CPUFREQ_LEVELS(dev, levels, &num_levels);
if (error) {
if (error == E2BIG)
printf("cpufreq: need to increase CPUFREQ_MAX_LEVELS\n");
goto out;
}
/* Calculate the desired frequency as a percent of the max frequency. */
perf = 100 * freq / levels[0].total_set.freq - req;
if (perf < 0)
perf = 0;
else if (perf > 100)
perf = 100;
desired_freq = levels[0].total_set.freq * perf / 100;
if (desired_freq < freq) {
/* Find the closest available frequency, rounding down. */
for (i = 0; i < num_levels; i++)
if (levels[i].total_set.freq <= desired_freq)
break;
/* If we didn't find a relevant setting, use the lowest. */
if (i == num_levels)
i--;
} else {
/* If we didn't decrease frequency yet, don't increase it. */
if (!sc->tz_cooling_updated) {
sc->tz_cooling_active = FALSE;
goto out;
}
/* Use saved cpu frequency as maximum value. */
if (desired_freq > sc->tz_cooling_saved_freq)
desired_freq = sc->tz_cooling_saved_freq;
/* Find the closest available frequency, rounding up. */
for (i = num_levels - 1; i >= 0; i--)
if (levels[i].total_set.freq >= desired_freq)
break;
/* If we didn't find a relevant setting, use the highest. */
if (i == -1)
i++;
/* If we're going to the highest frequency, restore the old setting. */
if (i == 0 || desired_freq == sc->tz_cooling_saved_freq) {
error = acpi_tz_cpufreq_restore(sc);
if (error == 0)
sc->tz_cooling_active = FALSE;
goto out;
}
}
/* If we are going to a new frequency, activate it. */
if (levels[i].total_set.freq != freq) {
ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev),
"temperature %d.%dC: %screasing clock speed "
"from %d MHz to %d MHz\n",
TZ_KELVTOC(sc->tz_temperature),
(freq > levels[i].total_set.freq) ? "de" : "in",
freq, levels[i].total_set.freq);
error = CPUFREQ_SET(dev, &levels[i], CPUFREQ_PRIO_KERN);
if (error == 0 && !sc->tz_cooling_updated) {
sc->tz_cooling_saved_freq = freq;
sc->tz_cooling_updated = TRUE;
}
}
out:
if (levels)
free(levels, M_TEMP);
return (error);
}
/*
* Passive cooling thread; monitors current temperature according to the
* cooling interval and calculates whether to scale back CPU frequency.
*/
static void
acpi_tz_cooling_thread(void *arg)
{
struct acpi_tz_softc *sc;
int error, perf, curr_temp, prev_temp;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = (struct acpi_tz_softc *)arg;
prev_temp = sc->tz_temperature;
while (sc->tz_cooling_enabled) {
if (sc->tz_cooling_active)
(void)acpi_tz_get_temperature(sc);
curr_temp = sc->tz_temperature;
if (curr_temp >= sc->tz_zone.psv)
sc->tz_cooling_active = TRUE;
if (sc->tz_cooling_active) {
perf = sc->tz_zone.tc1 * (curr_temp - prev_temp) +
sc->tz_zone.tc2 * (curr_temp - sc->tz_zone.psv);
perf /= 10;
if (perf != 0) {
error = acpi_tz_cpufreq_update(sc, perf);
/*
* If error and not simply a higher priority setting was
* active, disable cooling.
*/
if (error != 0 && error != EPERM) {
device_printf(sc->tz_dev,
"failed to set new freq, disabling passive cooling\n");
sc->tz_cooling_enabled = FALSE;
}
}
}
prev_temp = curr_temp;
tsleep(&sc->tz_cooling_proc, PZERO, "cooling",
hz * sc->tz_zone.tsp / 10);
}
if (sc->tz_cooling_active) {
acpi_tz_cpufreq_restore(sc);
sc->tz_cooling_active = FALSE;
}
sc->tz_cooling_proc = NULL;
ACPI_LOCK(thermal);
sc->tz_cooling_proc_running = FALSE;
ACPI_UNLOCK(thermal);
kproc_exit(0);
}
/*
* TODO: We ignore _PSL (list of cooling devices) since cpufreq enumerates
* all CPUs for us. However, it's possible in the future _PSL will
* reference non-CPU devices so we may want to support it then.
*/
static int
acpi_tz_cooling_is_available(struct acpi_tz_softc *sc)
{
return (sc->tz_zone.tc1 != -1 && sc->tz_zone.tc2 != -1 &&
sc->tz_zone.tsp != -1 && sc->tz_zone.tsp != 0 &&
sc->tz_zone.psv != -1);
}
static int
acpi_tz_cooling_thread_start(struct acpi_tz_softc *sc)
{
int error;
ACPI_LOCK(thermal);
if (sc->tz_cooling_proc_running) {
ACPI_UNLOCK(thermal);
return (0);
}
sc->tz_cooling_proc_running = TRUE;
ACPI_UNLOCK(thermal);
error = 0;
if (sc->tz_cooling_proc == NULL) {
error = kproc_create(acpi_tz_cooling_thread, sc,
&sc->tz_cooling_proc, RFHIGHPID, 0, "acpi_cooling%d",
device_get_unit(sc->tz_dev));
if (error != 0) {
device_printf(sc->tz_dev, "could not create thread - %d", error);
ACPI_LOCK(thermal);
sc->tz_cooling_proc_running = FALSE;
ACPI_UNLOCK(thermal);
}
}
return (error);
}