freebsd-nq/sys/dev/sis/if_sis.c
2014-09-18 20:09:35 +00:00

2409 lines
60 KiB
C

/*-
* Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
* available from http://www.sis.com.tw.
*
* This driver also supports the NatSemi DP83815. Datasheets are
* available from http://www.national.com.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The SiS 900 is a fairly simple chip. It uses bus master DMA with
* simple TX and RX descriptors of 3 longwords in size. The receiver
* has a single perfect filter entry for the station address and a
* 128-bit multicast hash table. The SiS 900 has a built-in MII-based
* transceiver while the 7016 requires an external transceiver chip.
* Both chips offer the standard bit-bang MII interface as well as
* an enchanced PHY interface which simplifies accessing MII registers.
*
* The only downside to this chipset is that RX descriptors must be
* longword aligned.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define SIS_USEIOSPACE
#include <dev/sis/if_sisreg.h>
MODULE_DEPEND(sis, pci, 1, 1, 1);
MODULE_DEPEND(sis, ether, 1, 1, 1);
MODULE_DEPEND(sis, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx)
#define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx)
#define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val)
#define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg)
#define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg)
#define CSR_BARRIER(sc, reg, length, flags) \
bus_barrier(sc->sis_res[0], reg, length, flags)
/*
* Various supported device vendors/types and their names.
*/
static const struct sis_type sis_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
{ 0, 0, NULL }
};
static int sis_detach(device_t);
static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
static int sis_dma_alloc(struct sis_softc *);
static void sis_dma_free(struct sis_softc *);
static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void sis_fixup_rx(struct mbuf *);
#endif
static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int sis_ifmedia_upd(struct ifnet *);
static void sis_init(void *);
static void sis_initl(struct sis_softc *);
static void sis_intr(void *);
static int sis_ioctl(struct ifnet *, u_long, caddr_t);
static uint32_t sis_mii_bitbang_read(device_t);
static void sis_mii_bitbang_write(device_t, uint32_t);
static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
static int sis_resume(device_t);
static int sis_rxeof(struct sis_softc *);
static void sis_rxfilter(struct sis_softc *);
static void sis_rxfilter_ns(struct sis_softc *);
static void sis_rxfilter_sis(struct sis_softc *);
static void sis_start(struct ifnet *);
static void sis_startl(struct ifnet *);
static void sis_stop(struct sis_softc *);
static int sis_suspend(device_t);
static void sis_add_sysctls(struct sis_softc *);
static void sis_watchdog(struct sis_softc *);
static void sis_wol(struct sis_softc *);
/*
* MII bit-bang glue
*/
static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
sis_mii_bitbang_read,
sis_mii_bitbang_write,
{
SIS_MII_DATA, /* MII_BIT_MDO */
SIS_MII_DATA, /* MII_BIT_MDI */
SIS_MII_CLK, /* MII_BIT_MDC */
SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static struct resource_spec sis_res_spec[] = {
#ifdef SIS_USEIOSPACE
{ SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE},
#else
{ SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE},
#endif
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE},
{ -1, 0 }
};
#define SIS_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define SIS_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
/*
* Routine to reverse the bits in a word. Stolen almost
* verbatim from /usr/games/fortune.
*/
static uint16_t
sis_reverse(uint16_t n)
{
n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
return (n);
}
static void
sis_delay(struct sis_softc *sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, SIS_CSR);
}
static void
sis_eeprom_idle(struct sis_softc *sc)
{
int i;
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
}
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CSEL);
sis_delay(sc);
CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
sis_eeprom_putbyte(struct sis_softc *sc, int addr)
{
int d, i;
d = addr | SIS_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(SIS_EECTL_DIN);
} else {
SIO_CLR(SIS_EECTL_DIN);
}
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
{
int i;
uint16_t word = 0;
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
/* Enter EEPROM access mode. */
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
/*
* Send address of word we want to read.
*/
sis_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
word |= i;
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
/* Turn off EEPROM access mode. */
sis_eeprom_idle(sc);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int i;
uint16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
sis_eeprom_getword(sc, off + i, &word);
ptr = (uint16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
#if defined(__i386__) || defined(__amd64__)
static device_t
sis_find_bridge(device_t dev)
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count = 0;
device_t *pci_children;
int pci_childcount = 0;
device_t *busp, *childp;
device_t child = NULL;
int i, j;
if ((pci_devclass = devclass_find("pci")) == NULL)
return (NULL);
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
if (device_get_children(*busp, &pci_children, &pci_childcount))
continue;
for (j = 0, childp = pci_children;
j < pci_childcount; j++, childp++) {
if (pci_get_vendor(*childp) == SIS_VENDORID &&
pci_get_device(*childp) == 0x0008) {
child = *childp;
free(pci_children, M_TEMP);
goto done;
}
}
free(pci_children, M_TEMP);
}
done:
free(pci_devices, M_TEMP);
return (child);
}
static void
sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
{
device_t bridge;
uint8_t reg;
int i;
bus_space_tag_t btag;
bridge = sis_find_bridge(dev);
if (bridge == NULL)
return;
reg = pci_read_config(bridge, 0x48, 1);
pci_write_config(bridge, 0x48, reg|0x40, 1);
/* XXX */
#if defined(__amd64__) || defined(__i386__)
btag = X86_BUS_SPACE_IO;
#endif
for (i = 0; i < cnt; i++) {
bus_space_write_1(btag, 0x0, 0x70, i + off);
*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
}
pci_write_config(bridge, 0x48, reg & ~0x40, 1);
}
static void
sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
{
uint32_t filtsave, csrsave;
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
csrsave = CSR_READ_4(sc, SIS_CSR);
CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
CSR_WRITE_4(sc, SIS_CSR, 0);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
CSR_WRITE_4(sc, SIS_CSR, csrsave);
}
#endif
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
sis_mii_bitbang_read(device_t dev)
{
struct sis_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_4(sc, SIS_EECTL);
CSR_BARRIER(sc, SIS_EECTL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
sis_mii_bitbang_write(device_t dev, uint32_t val)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, SIS_EECTL, val);
CSR_BARRIER(sc, SIS_EECTL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
sis_miibus_readreg(device_t dev, int phy, int reg)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return (0);
/*
* The NatSemi chip can take a while after
* a reset to come ready, during which the BMSR
* returns a value of 0. This is *never* supposed
* to happen: some of the BMSR bits are meant to
* be hardwired in the on position, and this can
* confuse the miibus code a bit during the probe
* and attach phase. So we make an effort to check
* for this condition and wait for it to clear.
*/
if (!CSR_READ_4(sc, NS_BMSR))
DELAY(1000);
return CSR_READ_4(sc, NS_BMCR + (reg * 4));
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i, val = 0;
if (phy != 0)
return (0);
CSR_WRITE_4(sc, SIS_PHYCTL,
(phy << 11) | (reg << 6) | SIS_PHYOP_READ);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT) {
device_printf(sc->sis_dev,
"PHY failed to come ready\n");
return (0);
}
val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
if (val == 0xFFFF)
return (0);
return (val);
} else
return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
reg));
}
static int
sis_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return (0);
CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
return (0);
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i;
if (phy != 0)
return (0);
CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
(reg << 6) | SIS_PHYOP_WRITE);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT)
device_printf(sc->sis_dev,
"PHY failed to come ready\n");
} else
mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
data);
return (0);
}
static void
sis_miibus_statchg(device_t dev)
{
struct sis_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = device_get_softc(dev);
SIS_LOCK_ASSERT(sc);
mii = device_get_softc(sc->sis_miibus);
ifp = sc->sis_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->sis_flags &= ~SIS_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
sc->sis_flags |= SIS_FLAG_LINK;
break;
case IFM_100_TX:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
sc->sis_flags |= SIS_FLAG_LINK;
break;
default:
break;
}
}
if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
/*
* Stopping MACs seem to reset SIS_TX_LISTPTR and
* SIS_RX_LISTPTR which in turn requires resetting
* TX/RX buffers. So just don't do anything for
* lost link.
*/
return;
}
/* Set full/half duplex mode. */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
SIS_SETBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
} else {
SIS_CLRBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
}
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
/*
* MPII03.D: Half Duplex Excessive Collisions.
* Also page 49 in 83816 manual
*/
SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
}
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
/*
* Short Cable Receive Errors (MP21.E)
*/
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
DELAY(100);
reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
device_printf(sc->sis_dev,
"Applying short cable fix (reg=%x)\n", reg);
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
}
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
/* Enable TX/RX MACs. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
}
static uint32_t
sis_mchash(struct sis_softc *sc, const uint8_t *addr)
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
/*
* return the filter bit position
*
* The NatSemi chip has a 512-bit filter, which is
* different than the SiS, so we special-case it.
*/
if (sc->sis_type == SIS_TYPE_83815)
return (crc >> 23);
else if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
return (crc >> 24);
else
return (crc >> 25);
}
static void
sis_rxfilter(struct sis_softc *sc)
{
SIS_LOCK_ASSERT(sc);
if (sc->sis_type == SIS_TYPE_83815)
sis_rxfilter_ns(sc);
else
sis_rxfilter_sis(sc);
}
static void
sis_rxfilter_ns(struct sis_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t h, i, filter;
int bit, index;
ifp = sc->sis_ifp;
filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (filter & SIS_RXFILTCTL_ENABLE) {
/*
* Filter should be disabled to program other bits.
*/
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
SIS_RXFILTCTL_ALLMULTI);
if (ifp->if_flags & IFF_BROADCAST)
filter |= SIS_RXFILTCTL_BROAD;
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
filter |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
filter |= SIS_RXFILTCTL_ALLPHYS;
} else {
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
filter |= NS_RXFILTCTL_MCHASH;
/* first, zot all the existing hash bits */
for (i = 0; i < 32; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
(i * 2));
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
index = h >> 3;
bit = h & 0x1F;
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
index);
if (bit > 0xF)
bit -= 0x10;
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
}
if_maddr_runlock(ifp);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
static void
sis_rxfilter_sis(struct sis_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t filter, h, i, n;
uint16_t hashes[16];
ifp = sc->sis_ifp;
/* hash table size */
if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
n = 16;
else
n = 8;
filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (filter & SIS_RXFILTCTL_ENABLE) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILT_CTL);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
SIS_RXFILTCTL_ALLMULTI);
if (ifp->if_flags & IFF_BROADCAST)
filter |= SIS_RXFILTCTL_BROAD;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
filter |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
filter |= SIS_RXFILTCTL_ALLPHYS;
for (i = 0; i < n; i++)
hashes[i] = ~0;
} else {
for (i = 0; i < n; i++)
hashes[i] = 0;
i = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
hashes[h >> 4] |= 1 << (h & 0xf);
i++;
}
if_maddr_runlock(ifp);
if (i > n) {
filter |= SIS_RXFILTCTL_ALLMULTI;
for (i = 0; i < n; i++)
hashes[i] = ~0;
}
}
for (i = 0; i < n; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
static void
sis_reset(struct sis_softc *sc)
{
int i;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
break;
}
if (i == SIS_TIMEOUT)
device_printf(sc->sis_dev, "reset never completed\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NS_CLKRUN, 0);
} else {
/* Disable WOL functions. */
CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
}
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sis_probe(device_t dev)
{
const struct sis_type *t;
t = sis_devs;
while (t->sis_name != NULL) {
if ((pci_get_vendor(dev) == t->sis_vid) &&
(pci_get_device(dev) == t->sis_did)) {
device_set_desc(dev, t->sis_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sis_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
struct sis_softc *sc;
struct ifnet *ifp;
int error = 0, pmc, waittime = 0;
waittime = 0;
sc = device_get_softc(dev);
sc->sis_dev = dev;
mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
if (pci_get_device(dev) == SIS_DEVICEID_900)
sc->sis_type = SIS_TYPE_900;
if (pci_get_device(dev) == SIS_DEVICEID_7016)
sc->sis_type = SIS_TYPE_7016;
if (pci_get_vendor(dev) == NS_VENDORID)
sc->sis_type = SIS_TYPE_83815;
sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
if (error) {
device_printf(dev, "couldn't allocate resources\n");
goto fail;
}
/* Reset the adapter. */
sis_reset(sc);
if (sc->sis_type == SIS_TYPE_900 &&
(sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)) {
SIO_SET(SIS_CFG_RND_CNT);
SIO_SET(SIS_CFG_PERR_DETECT);
}
/*
* Get station address from the EEPROM.
*/
switch (pci_get_vendor(dev)) {
case NS_VENDORID:
sc->sis_srr = CSR_READ_4(sc, NS_SRR);
/* We can't update the device description, so spew */
if (sc->sis_srr == NS_SRR_15C)
device_printf(dev, "Silicon Revision: DP83815C\n");
else if (sc->sis_srr == NS_SRR_15D)
device_printf(dev, "Silicon Revision: DP83815D\n");
else if (sc->sis_srr == NS_SRR_16A)
device_printf(dev, "Silicon Revision: DP83816A\n");
else
device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
/*
* Reading the MAC address out of the EEPROM on
* the NatSemi chip takes a bit more work than
* you'd expect. The address spans 4 16-bit words,
* with the first word containing only a single bit.
* You have to shift everything over one bit to
* get it aligned properly. Also, the bits are
* stored backwards (the LSB is really the MSB,
* and so on) so you have to reverse them in order
* to get the MAC address into the form we want.
* Why? Who the hell knows.
*/
{
uint16_t tmp[4];
sis_read_eeprom(sc, (caddr_t)&tmp,
NS_EE_NODEADDR, 4, 0);
/* Shift everything over one bit. */
tmp[3] = tmp[3] >> 1;
tmp[3] |= tmp[2] << 15;
tmp[2] = tmp[2] >> 1;
tmp[2] |= tmp[1] << 15;
tmp[1] = tmp[1] >> 1;
tmp[1] |= tmp[0] << 15;
/* Now reverse all the bits. */
tmp[3] = sis_reverse(tmp[3]);
tmp[2] = sis_reverse(tmp[2]);
tmp[1] = sis_reverse(tmp[1]);
eaddr[0] = (tmp[1] >> 0) & 0xFF;
eaddr[1] = (tmp[1] >> 8) & 0xFF;
eaddr[2] = (tmp[2] >> 0) & 0xFF;
eaddr[3] = (tmp[2] >> 8) & 0xFF;
eaddr[4] = (tmp[3] >> 0) & 0xFF;
eaddr[5] = (tmp[3] >> 8) & 0xFF;
}
break;
case SIS_VENDORID:
default:
#if defined(__i386__) || defined(__amd64__)
/*
* If this is a SiS 630E chipset with an embedded
* SiS 900 controller, we have to read the MAC address
* from the APC CMOS RAM. Our method for doing this
* is very ugly since we have to reach out and grab
* ahold of hardware for which we cannot properly
* allocate resources. This code is only compiled on
* the i386 architecture since the SiS 630E chipset
* is for x86 motherboards only. Note that there are
* a lot of magic numbers in this hack. These are
* taken from SiS's Linux driver. I'd like to replace
* them with proper symbolic definitions, but that
* requires some datasheets that I don't have access
* to at the moment.
*/
if (sc->sis_rev == SIS_REV_630S ||
sc->sis_rev == SIS_REV_630E ||
sc->sis_rev == SIS_REV_630EA1)
sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
else if (sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_630ET)
sis_read_mac(sc, dev, (caddr_t)&eaddr);
else if (sc->sis_rev == SIS_REV_96x) {
/* Allow to read EEPROM from LAN. It is shared
* between a 1394 controller and the NIC and each
* time we access it, we need to set SIS_EECMD_REQ.
*/
SIO_SET(SIS_EECMD_REQ);
for (waittime = 0; waittime < SIS_TIMEOUT;
waittime++) {
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
DELAY(1);
}
/*
* Set SIS_EECTL_CLK to high, so a other master
* can operate on the i2c bus.
*/
SIO_SET(SIS_EECTL_CLK);
/* Refuse EEPROM access by LAN */
SIO_SET(SIS_EECMD_DONE);
} else
#endif
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
sis_add_sysctls(sc);
/* Allocate DMA'able memory. */
if ((error = sis_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sis_ioctl;
ifp->if_start = sis_start;
ifp->if_init = sis_init;
IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
if (sc->sis_type == SIS_TYPE_83815)
ifp->if_capabilities |= IFCAP_WOL;
else
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable = ifp->if_capabilities;
}
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, sis_intr, sc, &sc->sis_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sis_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sis_detach(device_t dev)
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
ifp = sc->sis_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
SIS_LOCK(sc);
sis_stop(sc);
SIS_UNLOCK(sc);
callout_drain(&sc->sis_stat_ch);
ether_ifdetach(ifp);
}
if (sc->sis_miibus)
device_delete_child(dev, sc->sis_miibus);
bus_generic_detach(dev);
if (sc->sis_intrhand)
bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
bus_release_resources(dev, sis_res_spec, sc->sis_res);
if (ifp)
if_free(ifp);
sis_dma_free(sc);
mtx_destroy(&sc->sis_mtx);
return (0);
}
struct sis_dmamap_arg {
bus_addr_t sis_busaddr;
};
static void
sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct sis_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct sis_dmamap_arg *)arg;
ctx->sis_busaddr = segs[0].ds_addr;
}
static int
sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
bus_addr_t *paddr, const char *msg)
{
struct sis_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
maxsize, 0, NULL, NULL, tag);
if (error != 0) {
device_printf(sc->sis_dev,
"could not create %s dma tag\n", msg);
return (ENOMEM);
}
/* Allocate DMA'able memory for ring. */
error = bus_dmamem_alloc(*tag, (void **)ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->sis_dev,
"could not allocate DMA'able memory for %s\n", msg);
return (ENOMEM);
}
/* Load the address of the ring. */
ctx.sis_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sis_dev,
"could not load DMA'able memory for %s\n", msg);
return (ENOMEM);
}
*paddr = ctx.sis_busaddr;
return (0);
}
static int
sis_dma_alloc(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int error, i;
/* Allocate the parent bus DMA tag appropriate for PCI. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
0, NULL, NULL, &sc->sis_parent_tag);
if (error != 0) {
device_printf(sc->sis_dev,
"could not allocate parent dma tag\n");
return (ENOMEM);
}
/* Create RX ring. */
error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
&sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
&sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
if (error)
return (error);
/* Create TX ring. */
error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
&sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
&sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
if (error)
return (error);
/* Create tag for RX mbufs. */
error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
if (error) {
device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
return (error);
}
/* Create tag for TX mbufs. */
error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
&sc->sis_tx_tag);
if (error) {
device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
return (error);
}
/* Create DMA maps for RX buffers. */
error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
if (error) {
device_printf(sc->sis_dev,
"can't create spare DMA map for RX\n");
return (error);
}
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
rxd->rx_m = NULL;
error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
if (error) {
device_printf(sc->sis_dev,
"can't create DMA map for RX\n");
return (error);
}
}
/* Create DMA maps for TX buffers. */
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
txd->tx_m = NULL;
error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
if (error) {
device_printf(sc->sis_dev,
"can't create DMA map for TX\n");
return (error);
}
}
return (0);
}
static void
sis_dma_free(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int i;
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
if (rxd->rx_dmamap)
bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
}
if (sc->sis_rx_sparemap)
bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
if (txd->tx_dmamap)
bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
}
if (sc->sis_rx_tag)
bus_dma_tag_destroy(sc->sis_rx_tag);
if (sc->sis_tx_tag)
bus_dma_tag_destroy(sc->sis_tx_tag);
/* Destroy RX ring. */
if (sc->sis_rx_paddr)
bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
if (sc->sis_rx_list)
bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
sc->sis_rx_list_map);
if (sc->sis_rx_list_tag)
bus_dma_tag_destroy(sc->sis_rx_list_tag);
/* Destroy TX ring. */
if (sc->sis_tx_paddr)
bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
if (sc->sis_tx_list)
bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
sc->sis_tx_list_map);
if (sc->sis_tx_list_tag)
bus_dma_tag_destroy(sc->sis_tx_list_tag);
/* Destroy the parent tag. */
if (sc->sis_parent_tag)
bus_dma_tag_destroy(sc->sis_parent_tag);
}
/*
* Initialize the TX and RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
sis_ring_init(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
bus_addr_t next;
int error, i;
bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
txd->tx_m = NULL;
if (i == SIS_TX_LIST_CNT - 1)
next = SIS_TX_RING_ADDR(sc, 0);
else
next = SIS_TX_RING_ADDR(sc, i + 1);
sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
}
sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sis_rx_cons = 0;
bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
rxd->rx_desc = &sc->sis_rx_list[i];
if (i == SIS_RX_LIST_CNT - 1)
next = SIS_RX_RING_ADDR(sc, 0);
else
next = SIS_RX_RING_ADDR(sc, i + 1);
rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
error = sis_newbuf(sc, rxd);
if (error)
return (error);
}
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = SIS_RXLEN;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(m, SIS_RX_BUF_ALIGN);
#endif
if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->sis_rx_sparemap;
sc->sis_rx_sparemap = map;
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
return (0);
}
static __inline void
sis_discard_rxbuf(struct sis_rxdesc *rxd)
{
rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
sis_fixup_rx(struct mbuf *m)
{
uint16_t *src, *dst;
int i;
src = mtod(m, uint16_t *);
dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
sis_rxeof(struct sis_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct sis_rxdesc *rxd;
struct sis_desc *cur_rx;
int prog, rx_cons, rx_npkts = 0, total_len;
uint32_t rxstat;
SIS_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rx_cons = sc->sis_rx_cons;
ifp = sc->sis_ifp;
for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->sis_rx_list[rx_cons];
rxstat = le32toh(cur_rx->sis_cmdsts);
if ((rxstat & SIS_CMDSTS_OWN) == 0)
break;
rxd = &sc->sis_rxdesc[rx_cons];
total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
ETHER_CRC_LEN))
rxstat &= ~SIS_RXSTAT_GIANT;
if (SIS_RXSTAT_ERROR(rxstat) != 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if (rxstat & SIS_RXSTAT_COLL)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
sis_discard_rxbuf(rxd);
continue;
}
/* Add a new receive buffer to the ring. */
m = rxd->rx_m;
if (sis_newbuf(sc, rxd) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
sis_discard_rxbuf(rxd);
continue;
}
/* No errors; receive the packet. */
m->m_pkthdr.len = m->m_len = total_len;
#ifndef __NO_STRICT_ALIGNMENT
/*
* On architectures without alignment problems we try to
* allocate a new buffer for the receive ring, and pass up
* the one where the packet is already, saving the expensive
* copy operation.
*/
sis_fixup_rx(m);
#endif
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
m->m_pkthdr.rcvif = ifp;
SIS_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SIS_LOCK(sc);
rx_npkts++;
}
if (prog > 0) {
sc->sis_rx_cons = rx_cons;
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
sis_txeof(struct sis_softc *sc)
{
struct ifnet *ifp;
struct sis_desc *cur_tx;
struct sis_txdesc *txd;
uint32_t cons, txstat;
SIS_LOCK_ASSERT(sc);
cons = sc->sis_tx_cons;
if (cons == sc->sis_tx_prod)
return;
ifp = sc->sis_ifp;
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
cur_tx = &sc->sis_tx_list[cons];
txstat = le32toh(cur_tx->sis_cmdsts);
if ((txstat & SIS_CMDSTS_OWN) != 0)
break;
txd = &sc->sis_txdesc[cons];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
(txstat & SIS_TXSTAT_COLLCNT) >> 16);
} else {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if (txstat & SIS_TXSTAT_EXCESSCOLLS)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
}
}
sc->sis_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->sis_tx_cons = cons;
if (sc->sis_tx_cnt == 0)
sc->sis_watchdog_timer = 0;
}
static void
sis_tick(void *xsc)
{
struct sis_softc *sc;
struct mii_data *mii;
sc = xsc;
SIS_LOCK_ASSERT(sc);
mii = device_get_softc(sc->sis_miibus);
mii_tick(mii);
sis_watchdog(sc);
if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
sis_miibus_statchg(sc->sis_dev);
callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
}
#ifdef DEVICE_POLLING
static poll_handler_t sis_poll;
static int
sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sis_softc *sc = ifp->if_softc;
int rx_npkts = 0;
SIS_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
SIS_UNLOCK(sc);
return (rx_npkts);
}
/*
* On the sis, reading the status register also clears it.
* So before returning to intr mode we must make sure that all
* possible pending sources of interrupts have been served.
* In practice this means run to completion the *eof routines,
* and then call the interrupt routine
*/
sc->rxcycles = count;
rx_npkts = sis_rxeof(sc);
sis_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sis_startl(ifp);
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
uint32_t status;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
}
}
SIS_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
sis_intr(void *arg)
{
struct sis_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = arg;
ifp = sc->sis_ifp;
SIS_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
SIS_UNLOCK(sc);
return;
}
#endif
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if ((status & SIS_INTRS) == 0) {
/* Not ours. */
SIS_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
for (;(status & SIS_INTRS) != 0;) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
if (status &
(SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
sis_txeof(sc);
if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
sis_rxeof(sc);
if (status & SIS_ISR_RX_OFLOW)
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
SIS_UNLOCK(sc);
return;
}
status = CSR_READ_4(sc, SIS_ISR);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Re-enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sis_startl(ifp);
}
SIS_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
sis_encap(struct sis_softc *sc, struct mbuf **m_head)
{
struct mbuf *m;
struct sis_txdesc *txd;
struct sis_desc *f;
bus_dma_segment_t segs[SIS_MAXTXSEGS];
bus_dmamap_t map;
int error, i, frag, nsegs, prod;
int padlen;
prod = sc->sis_tx_prod;
txd = &sc->sis_txdesc[prod];
if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
(*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
m = *m_head;
padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
*m_head, segs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
*m_head, segs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* Check for descriptor overruns. */
if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
frag = prod;
for (i = 0; i < nsegs; i++) {
f = &sc->sis_tx_list[prod];
if (i == 0)
f->sis_cmdsts = htole32(segs[i].ds_len |
SIS_CMDSTS_MORE);
else
f->sis_cmdsts = htole32(segs[i].ds_len |
SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
SIS_INC(prod, SIS_TX_LIST_CNT);
sc->sis_tx_cnt++;
}
/* Update producer index. */
sc->sis_tx_prod = prod;
/* Remove MORE flag on the last descriptor. */
prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
f = &sc->sis_tx_list[prod];
f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
/* Lastly transfer ownership of packet to the controller. */
f = &sc->sis_tx_list[frag];
f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
/* Swap the last and the first dmamaps. */
map = txd->tx_dmamap;
txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
sc->sis_txdesc[prod].tx_dmamap = map;
sc->sis_txdesc[prod].tx_m = *m_head;
return (0);
}
static void
sis_start(struct ifnet *ifp)
{
struct sis_softc *sc;
sc = ifp->if_softc;
SIS_LOCK(sc);
sis_startl(ifp);
SIS_UNLOCK(sc);
}
static void
sis_startl(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mbuf *m_head;
int queued;
sc = ifp->if_softc;
SIS_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
return;
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sis_encap(sc, &m_head) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (queued) {
/* Transmit */
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->sis_watchdog_timer = 5;
}
}
static void
sis_init(void *xsc)
{
struct sis_softc *sc = xsc;
SIS_LOCK(sc);
sis_initl(sc);
SIS_UNLOCK(sc);
}
static void
sis_initl(struct sis_softc *sc)
{
struct ifnet *ifp = sc->sis_ifp;
struct mii_data *mii;
uint8_t *eaddr;
SIS_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sis_stop(sc);
/*
* Reset the chip to a known state.
*/
sis_reset(sc);
#ifdef notyet
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
/*
* Configure 400usec of interrupt holdoff. This is based
* on emperical tests on a Soekris 4801.
*/
CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
}
#endif
mii = device_get_softc(sc->sis_miibus);
/* Set MAC address */
eaddr = IF_LLADDR(sc->sis_ifp);
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
} else {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
}
/* Init circular TX/RX lists. */
if (sis_ring_init(sc) != 0) {
device_printf(sc->sis_dev,
"initialization failed: no memory for rx buffers\n");
sis_stop(sc);
return;
}
if (sc->sis_type == SIS_TYPE_83815) {
if (sc->sis_manual_pad != 0)
sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
else
sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
}
/*
* Short Cable Receive Errors (MP21.E)
* also: Page 78 of the DP83815 data sheet (september 2002 version)
* recommends the following register settings "for optimum
* performance." for rev 15C. Set this also for 15D parts as
* they require it in practice.
*/
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
/* set val for c2 */
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
/* load/kill c2 */
CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
/* rais SD off, from 4 to c */
CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
sis_rxfilter(sc);
/* Turn the receive filter on */
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
* the PCI bus. When this bit is set, the Max DMA Burst Size
* for TX/RX DMA should be no larger than 16 double words.
*/
if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
} else {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
}
/* Accept Long Packets for VLAN support */
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
/*
* Assume 100Mbps link, actual MAC configuration is done
* after getting a valid link.
*/
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
#ifdef DEVICE_POLLING
/*
* ... only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_4(sc, SIS_IER, 0);
else
#endif
CSR_WRITE_4(sc, SIS_IER, 1);
/* Clear MAC disable. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
sc->sis_flags &= ~SIS_FLAG_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
}
/*
* Set media options.
*/
static int
sis_ifmedia_upd(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
SIS_LOCK(sc);
mii = device_get_softc(sc->sis_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
SIS_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
SIS_LOCK(sc);
mii = device_get_softc(sc->sis_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SIS_UNLOCK(sc);
}
static int
sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sis_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0, mask;
switch (command) {
case SIOCSIFFLAGS:
SIS_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sis_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
sis_rxfilter(sc);
else
sis_initl(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sis_stop(sc);
sc->sis_if_flags = ifp->if_flags;
SIS_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SIS_LOCK(sc);
sis_rxfilter(sc);
SIS_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sis_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
SIS_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(sis_poll, ifp);
if (error != 0) {
SIS_UNLOCK(sc);
break;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
SIS_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
sis_watchdog(struct sis_softc *sc)
{
SIS_LOCK_ASSERT(sc);
if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
return;
device_printf(sc->sis_dev, "watchdog timeout\n");
if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
sis_startl(sc->sis_ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
sis_stop(struct sis_softc *sc)
{
struct ifnet *ifp;
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int i;
SIS_LOCK_ASSERT(sc);
ifp = sc->sis_ifp;
sc->sis_watchdog_timer = 0;
callout_stop(&sc->sis_stat_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_4(sc, SIS_IER, 0);
CSR_WRITE_4(sc, SIS_IMR, 0);
CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
sc->sis_flags &= ~SIS_FLAG_LINK;
/*
* Free data in the RX lists.
*/
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
/*
* Free the TX list buffers.
*/
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
sis_shutdown(device_t dev)
{
return (sis_suspend(dev));
}
static int
sis_suspend(device_t dev)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
SIS_LOCK(sc);
sis_stop(sc);
sis_wol(sc);
SIS_UNLOCK(sc);
return (0);
}
static int
sis_resume(device_t dev)
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SIS_LOCK(sc);
ifp = sc->sis_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
}
SIS_UNLOCK(sc);
return (0);
}
static void
sis_wol(struct sis_softc *sc)
{
struct ifnet *ifp;
uint32_t val;
uint16_t pmstat;
int pmc;
ifp = sc->sis_ifp;
if ((ifp->if_capenable & IFCAP_WOL) == 0)
return;
if (sc->sis_type == SIS_TYPE_83815) {
/* Reset RXDP. */
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
/* Configure WOL events. */
CSR_READ_4(sc, NS_WCSR);
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
val |= NS_WCSR_WAKE_UCAST;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
val |= NS_WCSR_WAKE_MCAST;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= NS_WCSR_WAKE_MAGIC;
CSR_WRITE_4(sc, NS_WCSR, val);
/* Enable PME and clear PMESTS. */
val = CSR_READ_4(sc, NS_CLKRUN);
val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
CSR_WRITE_4(sc, NS_CLKRUN, val);
/* Enable silent RX mode. */
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
} else {
if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
return;
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= SIS_PWRMAN_WOL_MAGIC;
CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
/* Request PME. */
pmstat = pci_read_config(sc->sis_dev,
pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->sis_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
static void
sis_add_sysctls(struct sis_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
int unit;
ctx = device_get_sysctl_ctx(sc->sis_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
unit = device_get_unit(sc->sis_dev);
/*
* Unlike most other controllers, NS DP83815/DP83816 controllers
* seem to pad with 0xFF when it encounter short frames. According
* to RFC 1042 the pad bytes should be 0x00. Turning this tunable
* on will have driver pad manully but it's disabled by default
* because it will consume extra CPU cycles for short frames.
*/
sc->sis_manual_pad = 0;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
}
static device_method_t sis_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sis_probe),
DEVMETHOD(device_attach, sis_attach),
DEVMETHOD(device_detach, sis_detach),
DEVMETHOD(device_shutdown, sis_shutdown),
DEVMETHOD(device_suspend, sis_suspend),
DEVMETHOD(device_resume, sis_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, sis_miibus_readreg),
DEVMETHOD(miibus_writereg, sis_miibus_writereg),
DEVMETHOD(miibus_statchg, sis_miibus_statchg),
DEVMETHOD_END
};
static driver_t sis_driver = {
"sis",
sis_methods,
sizeof(struct sis_softc)
};
static devclass_t sis_devclass;
DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);