freebsd-nq/sys/fs/nfsclient/nfs_clvnops.c
Rick Macklem 9f669985b2 Modify the NFSv4.2 VOP_COPY_FILE_RANGE() client call to return after one
successful RPC.

Without this patch, the NFSv4.2 VOP_COPY_FILE_RANGE() client call would
loop until the copy "len" was completed.  The problem with doing this is
that it might take a considerable time to complete for a large "len".
By returning after a single successful Copy RPC that copied some of the
data, the application that did the copy_file_range(2) syscall will be
more responsive to signal delivery for large "len" copies.
2020-10-01 00:47:35 +00:00

4292 lines
112 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from nfs_vnops.c 8.16 (Berkeley) 5/27/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* vnode op calls for Sun NFS version 2, 3 and 4
*/
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/extattr.h>
#include <sys/filio.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/signalvar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <fs/nfs/nfsport.h>
#include <fs/nfsclient/nfsnode.h>
#include <fs/nfsclient/nfsmount.h>
#include <fs/nfsclient/nfs.h>
#include <fs/nfsclient/nfs_kdtrace.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <nfs/nfs_lock.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_nfsclient_accesscache_flush_probe_func_t
dtrace_nfscl_accesscache_flush_done_probe;
uint32_t nfscl_accesscache_flush_done_id;
dtrace_nfsclient_accesscache_get_probe_func_t
dtrace_nfscl_accesscache_get_hit_probe,
dtrace_nfscl_accesscache_get_miss_probe;
uint32_t nfscl_accesscache_get_hit_id;
uint32_t nfscl_accesscache_get_miss_id;
dtrace_nfsclient_accesscache_load_probe_func_t
dtrace_nfscl_accesscache_load_done_probe;
uint32_t nfscl_accesscache_load_done_id;
#endif /* !KDTRACE_HOOKS */
/* Defs */
#define TRUE 1
#define FALSE 0
extern struct nfsstatsv1 nfsstatsv1;
extern int nfsrv_useacl;
extern int nfscl_debuglevel;
MALLOC_DECLARE(M_NEWNFSREQ);
static vop_read_t nfsfifo_read;
static vop_write_t nfsfifo_write;
static vop_close_t nfsfifo_close;
static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
struct thread *);
static vop_lookup_t nfs_lookup;
static vop_create_t nfs_create;
static vop_mknod_t nfs_mknod;
static vop_open_t nfs_open;
static vop_pathconf_t nfs_pathconf;
static vop_close_t nfs_close;
static vop_access_t nfs_access;
static vop_getattr_t nfs_getattr;
static vop_setattr_t nfs_setattr;
static vop_read_t nfs_read;
static vop_fsync_t nfs_fsync;
static vop_remove_t nfs_remove;
static vop_link_t nfs_link;
static vop_rename_t nfs_rename;
static vop_mkdir_t nfs_mkdir;
static vop_rmdir_t nfs_rmdir;
static vop_symlink_t nfs_symlink;
static vop_readdir_t nfs_readdir;
static vop_strategy_t nfs_strategy;
static int nfs_lookitup(struct vnode *, char *, int,
struct ucred *, struct thread *, struct nfsnode **);
static int nfs_sillyrename(struct vnode *, struct vnode *,
struct componentname *);
static vop_access_t nfsspec_access;
static vop_readlink_t nfs_readlink;
static vop_print_t nfs_print;
static vop_advlock_t nfs_advlock;
static vop_advlockasync_t nfs_advlockasync;
static vop_getacl_t nfs_getacl;
static vop_setacl_t nfs_setacl;
static vop_advise_t nfs_advise;
static vop_allocate_t nfs_allocate;
static vop_copy_file_range_t nfs_copy_file_range;
static vop_ioctl_t nfs_ioctl;
static vop_getextattr_t nfs_getextattr;
static vop_setextattr_t nfs_setextattr;
static vop_listextattr_t nfs_listextattr;
static vop_deleteextattr_t nfs_deleteextattr;
static vop_lock1_t nfs_lock;
/*
* Global vfs data structures for nfs
*/
static struct vop_vector newnfs_vnodeops_nosig = {
.vop_default = &default_vnodeops,
.vop_access = nfs_access,
.vop_advlock = nfs_advlock,
.vop_advlockasync = nfs_advlockasync,
.vop_close = nfs_close,
.vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_getpages = ncl_getpages,
.vop_putpages = ncl_putpages,
.vop_inactive = ncl_inactive,
.vop_link = nfs_link,
.vop_lock1 = nfs_lock,
.vop_lookup = nfs_lookup,
.vop_mkdir = nfs_mkdir,
.vop_mknod = nfs_mknod,
.vop_open = nfs_open,
.vop_pathconf = nfs_pathconf,
.vop_print = nfs_print,
.vop_read = nfs_read,
.vop_readdir = nfs_readdir,
.vop_readlink = nfs_readlink,
.vop_reclaim = ncl_reclaim,
.vop_remove = nfs_remove,
.vop_rename = nfs_rename,
.vop_rmdir = nfs_rmdir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symlink = nfs_symlink,
.vop_write = ncl_write,
.vop_getacl = nfs_getacl,
.vop_setacl = nfs_setacl,
.vop_advise = nfs_advise,
.vop_allocate = nfs_allocate,
.vop_copy_file_range = nfs_copy_file_range,
.vop_ioctl = nfs_ioctl,
.vop_getextattr = nfs_getextattr,
.vop_setextattr = nfs_setextattr,
.vop_listextattr = nfs_listextattr,
.vop_deleteextattr = nfs_deleteextattr,
};
VFS_VOP_VECTOR_REGISTER(newnfs_vnodeops_nosig);
static int
nfs_vnodeops_bypass(struct vop_generic_args *a)
{
return (vop_sigdefer(&newnfs_vnodeops_nosig, a));
}
struct vop_vector newnfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_bypass = nfs_vnodeops_bypass,
};
VFS_VOP_VECTOR_REGISTER(newnfs_vnodeops);
static struct vop_vector newnfs_fifoops_nosig = {
.vop_default = &fifo_specops,
.vop_access = nfsspec_access,
.vop_close = nfsfifo_close,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_inactive = ncl_inactive,
.vop_pathconf = nfs_pathconf,
.vop_print = nfs_print,
.vop_read = nfsfifo_read,
.vop_reclaim = ncl_reclaim,
.vop_setattr = nfs_setattr,
.vop_write = nfsfifo_write,
};
VFS_VOP_VECTOR_REGISTER(newnfs_fifoops_nosig);
static int
nfs_fifoops_bypass(struct vop_generic_args *a)
{
return (vop_sigdefer(&newnfs_fifoops_nosig, a));
}
struct vop_vector newnfs_fifoops = {
.vop_default = &default_vnodeops,
.vop_bypass = nfs_fifoops_bypass,
};
VFS_VOP_VECTOR_REGISTER(newnfs_fifoops);
static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
struct componentname *cnp, struct vattr *vap);
static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td);
static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
struct componentname *scnp, struct sillyrename *sp);
/*
* Global variables
*/
SYSCTL_DECL(_vfs_nfs);
static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
&nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
static int nfs_prime_access_cache = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
&nfs_prime_access_cache, 0,
"Prime NFS ACCESS cache when fetching attributes");
static int newnfs_commit_on_close = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
&newnfs_commit_on_close, 0, "write+commit on close, else only write");
static int nfs_clean_pages_on_close = 1;
SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
&nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
int newnfs_directio_enable = 0;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
&newnfs_directio_enable, 0, "Enable NFS directio");
int nfs_keep_dirty_on_error;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
&nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
/*
* This sysctl allows other processes to mmap a file that has been opened
* O_DIRECT by a process. In general, having processes mmap the file while
* Direct IO is in progress can lead to Data Inconsistencies. But, we allow
* this by default to prevent DoS attacks - to prevent a malicious user from
* opening up files O_DIRECT preventing other users from mmap'ing these
* files. "Protected" environments where stricter consistency guarantees are
* required can disable this knob. The process that opened the file O_DIRECT
* cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
* meaningful.
*/
int newnfs_directio_allow_mmap = 1;
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
&newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
#define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \
| NFSACCESS_EXTEND | NFSACCESS_EXECUTE \
| NFSACCESS_DELETE | NFSACCESS_LOOKUP)
/*
* SMP Locking Note :
* The list of locks after the description of the lock is the ordering
* of other locks acquired with the lock held.
* np->n_mtx : Protects the fields in the nfsnode.
VM Object Lock
VI_MTX (acquired indirectly)
* nmp->nm_mtx : Protects the fields in the nfsmount.
rep->r_mtx
* ncl_iod_mutex : Global lock, protects shared nfsiod state.
* nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
nmp->nm_mtx
rep->r_mtx
* rep->r_mtx : Protects the fields in an nfsreq.
*/
static int
nfs_lock(struct vop_lock1_args *ap)
{
struct vnode *vp;
struct nfsnode *np;
u_quad_t nsize;
int error, lktype;
bool onfault;
vp = ap->a_vp;
lktype = ap->a_flags & LK_TYPE_MASK;
error = VOP_LOCK1_APV(&default_vnodeops, ap);
if (error != 0 || vp->v_op != &newnfs_vnodeops)
return (error);
np = VTONFS(vp);
if (np == NULL)
return (0);
NFSLOCKNODE(np);
if ((np->n_flag & NVNSETSZSKIP) == 0 || (lktype != LK_SHARED &&
lktype != LK_EXCLUSIVE && lktype != LK_UPGRADE &&
lktype != LK_TRYUPGRADE)) {
NFSUNLOCKNODE(np);
return (0);
}
onfault = (ap->a_flags & LK_EATTR_MASK) == LK_NOWAIT &&
(ap->a_flags & LK_INIT_MASK) == LK_CANRECURSE &&
(lktype == LK_SHARED || lktype == LK_EXCLUSIVE);
if (onfault && vp->v_vnlock->lk_recurse == 0) {
/*
* Force retry in vm_fault(), to make the lock request
* sleepable, which allows us to piggy-back the
* sleepable call to vnode_pager_setsize().
*/
NFSUNLOCKNODE(np);
VOP_UNLOCK(vp);
return (EBUSY);
}
if ((ap->a_flags & LK_NOWAIT) != 0 ||
(lktype == LK_SHARED && vp->v_vnlock->lk_recurse > 0)) {
NFSUNLOCKNODE(np);
return (0);
}
if (lktype == LK_SHARED) {
NFSUNLOCKNODE(np);
VOP_UNLOCK(vp);
ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
ap->a_flags |= LK_EXCLUSIVE;
error = VOP_LOCK1_APV(&default_vnodeops, ap);
if (error != 0 || vp->v_op != &newnfs_vnodeops)
return (error);
if (vp->v_data == NULL)
goto downgrade;
MPASS(vp->v_data == np);
NFSLOCKNODE(np);
if ((np->n_flag & NVNSETSZSKIP) == 0) {
NFSUNLOCKNODE(np);
goto downgrade;
}
}
np->n_flag &= ~NVNSETSZSKIP;
nsize = np->n_size;
NFSUNLOCKNODE(np);
vnode_pager_setsize(vp, nsize);
downgrade:
if (lktype == LK_SHARED) {
ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
ap->a_flags |= LK_DOWNGRADE;
(void)VOP_LOCK1_APV(&default_vnodeops, ap);
}
return (0);
}
static int
nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
struct ucred *cred, u_int32_t *retmode)
{
int error = 0, attrflag, i, lrupos;
u_int32_t rmode;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
&rmode, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
lrupos = 0;
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (np->n_accesscache[i].uid == cred->cr_uid) {
np->n_accesscache[i].mode = rmode;
np->n_accesscache[i].stamp = time_second;
break;
}
if (i > 0 && np->n_accesscache[i].stamp <
np->n_accesscache[lrupos].stamp)
lrupos = i;
}
if (i == NFS_ACCESSCACHESIZE) {
np->n_accesscache[lrupos].uid = cred->cr_uid;
np->n_accesscache[lrupos].mode = rmode;
np->n_accesscache[lrupos].stamp = time_second;
}
NFSUNLOCKNODE(np);
if (retmode != NULL)
*retmode = rmode;
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
#ifdef KDTRACE_HOOKS
if (error != 0)
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
error);
#endif
return (error);
}
/*
* nfs access vnode op.
* For nfs version 2, just return ok. File accesses may fail later.
* For nfs version 3, use the access rpc to check accessibility. If file modes
* are changed on the server, accesses might still fail later.
*/
static int
nfs_access(struct vop_access_args *ap)
{
struct vnode *vp = ap->a_vp;
int error = 0, i, gotahit;
u_int32_t mode, wmode, rmode;
int v34 = NFS_ISV34(vp);
struct nfsnode *np = VTONFS(vp);
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
/*
* For nfs v3 or v4, check to see if we have done this recently, and if
* so return our cached result instead of making an ACCESS call.
* If not, do an access rpc, otherwise you are stuck emulating
* ufs_access() locally using the vattr. This may not be correct,
* since the server may apply other access criteria such as
* client uid-->server uid mapping that we do not know about.
*/
if (v34) {
if (ap->a_accmode & VREAD)
mode = NFSACCESS_READ;
else
mode = 0;
if (vp->v_type != VDIR) {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_EXECUTE;
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
} else {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_LOOKUP;
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
if (ap->a_accmode & VDELETE_CHILD)
mode |= NFSACCESS_MODIFY;
}
/* XXX safety belt, only make blanket request if caching */
if (nfsaccess_cache_timeout > 0) {
wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
NFSACCESS_DELETE | NFSACCESS_LOOKUP;
} else {
wmode = mode;
}
/*
* Does our cached result allow us to give a definite yes to
* this request?
*/
gotahit = 0;
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
if (time_second < (np->n_accesscache[i].stamp
+ nfsaccess_cache_timeout) &&
(np->n_accesscache[i].mode & mode) == mode) {
NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
gotahit = 1;
}
break;
}
}
NFSUNLOCKNODE(np);
#ifdef KDTRACE_HOOKS
if (gotahit != 0)
KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
ap->a_cred->cr_uid, mode);
else
KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
ap->a_cred->cr_uid, mode);
#endif
if (gotahit == 0) {
/*
* Either a no, or a don't know. Go to the wire.
*/
NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
error = nfs34_access_otw(vp, wmode, ap->a_td,
ap->a_cred, &rmode);
if (!error &&
(rmode & mode) != mode)
error = EACCES;
}
return (error);
} else {
if ((error = nfsspec_access(ap)) != 0) {
return (error);
}
/*
* Attempt to prevent a mapped root from accessing a file
* which it shouldn't. We try to read a byte from the file
* if the user is root and the file is not zero length.
* After calling nfsspec_access, we should have the correct
* file size cached.
*/
NFSLOCKNODE(np);
if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
&& VTONFS(vp)->n_size > 0) {
struct iovec aiov;
struct uio auio;
char buf[1];
NFSUNLOCKNODE(np);
aiov.iov_base = buf;
aiov.iov_len = 1;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = 0;
auio.uio_resid = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = ap->a_td;
if (vp->v_type == VREG)
error = ncl_readrpc(vp, &auio, ap->a_cred);
else if (vp->v_type == VDIR) {
char* bp;
bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
aiov.iov_base = bp;
aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
error = ncl_readdirrpc(vp, &auio, ap->a_cred,
ap->a_td);
free(bp, M_TEMP);
} else if (vp->v_type == VLNK)
error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
else
error = EACCES;
} else
NFSUNLOCKNODE(np);
return (error);
}
}
/*
* nfs open vnode op
* Check to see if the type is ok
* and that deletion is not in progress.
* For paged in text files, you will need to flush the page cache
* if consistency is lost.
*/
/* ARGSUSED */
static int
nfs_open(struct vop_open_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
int error;
int fmode = ap->a_mode;
struct ucred *cred;
vm_object_t obj;
if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
return (EOPNOTSUPP);
/*
* For NFSv4, we need to do the Open Op before cache validation,
* so that we conform to RFC3530 Sec. 9.3.1.
*/
if (NFS_ISV4(vp)) {
error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
if (error) {
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
return (error);
}
}
/*
* Now, if this Open will be doing reading, re-validate/flush the
* cache, so that Close/Open coherency is maintained.
*/
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
NFSUNLOCKNODE(np);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
} else {
NFSUNLOCKNODE(np);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
}
}
/*
* If the object has >= 1 O_DIRECT active opens, we disable caching.
*/
if (newnfs_directio_enable && (fmode & O_DIRECT) &&
(vp->v_type == VREG)) {
if (np->n_directio_opens == 0) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
NFSLOCKNODE(np);
np->n_flag |= NNONCACHE;
}
np->n_directio_opens++;
}
/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
np->n_flag |= NWRITEOPENED;
/*
* If this is an open for writing, capture a reference to the
* credentials, so they can be used by ncl_putpages(). Using
* these write credentials is preferable to the credentials of
* whatever thread happens to be doing the VOP_PUTPAGES() since
* the write RPCs are less likely to fail with EACCES.
*/
if ((fmode & FWRITE) != 0) {
cred = np->n_writecred;
np->n_writecred = crhold(ap->a_cred);
} else
cred = NULL;
NFSUNLOCKNODE(np);
if (cred != NULL)
crfree(cred);
vnode_create_vobject(vp, vattr.va_size, ap->a_td);
/*
* If the text file has been mmap'd, flush any dirty pages to the
* buffer cache and then...
* Make sure all writes are pushed to the NFS server. If this is not
* done, the modify time of the file can change while the text
* file is being executed. This will cause the process that is
* executing the text file to be terminated.
*/
if (vp->v_writecount <= -1) {
if ((obj = vp->v_object) != NULL &&
vm_object_mightbedirty(obj)) {
VM_OBJECT_WLOCK(obj);
vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
VM_OBJECT_WUNLOCK(obj);
}
/* Now, flush the buffer cache. */
ncl_flush(vp, MNT_WAIT, curthread, 0, 0);
/* And, finally, make sure that n_mtime is up to date. */
np = VTONFS(vp);
NFSLOCKNODE(np);
np->n_mtime = np->n_vattr.na_mtime;
NFSUNLOCKNODE(np);
}
return (0);
}
/*
* nfs close vnode op
* What an NFS client should do upon close after writing is a debatable issue.
* Most NFS clients push delayed writes to the server upon close, basically for
* two reasons:
* 1 - So that any write errors may be reported back to the client process
* doing the close system call. By far the two most likely errors are
* NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
* 2 - To put a worst case upper bound on cache inconsistency between
* multiple clients for the file.
* There is also a consistency problem for Version 2 of the protocol w.r.t.
* not being able to tell if other clients are writing a file concurrently,
* since there is no way of knowing if the changed modify time in the reply
* is only due to the write for this client.
* (NFS Version 3 provides weak cache consistency data in the reply that
* should be sufficient to detect and handle this case.)
*
* The current code does the following:
* for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
* for NFS Version 3 - flush dirty buffers to the server but don't invalidate
* or commit them (this satisfies 1 and 2 except for the
* case where the server crashes after this close but
* before the commit RPC, which is felt to be "good
* enough". Changing the last argument to ncl_flush() to
* a 1 would force a commit operation, if it is felt a
* commit is necessary now.
* for NFS Version 4 - flush the dirty buffers and commit them, if
* nfscl_mustflush() says this is necessary.
* It is necessary if there is no write delegation held,
* in order to satisfy open/close coherency.
* If the file isn't cached on local stable storage,
* it may be necessary in order to detect "out of space"
* errors from the server, if the write delegation
* issued by the server doesn't allow the file to grow.
*/
/* ARGSUSED */
static int
nfs_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
struct ucred *cred;
int error = 0, ret, localcred = 0;
int fmode = ap->a_fflag;
if (NFSCL_FORCEDISM(vp->v_mount))
return (0);
/*
* During shutdown, a_cred isn't valid, so just use root.
*/
if (ap->a_cred == NOCRED) {
cred = newnfs_getcred();
localcred = 1;
} else {
cred = ap->a_cred;
}
if (vp->v_type == VREG) {
/*
* Examine and clean dirty pages, regardless of NMODIFIED.
* This closes a major hole in close-to-open consistency.
* We want to push out all dirty pages (and buffers) on
* close, regardless of whether they were dirtied by
* mmap'ed writes or via write().
*/
if (nfs_clean_pages_on_close && vp->v_object) {
VM_OBJECT_WLOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_WUNLOCK(vp->v_object);
}
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
NFSUNLOCKNODE(np);
if (NFS_ISV3(vp)) {
/*
* Under NFSv3 we have dirty buffers to dispose of. We
* must flush them to the NFS server. We have the option
* of waiting all the way through the commit rpc or just
* waiting for the initial write. The default is to only
* wait through the initial write so the data is in the
* server's cache, which is roughly similar to the state
* a standard disk subsystem leaves the file in on close().
*
* We cannot clear the NMODIFIED bit in np->n_flag due to
* potential races with other processes, and certainly
* cannot clear it if we don't commit.
* These races occur when there is no longer the old
* traditional vnode locking implemented for Vnode Ops.
*/
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0);
/* np->n_flag &= ~NMODIFIED; */
} else if (NFS_ISV4(vp)) {
if (nfscl_mustflush(vp) != 0) {
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, ap->a_td,
cm, 0);
/*
* as above w.r.t races when clearing
* NMODIFIED.
* np->n_flag &= ~NMODIFIED;
*/
}
} else {
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
}
NFSLOCKNODE(np);
}
/*
* Invalidate the attribute cache in all cases.
* An open is going to fetch fresh attrs any way, other procs
* on this node that have file open will be forced to do an
* otw attr fetch, but this is safe.
* --> A user found that their RPC count dropped by 20% when
* this was commented out and I can't see any requirement
* for it, so I've disabled it when negative lookups are
* enabled. (What does this have to do with negative lookup
* caching? Well nothing, except it was reported by the
* same user that needed negative lookup caching and I wanted
* there to be a way to disable it to see if it
* is the cause of some caching/coherency issue that might
* crop up.)
*/
if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
}
if (np->n_flag & NWRITEERR) {
np->n_flag &= ~NWRITEERR;
error = np->n_error;
}
NFSUNLOCKNODE(np);
}
if (NFS_ISV4(vp)) {
/*
* Get attributes so "change" is up to date.
*/
if (error == 0 && nfscl_mustflush(vp) != 0 &&
vp->v_type == VREG &&
(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
NULL);
if (!ret) {
np->n_change = nfsva.na_filerev;
(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
NULL, 0, 0);
}
}
/*
* and do the close.
*/
ret = nfsrpc_close(vp, 0, ap->a_td);
if (!error && ret)
error = ret;
if (error)
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
}
if (newnfs_directio_enable)
KASSERT((np->n_directio_asyncwr == 0),
("nfs_close: dirty unflushed (%d) directio buffers\n",
np->n_directio_asyncwr));
if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
NFSLOCKNODE(np);
KASSERT((np->n_directio_opens > 0),
("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
np->n_directio_opens--;
if (np->n_directio_opens == 0)
np->n_flag &= ~NNONCACHE;
NFSUNLOCKNODE(np);
}
if (localcred)
NFSFREECRED(cred);
return (error);
}
/*
* nfs getattr call from vfs.
*/
static int
nfs_getattr(struct vop_getattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct thread *td = curthread; /* XXX */
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct nfsvattr nfsva;
struct vattr *vap = ap->a_vap;
struct vattr vattr;
/*
* Update local times for special files.
*/
NFSLOCKNODE(np);
if (np->n_flag & (NACC | NUPD))
np->n_flag |= NCHG;
NFSUNLOCKNODE(np);
/*
* First look in the cache.
*/
if (ncl_getattrcache(vp, &vattr) == 0) {
vap->va_type = vattr.va_type;
vap->va_mode = vattr.va_mode;
vap->va_nlink = vattr.va_nlink;
vap->va_uid = vattr.va_uid;
vap->va_gid = vattr.va_gid;
vap->va_fsid = vattr.va_fsid;
vap->va_fileid = vattr.va_fileid;
vap->va_size = vattr.va_size;
vap->va_blocksize = vattr.va_blocksize;
vap->va_atime = vattr.va_atime;
vap->va_mtime = vattr.va_mtime;
vap->va_ctime = vattr.va_ctime;
vap->va_gen = vattr.va_gen;
vap->va_flags = vattr.va_flags;
vap->va_rdev = vattr.va_rdev;
vap->va_bytes = vattr.va_bytes;
vap->va_filerev = vattr.va_filerev;
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
return (0);
}
if (NFS_ISV34(vp) && nfs_prime_access_cache &&
nfsaccess_cache_timeout > 0) {
NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
if (ncl_getattrcache(vp, ap->a_vap) == 0) {
nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
return (0);
}
}
error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
if (!error)
error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
if (!error) {
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* nfs setattr call.
*/
static int
nfs_setattr(struct vop_setattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct thread *td = curthread; /* XXX */
struct vattr *vap = ap->a_vap;
int error = 0;
u_quad_t tsize;
#ifndef nolint
tsize = (u_quad_t)0;
#endif
/*
* Setting of flags and marking of atimes are not supported.
*/
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
/*
* Disallow write attempts if the filesystem is mounted read-only.
*/
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_mtime.tv_sec == VNOVAL &&
vap->va_atime.tv_sec == VNOVAL &&
vap->va_mode == (mode_t)VNOVAL &&
vap->va_uid == (uid_t)VNOVAL &&
vap->va_gid == (gid_t)VNOVAL)
return (0);
vap->va_size = VNOVAL;
break;
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
/*
* We run vnode_pager_setsize() early (why?),
* we must set np->n_size now to avoid vinvalbuf
* V_SAVE races that might setsize a lower
* value.
*/
NFSLOCKNODE(np);
tsize = np->n_size;
NFSUNLOCKNODE(np);
error = ncl_meta_setsize(vp, td, vap->va_size);
NFSLOCKNODE(np);
if (np->n_flag & NMODIFIED) {
tsize = np->n_size;
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, vap->va_size == 0 ?
0 : V_SAVE, td, 1);
if (error != 0) {
vnode_pager_setsize(vp, tsize);
return (error);
}
/*
* Call nfscl_delegmodtime() to set the modify time
* locally, as required.
*/
nfscl_delegmodtime(vp);
} else
NFSUNLOCKNODE(np);
/*
* np->n_size has already been set to vap->va_size
* in ncl_meta_setsize(). We must set it again since
* nfs_loadattrcache() could be called through
* ncl_meta_setsize() and could modify np->n_size.
*/
NFSLOCKNODE(np);
np->n_vattr.na_size = np->n_size = vap->va_size;
NFSUNLOCKNODE(np);
}
} else {
NFSLOCKNODE(np);
if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
(np->n_flag & NMODIFIED) && vp->v_type == VREG) {
NFSUNLOCKNODE(np);
error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
if (error == EINTR || error == EIO)
return (error);
} else
NFSUNLOCKNODE(np);
}
error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
if (error && vap->va_size != VNOVAL) {
NFSLOCKNODE(np);
np->n_size = np->n_vattr.na_size = tsize;
vnode_pager_setsize(vp, tsize);
NFSUNLOCKNODE(np);
}
return (error);
}
/*
* Do an nfs setattr rpc.
*/
static int
nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
struct thread *td)
{
struct nfsnode *np = VTONFS(vp);
int error, ret, attrflag, i;
struct nfsvattr nfsva;
if (NFS_ISV34(vp)) {
NFSLOCKNODE(np);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
np->n_accesscache[i].stamp = 0;
np->n_flag |= NDELEGMOD;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
}
error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
return (error);
}
/*
* nfs lookup call, one step at a time...
* First look in cache
* If not found, unlock the directory nfsnode and do the rpc
*/
static int
nfs_lookup(struct vop_lookup_args *ap)
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
struct vnode **vpp = ap->a_vpp;
struct mount *mp = dvp->v_mount;
int flags = cnp->cn_flags;
struct vnode *newvp;
struct nfsmount *nmp;
struct nfsnode *np, *newnp;
int error = 0, attrflag, dattrflag, ltype, ncticks;
struct thread *td = cnp->cn_thread;
struct nfsfh *nfhp;
struct nfsvattr dnfsva, nfsva;
struct vattr vattr;
struct timespec nctime;
*vpp = NULLVP;
if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
if (dvp->v_type != VDIR)
return (ENOTDIR);
nmp = VFSTONFS(mp);
np = VTONFS(dvp);
/* For NFSv4, wait until any remove is done. */
NFSLOCKNODE(np);
while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
np->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
}
NFSUNLOCKNODE(np);
error = vn_dir_check_exec(dvp, cnp);
if (error != 0)
return (error);
error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
if (error > 0 && error != ENOENT)
return (error);
if (error == -1) {
/*
* Lookups of "." are special and always return the
* current directory. cache_lookup() already handles
* associated locking bookkeeping, etc.
*/
if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
/* XXX: Is this really correct? */
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
/*
* We only accept a positive hit in the cache if the
* change time of the file matches our cached copy.
* Otherwise, we discard the cache entry and fallback
* to doing a lookup RPC. We also only trust cache
* entries for less than nm_nametimeo seconds.
*
* To better handle stale file handles and attributes,
* clear the attribute cache of this node if it is a
* leaf component, part of an open() call, and not
* locally modified before fetching the attributes.
* This should allow stale file handles to be detected
* here where we can fall back to a LOOKUP RPC to
* recover rather than having nfs_open() detect the
* stale file handle and failing open(2) with ESTALE.
*/
newvp = *vpp;
newnp = VTONFS(newvp);
if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
(flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(newnp->n_flag & NMODIFIED)) {
NFSLOCKNODE(newnp);
newnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
NFSUNLOCKNODE(newnp);
}
if (nfscl_nodeleg(newvp, 0) == 0 ||
((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_ctime, &nctime, ==))) {
NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
cache_purge(newvp);
if (dvp != newvp)
vput(newvp);
else
vrele(newvp);
*vpp = NULLVP;
} else if (error == ENOENT) {
if (VN_IS_DOOMED(dvp))
return (ENOENT);
/*
* We only accept a negative hit in the cache if the
* modification time of the parent directory matches
* the cached copy in the name cache entry.
* Otherwise, we discard all of the negative cache
* entries for this directory. We also only trust
* negative cache entries for up to nm_negnametimeo
* seconds.
*/
if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_mtime, &nctime, ==)) {
NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
return (ENOENT);
}
cache_purge_negative(dvp);
}
newvp = NULLVP;
NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (error) {
if (newvp != NULLVP) {
vput(newvp);
*vpp = NULLVP;
}
if (error != ENOENT) {
if (NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0,
(gid_t)0);
return (error);
}
/* The requested file was not found. */
if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
(flags & ISLASTCN)) {
/*
* XXX: UFS does a full VOP_ACCESS(dvp,
* VWRITE) here instead of just checking
* MNT_RDONLY.
*/
if (mp->mnt_flag & MNT_RDONLY)
return (EROFS);
cnp->cn_flags |= SAVENAME;
return (EJUSTRETURN);
}
if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
/*
* Cache the modification time of the parent
* directory from the post-op attributes in
* the name cache entry. The negative cache
* entry will be ignored once the directory
* has changed. Don't bother adding the entry
* if the directory has already changed.
*/
NFSLOCKNODE(np);
if (timespeccmp(&np->n_vattr.na_mtime,
&dnfsva.na_mtime, ==)) {
NFSUNLOCKNODE(np);
cache_enter_time(dvp, NULL, cnp,
&dnfsva.na_mtime, NULL);
} else
NFSUNLOCKNODE(np);
}
return (ENOENT);
}
/*
* Handle RENAME case...
*/
if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
return (EISDIR);
}
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
LK_EXCLUSIVE);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
*vpp = newvp;
cnp->cn_flags |= SAVENAME;
return (0);
}
if (flags & ISDOTDOT) {
ltype = NFSVOPISLOCKED(dvp);
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
NFSVOPUNLOCK(dvp);
error = vfs_busy(mp, 0);
NFSVOPLOCK(dvp, ltype | LK_RETRY);
vfs_rel(mp);
if (error == 0 && VN_IS_DOOMED(dvp)) {
vfs_unbusy(mp);
error = ENOENT;
}
if (error != 0)
return (error);
}
NFSVOPUNLOCK(dvp);
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
cnp->cn_lkflags);
if (error == 0)
newvp = NFSTOV(np);
vfs_unbusy(mp);
if (newvp != dvp)
NFSVOPLOCK(dvp, ltype | LK_RETRY);
if (VN_IS_DOOMED(dvp)) {
if (error == 0) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
error = ENOENT;
}
if (error != 0)
return (error);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else {
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
cnp->cn_lkflags);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(np->n_flag & NMODIFIED)) {
/*
* Flush the attribute cache when opening a
* leaf node to ensure that fresh attributes
* are fetched in nfs_open() since we did not
* fetch attributes from the LOOKUP reply.
*/
NFSLOCKNODE(np);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
NFSUNLOCKNODE(np);
}
}
if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
if ((cnp->cn_flags & MAKEENTRY) &&
(cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
*vpp = newvp;
return (0);
}
/*
* nfs read call.
* Just call ncl_bioread() to do the work.
*/
static int
nfs_read(struct vop_read_args *ap)
{
struct vnode *vp = ap->a_vp;
switch (vp->v_type) {
case VREG:
return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
case VDIR:
return (EISDIR);
default:
return (EOPNOTSUPP);
}
}
/*
* nfs readlink call
*/
static int
nfs_readlink(struct vop_readlink_args *ap)
{
struct vnode *vp = ap->a_vp;
if (vp->v_type != VLNK)
return (EINVAL);
return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
}
/*
* Do a readlink rpc.
* Called by ncl_doio() from below the buffer cache.
*/
int
ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
&attrflag, NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs read rpc call
* Ditto above
*/
int
ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
struct nfsmount *nmp;
nmp = VFSTONFS(vp->v_mount);
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp))
error = nfscl_doiods(vp, uiop, NULL, NULL,
NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td);
NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
if (error != 0)
error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
&attrflag, NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs write call
*/
int
ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
int *iomode, int *must_commit, int called_from_strategy)
{
struct nfsvattr nfsva;
int error, attrflag, ret;
struct nfsmount *nmp;
nmp = VFSTONFS(vp->v_mount);
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp))
error = nfscl_doiods(vp, uiop, iomode, must_commit,
NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td);
NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
if (error != 0)
error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
uiop->uio_td, &nfsva, &attrflag, NULL,
called_from_strategy);
if (attrflag) {
if (VTONFS(vp)->n_flag & ND_NFSV4)
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1);
else
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (ret && !error)
error = ret;
}
if (DOINGASYNC(vp))
*iomode = NFSWRITE_FILESYNC;
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs mknod rpc
* For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
* mode set to specify the file type and the size field for rdev.
*/
static int
nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct vattr *vap)
{
struct nfsvattr nfsva, dnfsva;
struct vnode *newvp = NULL;
struct nfsnode *np = NULL, *dnp;
struct nfsfh *nfhp;
struct vattr vattr;
int error = 0, attrflag, dattrflag;
u_int32_t rdev;
if (vap->va_type == VCHR || vap->va_type == VBLK)
rdev = vap->va_rdev;
else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
rdev = 0xffffffff;
else
return (EOPNOTSUPP);
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (!nfhp)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag != 0) {
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
if (error != 0)
vput(newvp);
}
}
if (!error) {
*vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
return (error);
}
/*
* nfs mknod vop
* just call nfs_mknodrpc() to do the work.
*/
/* ARGSUSED */
static int
nfs_mknod(struct vop_mknod_args *ap)
{
return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
}
static struct mtx nfs_cverf_mtx;
MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
MTX_DEF);
static nfsquad_t
nfs_get_cverf(void)
{
static nfsquad_t cverf;
nfsquad_t ret;
static int cverf_initialized = 0;
mtx_lock(&nfs_cverf_mtx);
if (cverf_initialized == 0) {
cverf.lval[0] = arc4random();
cverf.lval[1] = arc4random();
cverf_initialized = 1;
} else
cverf.qval++;
ret = cverf;
mtx_unlock(&nfs_cverf_mtx);
return (ret);
}
/*
* nfs file create call
*/
static int
nfs_create(struct vop_create_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct nfsmount *nmp;
struct nfsvattr dnfsva, nfsva;
struct nfsfh *nfhp;
nfsquad_t cverf;
int error = 0, attrflag, dattrflag, fmode = 0;
struct vattr vattr;
/*
* Oops, not for me..
*/
if (vap->va_type == VSOCK)
return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
if (vap->va_vaflags & VA_EXCLUSIVE)
fmode |= O_EXCL;
dnp = VTONFS(dvp);
nmp = VFSTONFS(dvp->v_mount);
again:
/* For NFSv4, wait until any remove is done. */
NFSLOCKNODE(dnp);
while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
dnp->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
}
NFSUNLOCKNODE(dnp);
cverf = nfs_get_cverf();
error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (nfhp == NULL)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp != NULL)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag == 0)
error = nfsrpc_getattr(newvp, cnp->cn_cred,
cnp->cn_thread, &nfsva, NULL);
if (error == 0)
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (error) {
if (newvp != NULL) {
vput(newvp);
newvp = NULL;
}
if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
error == NFSERR_NOTSUPP) {
fmode &= ~O_EXCL;
goto again;
}
} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
if (nfscl_checksattr(vap, &nfsva)) {
error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
cnp->cn_thread, &nfsva, &attrflag, NULL);
if (error && (vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL)) {
/* try again without setting uid/gid */
vap->va_uid = (uid_t)VNOVAL;
vap->va_gid = (uid_t)VNOVAL;
error = nfsrpc_setattr(newvp, vap, NULL,
cnp->cn_cred, cnp->cn_thread, &nfsva,
&attrflag, NULL);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
if (error != 0)
vput(newvp);
}
}
if (!error) {
if ((cnp->cn_flags & MAKEENTRY) && attrflag)
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
NULL);
*ap->a_vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
return (error);
}
/*
* nfs file remove call
* To try and make nfs semantics closer to ufs semantics, a file that has
* other processes using the vnode is renamed instead of removed and then
* removed later on the last close.
* - If v_usecount > 1
* If a rename is not already in the works
* call nfs_sillyrename() to set it up
* else
* do the remove rpc
*/
static int
nfs_remove(struct vop_remove_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct vattr vattr;
KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
if (vp->v_type == VDIR)
error = EPERM;
else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
vattr.va_nlink > 1)) {
/*
* Purge the name cache so that the chance of a lookup for
* the name succeeding while the remove is in progress is
* minimized. Without node locking it can still happen, such
* that an I/O op returns ESTALE, but since you get this if
* another host removes the file..
*/
cache_purge(vp);
/*
* throw away biocache buffers, mainly to avoid
* unnecessary delayed writes later.
*/
error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
if (error != EINTR && error != EIO)
/* Do the rpc */
error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
/*
* Kludge City: If the first reply to the remove rpc is lost..
* the reply to the retransmitted request will be ENOENT
* since the file was in fact removed
* Therefore, we cheat and return success.
*/
if (error == ENOENT)
error = 0;
} else if (!np->n_sillyrename)
error = nfs_sillyrename(dvp, vp, cnp);
NFSLOCKNODE(np);
np->n_attrstamp = 0;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
return (error);
}
/*
* nfs file remove rpc called from nfs_inactive
*/
int
ncl_removeit(struct sillyrename *sp, struct vnode *vp)
{
/*
* Make sure that the directory vnode is still valid.
* XXX we should lock sp->s_dvp here.
*/
if (sp->s_dvp->v_type == VBAD)
return (0);
return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
sp->s_cred, NULL));
}
/*
* Nfs remove rpc, called from nfs_remove() and ncl_removeit().
*/
static int
nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr dnfsva;
struct nfsnode *dnp = VTONFS(dvp);
int error = 0, dattrflag;
NFSLOCKNODE(dnp);
dnp->n_flag |= NREMOVEINPROG;
NFSUNLOCKNODE(dnp);
error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
&dattrflag, NULL);
NFSLOCKNODE(dnp);
if ((dnp->n_flag & NREMOVEWANT)) {
dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
NFSUNLOCKNODE(dnp);
wakeup((caddr_t)dnp);
} else {
dnp->n_flag &= ~NREMOVEINPROG;
NFSUNLOCKNODE(dnp);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (!dattrflag) {
dnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
NFSUNLOCKNODE(dnp);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs file rename call
*/
static int
nfs_rename(struct vop_rename_args *ap)
{
struct vnode *fvp = ap->a_fvp;
struct vnode *tvp = ap->a_tvp;
struct vnode *fdvp = ap->a_fdvp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *tcnp = ap->a_tcnp;
struct componentname *fcnp = ap->a_fcnp;
struct nfsnode *fnp = VTONFS(ap->a_fvp);
struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
struct nfsv4node *newv4 = NULL;
int error;
KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
(fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
/* Check for cross-device rename */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
error = EXDEV;
goto out;
}
if (fvp == tvp) {
printf("nfs_rename: fvp == tvp (can't happen)\n");
error = 0;
goto out;
}
if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
goto out;
/*
* We have to flush B_DELWRI data prior to renaming
* the file. If we don't, the delayed-write buffers
* can be flushed out later after the file has gone stale
* under NFSV3. NFSV2 does not have this problem because
* ( as far as I can tell ) it flushes dirty buffers more
* often.
*
* Skip the rename operation if the fsync fails, this can happen
* due to the server's volume being full, when we pushed out data
* that was written back to our cache earlier. Not checking for
* this condition can result in potential (silent) data loss.
*/
error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
NFSVOPUNLOCK(fvp);
if (!error && tvp)
error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
if (error)
goto out;
/*
* If the tvp exists and is in use, sillyrename it before doing the
* rename of the new file over it.
* XXX Can't sillyrename a directory.
*/
if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
vput(tvp);
tvp = NULL;
}
error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
tcnp->cn_thread);
if (error == 0 && NFS_ISV4(tdvp)) {
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
newv4 = malloc(
sizeof (struct nfsv4node) +
tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
M_NFSV4NODE, M_WAITOK);
NFSLOCKNODE(tdnp);
NFSLOCKNODE(fnp);
if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
(fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
tcnp->cn_namelen) ||
tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
bcopy(tcnp->cn_nameptr, nnn, nnnl);
nnn[nnnl] = '\0';
printf("ren replace=%s\n",nnn);
}
#endif
free(fnp->n_v4, M_NFSV4NODE);
fnp->n_v4 = newv4;
newv4 = NULL;
fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
fnp->n_v4->n4_namelen = tcnp->cn_namelen;
NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len);
NFSBCOPY(tcnp->cn_nameptr,
NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
}
NFSUNLOCKNODE(tdnp);
NFSUNLOCKNODE(fnp);
if (newv4 != NULL)
free(newv4, M_NFSV4NODE);
}
if (fvp->v_type == VDIR) {
if (tvp != NULL && tvp->v_type == VDIR)
cache_purge(tdvp);
cache_purge(fdvp);
}
out:
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
vrele(fdvp);
vrele(fvp);
/*
* Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs file rename rpc called from nfs_remove() above
*/
static int
nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
struct sillyrename *sp)
{
return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
scnp->cn_thread));
}
/*
* Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
*/
static int
nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
int tnamelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr fnfsva, tnfsva;
struct nfsnode *fdnp = VTONFS(fdvp);
struct nfsnode *tdnp = VTONFS(tdvp);
int error = 0, fattrflag, tattrflag;
error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
&tattrflag, NULL, NULL);
NFSLOCKNODE(fdnp);
fdnp->n_flag |= NMODIFIED;
if (fattrflag != 0) {
NFSUNLOCKNODE(fdnp);
(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
} else {
fdnp->n_attrstamp = 0;
NFSUNLOCKNODE(fdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
}
NFSLOCKNODE(tdnp);
tdnp->n_flag |= NMODIFIED;
if (tattrflag != 0) {
NFSUNLOCKNODE(tdnp);
(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
} else {
tdnp->n_attrstamp = 0;
NFSUNLOCKNODE(tdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
if (error && NFS_ISV4(fdvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs hard link create call
*/
static int
nfs_link(struct vop_link_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np, *tdnp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag;
/*
* Push all writes to the server, so that the attribute cache
* doesn't get "out of sync" with the server.
* XXX There should be a better way!
*/
VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
&dattrflag, NULL);
tdnp = VTONFS(tdvp);
NFSLOCKNODE(tdnp);
tdnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(tdnp);
(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
} else {
tdnp->n_attrstamp = 0;
NFSUNLOCKNODE(tdnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
else {
np = VTONFS(vp);
NFSLOCKNODE(np);
np->n_attrstamp = 0;
NFSUNLOCKNODE(np);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
}
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
return (error);
}
/*
* nfs symbolic link create call
*/
static int
nfs_symlink(struct vop_symlink_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsvattr nfsva, dnfsva;
struct nfsfh *nfhp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
int error = 0, attrflag, dattrflag, ret;
vap->va_type = VLNK;
error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL, LK_EXCLUSIVE);
if (!ret)
newvp = NFSTOV(np);
else if (!error)
error = ret;
}
if (newvp != NULL) {
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (!error) {
/*
* If we do not have an error and we could not extract the
* newvp from the response due to the request being NFSv2, we
* have to do a lookup in order to obtain a newvp to return.
*/
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
*ap->a_vpp = newvp;
}
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
}
return (error);
}
/*
* nfs make dir call
*/
static int
nfs_mkdir(struct vop_mkdir_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct vattr vattr;
struct nfsfh *nfhp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag, ret;
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
return (error);
vap->va_type = VDIR;
error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
&attrflag, &dattrflag, NULL);
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL, LK_EXCLUSIVE);
if (!ret) {
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
} else if (!error)
error = ret;
}
if (!error && newvp == NULL) {
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error) {
newvp = NFSTOV(np);
if (newvp->v_type != VDIR)
error = EEXIST;
}
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
(cnp->cn_flags & MAKEENTRY) &&
attrflag != 0 && dattrflag != 0)
cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
&dnfsva.na_ctime);
*ap->a_vpp = newvp;
}
return (error);
}
/*
* nfs remove directory call
*/
static int
nfs_rmdir(struct vop_rmdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *dnp;
struct nfsvattr dnfsva;
int error, dattrflag;
if (dvp == vp)
return (EINVAL);
error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
dnp = VTONFS(dvp);
NFSLOCKNODE(dnp);
dnp->n_flag |= NMODIFIED;
if (dattrflag != 0) {
NFSUNLOCKNODE(dnp);
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
} else {
dnp->n_attrstamp = 0;
NFSUNLOCKNODE(dnp);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
cache_purge(dvp);
cache_purge(vp);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
/*
* Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs readdir call
*/
static int
nfs_readdir(struct vop_readdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct uio *uio = ap->a_uio;
ssize_t tresid, left;
int error = 0;
struct vattr vattr;
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 0;
if (vp->v_type != VDIR)
return(EPERM);
/*
* First, check for hit on the EOF offset cache
*/
if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
(np->n_flag & NMODIFIED) == 0) {
if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
NFSLOCKNODE(np);
if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
NFSUNLOCKNODE(np);
NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 1;
return (0);
} else
NFSUNLOCKNODE(np);
}
}
/*
* NFS always guarantees that directory entries don't straddle
* DIRBLKSIZ boundaries. As such, we need to limit the size
* to an exact multiple of DIRBLKSIZ, to avoid copying a partial
* directory entry.
*/
left = uio->uio_resid % DIRBLKSIZ;
if (left == uio->uio_resid)
return (EINVAL);
uio->uio_resid -= left;
/*
* Call ncl_bioread() to do the real work.
*/
tresid = uio->uio_resid;
error = ncl_bioread(vp, uio, 0, ap->a_cred);
if (!error && uio->uio_resid == tresid) {
NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
if (ap->a_eofflag != NULL)
*ap->a_eofflag = 1;
}
/* Add the partial DIRBLKSIZ (left) back in. */
uio->uio_resid += left;
return (error);
}
/*
* Readdir rpc call.
* Called from below the buffer cache by ncl_doio().
*/
int
ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, eof, attrflag;
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirrpc bad uio"));
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at the end of the directory or have filled
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
printf("EEK! readdirrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
*/
int
ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, attrflag, eof;
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirplusrpc bad uio"));
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at end of the directory or have filled the
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
printf("EEK! readdirplusrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* Silly rename. To make the NFS filesystem that is stateless look a little
* more like the "ufs" a remove of an active vnode is translated to a rename
* to a funny looking filename that is removed by nfs_inactive on the
* nfsnode. There is the potential for another process on a different client
* to create the same funny name between the nfs_lookitup() fails and the
* nfs_rename() completes, but...
*/
static int
nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
struct sillyrename *sp;
struct nfsnode *np;
int error;
short pid;
unsigned int lticks;
cache_purge(dvp);
np = VTONFS(vp);
KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
sp = malloc(sizeof (struct sillyrename),
M_NEWNFSREQ, M_WAITOK);
sp->s_cred = crhold(cnp->cn_cred);
sp->s_dvp = dvp;
VREF(dvp);
/*
* Fudge together a funny name.
* Changing the format of the funny name to accommodate more
* sillynames per directory.
* The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
* CPU ticks since boot.
*/
pid = cnp->cn_thread->td_proc->p_pid;
lticks = (unsigned int)ticks;
for ( ; ; ) {
sp->s_namlen = sprintf(sp->s_name,
".nfs.%08x.%04x4.4", lticks,
pid);
if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, NULL))
break;
lticks++;
}
error = nfs_renameit(dvp, vp, cnp, sp);
if (error)
goto bad;
error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, &np);
np->n_sillyrename = sp;
return (0);
bad:
vrele(sp->s_dvp);
crfree(sp->s_cred);
free(sp, M_NEWNFSREQ);
return (error);
}
/*
* Look up a file name and optionally either update the file handle or
* allocate an nfsnode, depending on the value of npp.
* npp == NULL --> just do the lookup
* *npp == NULL --> allocate a new nfsnode and make sure attributes are
* handled too
* *npp != NULL --> update the file handle in the vnode
*/
static int
nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
struct thread *td, struct nfsnode **npp)
{
struct vnode *newvp = NULL, *vp;
struct nfsnode *np, *dnp = VTONFS(dvp);
struct nfsfh *nfhp, *onfhp;
struct nfsvattr nfsva, dnfsva;
struct componentname cn;
int error = 0, attrflag, dattrflag;
u_int hash;
error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (npp && !error) {
if (*npp != NULL) {
np = *npp;
vp = NFSTOV(np);
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
if (np->n_v4 != NULL && nfsva.na_type == VREG &&
(np->n_v4->n4_namelen != len ||
NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (len < 100) ? len : 99;
bcopy(name, nnn, nnnl);
nnn[nnnl] = '\0';
printf("replace=%s\n",nnn);
}
#endif
free(np->n_v4, M_NFSV4NODE);
np->n_v4 = malloc(
sizeof (struct nfsv4node) +
dnp->n_fhp->nfh_len + len - 1,
M_NFSV4NODE, M_WAITOK);
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
np->n_v4->n4_namelen = len;
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len);
NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
}
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
FNV1_32_INIT);
onfhp = np->n_fhp;
/*
* Rehash node for new file handle.
*/
vfs_hash_rehash(vp, hash);
np->n_fhp = nfhp;
if (onfhp != NULL)
free(onfhp, M_NFSFH);
newvp = NFSTOV(np);
} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
free(nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
} else {
cn.cn_nameptr = name;
cn.cn_namelen = len;
error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
&np, NULL, LK_EXCLUSIVE);
if (error)
return (error);
newvp = NFSTOV(np);
}
if (!attrflag && *npp == NULL) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
return (ENOENT);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (npp && *npp == NULL) {
if (error) {
if (newvp) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
} else
*npp = np;
}
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Nfs Version 3 and 4 commit rpc
*/
int
ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
struct nfsnode *np;
struct uio uio;
int error, attrflag;
np = VTONFS(vp);
error = EIO;
attrflag = 0;
if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) {
uio.uio_offset = offset;
uio.uio_resid = cnt;
error = nfscl_doiods(vp, &uio, NULL, NULL,
NFSV4OPEN_ACCESSWRITE, 1, cred, td);
if (error != 0) {
NFSLOCKNODE(np);
np->n_flag &= ~NDSCOMMIT;
NFSUNLOCKNODE(np);
}
}
if (error != 0) {
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
&attrflag, NULL);
}
if (attrflag != 0)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
0, 1);
if (error != 0 && NFS_ISV4(vp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Strategy routine.
* For async requests when nfsiod(s) are running, queue the request by
* calling ncl_asyncio(), otherwise just all ncl_doio() to do the
* request.
*/
static int
nfs_strategy(struct vop_strategy_args *ap)
{
struct buf *bp;
struct vnode *vp;
struct ucred *cr;
bp = ap->a_bp;
vp = ap->a_vp;
KASSERT(bp->b_vp == vp, ("missing b_getvp"));
KASSERT(!(bp->b_flags & B_DONE),
("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno)
bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize /
DEV_BSIZE);
if (bp->b_iocmd == BIO_READ)
cr = bp->b_rcred;
else
cr = bp->b_wcred;
/*
* If the op is asynchronous and an i/o daemon is waiting
* queue the request, wake it up and wait for completion
* otherwise just do it ourselves.
*/
if ((bp->b_flags & B_ASYNC) == 0 ||
ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread))
(void) ncl_doio(vp, bp, cr, curthread, 1);
return (0);
}
/*
* fsync vnode op. Just call ncl_flush() with commit == 1.
*/
/* ARGSUSED */
static int
nfs_fsync(struct vop_fsync_args *ap)
{
if (ap->a_vp->v_type != VREG) {
/*
* For NFS, metadata is changed synchronously on the server,
* so there is nothing to flush. Also, ncl_flush() clears
* the NMODIFIED flag and that shouldn't be done here for
* directories.
*/
return (0);
}
return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0));
}
/*
* Flush all the blocks associated with a vnode.
* Walk through the buffer pool and push any dirty pages
* associated with the vnode.
* If the called_from_renewthread argument is TRUE, it has been called
* from the NFSv4 renew thread and, as such, cannot block indefinitely
* waiting for a buffer write to complete.
*/
int
ncl_flush(struct vnode *vp, int waitfor, struct thread *td,
int commit, int called_from_renewthread)
{
struct nfsnode *np = VTONFS(vp);
struct buf *bp;
int i;
struct buf *nbp;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
int passone = 1, trycnt = 0;
u_quad_t off, endoff, toff;
struct ucred* wcred = NULL;
struct buf **bvec = NULL;
struct bufobj *bo;
#ifndef NFS_COMMITBVECSIZ
#define NFS_COMMITBVECSIZ 20
#endif
struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
u_int bvecsize = 0, bveccount;
if (called_from_renewthread != 0)
slptimeo = hz;
if (nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
if (!commit)
passone = 0;
bo = &vp->v_bufobj;
/*
* A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
* server, but has not been committed to stable storage on the server
* yet. On the first pass, the byte range is worked out and the commit
* rpc is done. On the second pass, ncl_writebp() is called to do the
* job.
*/
again:
off = (u_quad_t)-1;
endoff = 0;
bvecpos = 0;
if (NFS_ISV34(vp) && commit) {
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
/*
* Count up how many buffers waiting for a commit.
*/
bveccount = 0;
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (!BUF_ISLOCKED(bp) &&
(bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
== (B_DELWRI | B_NEEDCOMMIT))
bveccount++;
}
/*
* Allocate space to remember the list of bufs to commit. It is
* important to use M_NOWAIT here to avoid a race with nfs_write.
* If we can't get memory (for whatever reason), we will end up
* committing the buffers one-by-one in the loop below.
*/
if (bveccount > NFS_COMMITBVECSIZ) {
/*
* Release the vnode interlock to avoid a lock
* order reversal.
*/
BO_UNLOCK(bo);
bvec = (struct buf **)
malloc(bveccount * sizeof(struct buf *),
M_TEMP, M_NOWAIT);
BO_LOCK(bo);
if (bvec == NULL) {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
} else
bvecsize = bveccount;
} else {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
}
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bvecpos >= bvecsize)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
(B_DELWRI | B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
/*
* Work out if all buffers are using the same cred
* so we can deal with them all with one commit.
*
* NOTE: we are not clearing B_DONE here, so we have
* to do it later on in this routine if we intend to
* initiate I/O on the bp.
*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
if (wcred == NULL)
wcred = bp->b_wcred;
else if (wcred != bp->b_wcred)
wcred = NOCRED;
vfs_busy_pages(bp, 1);
BO_LOCK(bo);
/*
* bp is protected by being locked, but nbp is not
* and vfs_busy_pages() may sleep. We have to
* recalculate nbp.
*/
nbp = TAILQ_NEXT(bp, b_bobufs);
/*
* A list of these buffers is kept so that the
* second loop knows which buffers have actually
* been committed. This is necessary, since there
* may be a race between the commit rpc and new
* uncommitted writes on the file.
*/
bvec[bvecpos++] = bp;
toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
if (toff < off)
off = toff;
toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
if (toff > endoff)
endoff = toff;
}
BO_UNLOCK(bo);
}
if (bvecpos > 0) {
/*
* Commit data on the server, as required.
* If all bufs are using the same wcred, then use that with
* one call for all of them, otherwise commit each one
* separately.
*/
if (wcred != NOCRED)
retv = ncl_commit(vp, off, (int)(endoff - off),
wcred, td);
else {
retv = 0;
for (i = 0; i < bvecpos; i++) {
off_t off, size;
bp = bvec[i];
off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
size = (u_quad_t)(bp->b_dirtyend
- bp->b_dirtyoff);
retv = ncl_commit(vp, off, (int)size,
bp->b_wcred, td);
if (retv) break;
}
}
if (retv == NFSERR_STALEWRITEVERF)
ncl_clearcommit(vp->v_mount);
/*
* Now, either mark the blocks I/O done or mark the
* blocks dirty, depending on whether the commit
* succeeded.
*/
for (i = 0; i < bvecpos; i++) {
bp = bvec[i];
bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
if (retv) {
/*
* Error, leave B_DELWRI intact
*/
vfs_unbusy_pages(bp);
brelse(bp);
} else {
/*
* Success, remove B_DELWRI ( bundirty() ).
*
* b_dirtyoff/b_dirtyend seem to be NFS
* specific. We should probably move that
* into bundirty(). XXX
*/
bufobj_wref(bo);
bp->b_flags |= B_ASYNC;
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bufdone(bp);
}
}
}
/*
* Start/do any write(s) that are required.
*/
loop:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
if (waitfor != MNT_WAIT || passone)
continue;
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
if (error == 0) {
BUF_UNLOCK(bp);
goto loop;
}
if (error == ENOLCK) {
error = 0;
goto loop;
}
if (called_from_renewthread != 0) {
/*
* Return EIO so the flush will be retried
* later.
*/
error = EIO;
goto done;
}
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
goto loop;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("nfs_fsync: not dirty");
if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
bp->b_flags |= B_ASYNC;
bwrite(bp);
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
goto loop;
}
if (passone) {
passone = 0;
BO_UNLOCK(bo);
goto again;
}
if (waitfor == MNT_WAIT) {
while (bo->bo_numoutput) {
error = bufobj_wwait(bo, slpflag, slptimeo);
if (error) {
BO_UNLOCK(bo);
if (called_from_renewthread != 0) {
/*
* Return EIO so that the flush will be
* retried later.
*/
error = EIO;
goto done;
}
error = newnfs_sigintr(nmp, td);
if (error)
goto done;
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
BO_LOCK(bo);
}
}
if (bo->bo_dirty.bv_cnt != 0 && commit) {
BO_UNLOCK(bo);
goto loop;
}
/*
* Wait for all the async IO requests to drain
*/
BO_UNLOCK(bo);
NFSLOCKNODE(np);
while (np->n_directio_asyncwr > 0) {
np->n_flag |= NFSYNCWAIT;
error = newnfs_msleep(td, &np->n_directio_asyncwr,
&np->n_mtx, slpflag | (PRIBIO + 1),
"nfsfsync", 0);
if (error) {
if (newnfs_sigintr(nmp, td)) {
NFSUNLOCKNODE(np);
error = EINTR;
goto done;
}
}
}
NFSUNLOCKNODE(np);
} else
BO_UNLOCK(bo);
if (NFSHASPNFS(nmp)) {
nfscl_layoutcommit(vp, td);
/*
* Invalidate the attribute cache, since writes to a DS
* won't update the size attribute.
*/
NFSLOCKNODE(np);
np->n_attrstamp = 0;
} else
NFSLOCKNODE(np);
if (np->n_flag & NWRITEERR) {
error = np->n_error;
np->n_flag &= ~NWRITEERR;
}
if (commit && bo->bo_dirty.bv_cnt == 0 &&
bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
np->n_flag &= ~NMODIFIED;
NFSUNLOCKNODE(np);
done:
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
(bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
np->n_directio_asyncwr != 0)) {
if (trycnt++ < 5) {
/* try, try again... */
passone = 1;
wcred = NULL;
bvec = NULL;
bvecsize = 0;
goto again;
}
vn_printf(vp, "ncl_flush failed");
error = called_from_renewthread != 0 ? EIO : EBUSY;
}
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlock(struct vop_advlock_args *ap)
{
struct vnode *vp = ap->a_vp;
struct ucred *cred;
struct nfsnode *np = VTONFS(ap->a_vp);
struct proc *p = (struct proc *)ap->a_id;
struct thread *td = curthread; /* XXX */
struct vattr va;
int ret, error;
u_quad_t size;
error = NFSVOPLOCK(vp, LK_SHARED);
if (error != 0)
return (EBADF);
if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
if (vp->v_type != VREG) {
error = EINVAL;
goto out;
}
if ((ap->a_flags & F_POSIX) != 0)
cred = p->p_ucred;
else
cred = td->td_ucred;
NFSVOPLOCK(vp, LK_UPGRADE | LK_RETRY);
if (VN_IS_DOOMED(vp)) {
error = EBADF;
goto out;
}
/*
* If this is unlocking a write locked region, flush and
* commit them before unlocking. This is required by
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_UNLCK &&
nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
ap->a_flags))
(void) ncl_flush(vp, MNT_WAIT, td, 1, 0);
/*
* Loop around doing the lock op, while a blocking lock
* must wait for the lock op to succeed.
*/
do {
ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK) {
NFSVOPUNLOCK(vp);
error = nfs_catnap(PZERO | PCATCH, ret,
"ncladvl");
if (error)
return (EINTR);
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
if (VN_IS_DOOMED(vp)) {
error = EBADF;
goto out;
}
}
} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK);
if (ret == NFSERR_DENIED) {
error = EAGAIN;
goto out;
} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
error = ret;
goto out;
} else if (ret != 0) {
error = EACCES;
goto out;
}
/*
* Now, if we just got a lock, invalidate data in the buffer
* cache, as required, so that the coherency conforms with
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_SETLK) {
if ((np->n_flag & NMODIFIED) == 0) {
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
ret = VOP_GETATTR(vp, &va, cred);
}
if ((np->n_flag & NMODIFIED) || ret ||
np->n_change != va.va_filerev) {
(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
ret = VOP_GETATTR(vp, &va, cred);
if (!ret) {
np->n_mtime = va.va_mtime;
np->n_change = va.va_filerev;
}
}
/* Mark that a file lock has been acquired. */
NFSLOCKNODE(np);
np->n_flag |= NHASBEENLOCKED;
NFSUNLOCKNODE(np);
}
} else if (!NFS_ISV4(vp)) {
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
NFSVOPUNLOCK(vp);
error = lf_advlock(ap, &(vp->v_lockf), size);
} else {
if (nfs_advlock_p != NULL)
error = nfs_advlock_p(ap);
else {
NFSVOPUNLOCK(vp);
error = ENOLCK;
}
}
if (error == 0 && ap->a_op == F_SETLK) {
error = NFSVOPLOCK(vp, LK_SHARED);
if (error == 0) {
/* Mark that a file lock has been acquired. */
NFSLOCKNODE(np);
np->n_flag |= NHASBEENLOCKED;
NFSUNLOCKNODE(np);
NFSVOPUNLOCK(vp);
}
}
return (error);
} else
error = EOPNOTSUPP;
out:
NFSVOPUNLOCK(vp);
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlockasync(struct vop_advlockasync_args *ap)
{
struct vnode *vp = ap->a_vp;
u_quad_t size;
int error;
if (NFS_ISV4(vp))
return (EOPNOTSUPP);
error = NFSVOPLOCK(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
NFSVOPUNLOCK(vp);
error = lf_advlockasync(ap, &(vp->v_lockf), size);
} else {
NFSVOPUNLOCK(vp);
error = EOPNOTSUPP;
}
return (error);
}
/*
* Print out the contents of an nfsnode.
*/
static int
nfs_print(struct vop_print_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid,
(uintmax_t)np->n_vattr.na_fsid);
if (vp->v_type == VFIFO)
fifo_printinfo(vp);
printf("\n");
return (0);
}
/*
* This is the "real" nfs::bwrite(struct buf*).
* We set B_CACHE if this is a VMIO buffer.
*/
int
ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
{
int oldflags, rtval;
if (bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
oldflags = bp->b_flags;
bp->b_flags |= B_CACHE;
/*
* Undirty the bp. We will redirty it later if the I/O fails.
*/
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_iocmd = BIO_WRITE;
bufobj_wref(bp->b_bufobj);
curthread->td_ru.ru_oublock++;
/*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
vfs_busy_pages(bp, 1);
BUF_KERNPROC(bp);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
if ((oldflags & B_ASYNC) != 0)
return (0);
rtval = bufwait(bp);
if (oldflags & B_DELWRI)
reassignbuf(bp);
brelse(bp);
return (rtval);
}
/*
* nfs special file access vnode op.
* Essentially just get vattr and then imitate iaccess() since the device is
* local to the client.
*/
static int
nfsspec_access(struct vop_access_args *ap)
{
struct vattr *vap;
struct ucred *cred = ap->a_cred;
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
struct vattr vattr;
int error;
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
vap = &vattr;
error = VOP_GETATTR(vp, vap, cred);
if (error)
goto out;
error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
accmode, cred);
out:
return error;
}
/*
* Read wrapper for fifos.
*/
static int
nfsfifo_read(struct vop_read_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
int error;
/*
* Set access flag.
*/
NFSLOCKNODE(np);
np->n_flag |= NACC;
vfs_timestamp(&np->n_atim);
NFSUNLOCKNODE(np);
error = fifo_specops.vop_read(ap);
return error;
}
/*
* Write wrapper for fifos.
*/
static int
nfsfifo_write(struct vop_write_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
/*
* Set update flag.
*/
NFSLOCKNODE(np);
np->n_flag |= NUPD;
vfs_timestamp(&np->n_mtim);
NFSUNLOCKNODE(np);
return(fifo_specops.vop_write(ap));
}
/*
* Close wrapper for fifos.
*
* Update the times on the nfsnode then do fifo close.
*/
static int
nfsfifo_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
struct timespec ts;
NFSLOCKNODE(np);
if (np->n_flag & (NACC | NUPD)) {
vfs_timestamp(&ts);
if (np->n_flag & NACC)
np->n_atim = ts;
if (np->n_flag & NUPD)
np->n_mtim = ts;
np->n_flag |= NCHG;
if (vrefcnt(vp) == 1 &&
(vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
VATTR_NULL(&vattr);
if (np->n_flag & NACC)
vattr.va_atime = np->n_atim;
if (np->n_flag & NUPD)
vattr.va_mtime = np->n_mtim;
NFSUNLOCKNODE(np);
(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
goto out;
}
}
NFSUNLOCKNODE(np);
out:
return (fifo_specops.vop_close(ap));
}
/*
* Just call ncl_writebp() with the force argument set to 1.
*
* NOTE: B_DONE may or may not be set in a_bp on call.
*/
static int
nfs_bwrite(struct buf *bp)
{
return (ncl_writebp(bp, 1, curthread));
}
struct buf_ops buf_ops_newnfs = {
.bop_name = "buf_ops_nfs",
.bop_write = nfs_bwrite,
.bop_strategy = bufstrategy,
.bop_sync = bufsync,
.bop_bdflush = bufbdflush,
};
static int
nfs_getacl(struct vop_getacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
static int
nfs_setacl(struct vop_setacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
/*
* VOP_ADVISE for NFS.
* Just return 0 for any errors, since it is just a hint.
*/
static int
nfs_advise(struct vop_advise_args *ap)
{
struct thread *td = curthread;
struct nfsmount *nmp;
uint64_t len;
int error;
/*
* First do vop_stdadvise() to handle the buffer cache.
*/
error = vop_stdadvise(ap);
if (error != 0)
return (error);
if (ap->a_start < 0 || ap->a_end < 0)
return (0);
if (ap->a_end == OFF_MAX)
len = 0;
else if (ap->a_end < ap->a_start)
return (0);
else
len = ap->a_end - ap->a_start + 1;
nmp = VFSTONFS(ap->a_vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(NFSHASPNFS(nmp) && (nmp->nm_privflag & NFSMNTP_IOADVISETHRUMDS) ==
0) || (nmp->nm_privflag & NFSMNTP_NOADVISE) != 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
error = nfsrpc_advise(ap->a_vp, ap->a_start, len, ap->a_advice,
td->td_ucred, td);
if (error == NFSERR_NOTSUPP) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOADVISE;
mtx_unlock(&nmp->nm_mtx);
}
return (0);
}
/*
* nfs allocate call
*/
static int
nfs_allocate(struct vop_allocate_args *ap)
{
struct vnode *vp = ap->a_vp;
struct thread *td = curthread;
struct nfsvattr nfsva;
struct nfsmount *nmp;
int attrflag, error, ret;
attrflag = 0;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (NFSHASNFSV4(nmp) && nmp->nm_minorvers >= NFSV42_MINORVERSION &&
(nmp->nm_privflag & NFSMNTP_NOALLOCATE) == 0) {
mtx_unlock(&nmp->nm_mtx);
/*
* Flush first to ensure that the allocate adds to the
* file's allocation on the server.
*/
error = ncl_flush(vp, MNT_WAIT, td, 1, 0);
if (error == 0)
error = nfsrpc_allocate(vp, *ap->a_offset, *ap->a_len,
&nfsva, &attrflag, td->td_ucred, td, NULL);
if (error == 0) {
*ap->a_offset += *ap->a_len;
*ap->a_len = 0;
} else if (error == NFSERR_NOTSUPP) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOALLOCATE;
mtx_unlock(&nmp->nm_mtx);
}
} else {
mtx_unlock(&nmp->nm_mtx);
error = EIO;
}
/*
* If the NFS server cannot perform the Allocate operation, just call
* vop_stdallocate() to perform it.
*/
if (error != 0)
error = vop_stdallocate(ap);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
if (error != 0)
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs copy_file_range call
*/
static int
nfs_copy_file_range(struct vop_copy_file_range_args *ap)
{
struct vnode *invp = ap->a_invp;
struct vnode *outvp = ap->a_outvp;
struct mount *mp;
struct nfsvattr innfsva, outnfsva;
struct vattr *vap;
struct uio io;
struct nfsmount *nmp;
size_t len, len2;
int error, inattrflag, outattrflag, ret, ret2;
off_t inoff, outoff;
bool consecutive, must_commit, tryoutcred;
ret = ret2 = 0;
nmp = VFSTONFS(invp->v_mount);
mtx_lock(&nmp->nm_mtx);
/* NFSv4.2 Copy is not permitted for infile == outfile. */
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOCOPY) != 0 || invp == outvp) {
mtx_unlock(&nmp->nm_mtx);
error = vn_generic_copy_file_range(ap->a_invp, ap->a_inoffp,
ap->a_outvp, ap->a_outoffp, ap->a_lenp, ap->a_flags,
ap->a_incred, ap->a_outcred, ap->a_fsizetd);
return (error);
}
mtx_unlock(&nmp->nm_mtx);
/* Lock both vnodes, avoiding risk of deadlock. */
do {
mp = NULL;
error = vn_start_write(outvp, &mp, V_WAIT);
if (error == 0) {
error = vn_lock(outvp, LK_EXCLUSIVE);
if (error == 0) {
error = vn_lock(invp, LK_SHARED | LK_NOWAIT);
if (error == 0)
break;
VOP_UNLOCK(outvp);
if (mp != NULL)
vn_finished_write(mp);
mp = NULL;
error = vn_lock(invp, LK_SHARED);
if (error == 0)
VOP_UNLOCK(invp);
}
}
if (mp != NULL)
vn_finished_write(mp);
} while (error == 0);
if (error != 0)
return (error);
/*
* Do the vn_rlimit_fsize() check. Should this be above the VOP layer?
*/
io.uio_offset = *ap->a_outoffp;
io.uio_resid = *ap->a_lenp;
error = vn_rlimit_fsize(outvp, &io, ap->a_fsizetd);
/*
* Flush the input file so that the data is up to date before
* the copy. Flush writes for the output file so that they
* do not overwrite the data copied to the output file by the Copy.
* Set the commit argument for both flushes so that the data is on
* stable storage before the Copy RPC. This is done in case the
* server reboots during the Copy and needs to be redone.
*/
if (error == 0)
error = ncl_flush(invp, MNT_WAIT, curthread, 1, 0);
if (error == 0)
error = ncl_flush(outvp, MNT_WAIT, curthread, 1, 0);
/* Do the actual NFSv4.2 RPC. */
len = *ap->a_lenp;
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_privflag & NFSMNTP_NOCONSECUTIVE) == 0)
consecutive = true;
else
consecutive = false;
mtx_unlock(&nmp->nm_mtx);
inoff = *ap->a_inoffp;
outoff = *ap->a_outoffp;
tryoutcred = true;
must_commit = false;
if (error == 0) {
vap = &VTONFS(invp)->n_vattr.na_vattr;
error = VOP_GETATTR(invp, vap, ap->a_incred);
if (error == 0) {
/*
* Clip "len" at va_size so that RFC compliant servers
* will not reply NFSERR_INVAL.
* Setting "len == 0" for the RPC would be preferred,
* but some Linux servers do not support that.
*/
if (inoff >= vap->va_size)
*ap->a_lenp = len = 0;
else if (inoff + len > vap->va_size)
*ap->a_lenp = len = vap->va_size - inoff;
} else
error = 0;
}
/*
* len will be set to 0 upon a successful Copy RPC.
* As such, this only loops when the Copy RPC needs to be retried.
*/
while (len > 0 && error == 0) {
inattrflag = outattrflag = 0;
len2 = len;
if (tryoutcred)
error = nfsrpc_copy_file_range(invp, ap->a_inoffp,
outvp, ap->a_outoffp, &len2, ap->a_flags,
&inattrflag, &innfsva, &outattrflag, &outnfsva,
ap->a_outcred, consecutive, &must_commit);
else
error = nfsrpc_copy_file_range(invp, ap->a_inoffp,
outvp, ap->a_outoffp, &len2, ap->a_flags,
&inattrflag, &innfsva, &outattrflag, &outnfsva,
ap->a_incred, consecutive, &must_commit);
if (inattrflag != 0)
ret = nfscl_loadattrcache(&invp, &innfsva, NULL, NULL,
0, 1);
if (outattrflag != 0)
ret2 = nfscl_loadattrcache(&outvp, &outnfsva, NULL,
NULL, 1, 1);
if (error == 0) {
if (consecutive == false) {
if (len2 == len) {
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |=
NFSMNTP_NOCONSECUTIVE;
mtx_unlock(&nmp->nm_mtx);
} else
error = NFSERR_OFFLOADNOREQS;
}
*ap->a_lenp = len2;
len = 0;
if (len2 > 0 && must_commit && error == 0)
error = ncl_commit(outvp, outoff, *ap->a_lenp,
ap->a_outcred, curthread);
if (error == 0 && ret != 0)
error = ret;
if (error == 0 && ret2 != 0)
error = ret2;
} else if (error == NFSERR_OFFLOADNOREQS && consecutive) {
/*
* Try consecutive == false, which is ok only if all
* bytes are copied.
* If only some bytes were copied when consecutive
* is false, there is no way to know which bytes
* still need to be written.
*/
consecutive = false;
error = 0;
} else if (error == NFSERR_ACCES && tryoutcred) {
/* Try again with incred. */
tryoutcred = false;
error = 0;
}
if (error == NFSERR_STALEWRITEVERF) {
/*
* Server rebooted, so do it all again.
*/
*ap->a_inoffp = inoff;
*ap->a_outoffp = outoff;
len = *ap->a_lenp;
must_commit = false;
error = 0;
}
}
VOP_UNLOCK(invp);
VOP_UNLOCK(outvp);
if (mp != NULL)
vn_finished_write(mp);
if (error == NFSERR_NOTSUPP || error == NFSERR_OFFLOADNOREQS ||
error == NFSERR_ACCES) {
/*
* Unlike the NFSv4.2 Copy, vn_generic_copy_file_range() can
* use a_incred for the read and a_outcred for the write, so
* try this for NFSERR_ACCES failures for the Copy.
* For NFSERR_NOTSUPP and NFSERR_OFFLOADNOREQS, the Copy can
* never succeed, so disable it.
*/
if (error != NFSERR_ACCES) {
/* Can never do Copy on this mount. */
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOCOPY;
mtx_unlock(&nmp->nm_mtx);
}
*ap->a_inoffp = inoff;
*ap->a_outoffp = outoff;
error = vn_generic_copy_file_range(ap->a_invp, ap->a_inoffp,
ap->a_outvp, ap->a_outoffp, ap->a_lenp, ap->a_flags,
ap->a_incred, ap->a_outcred, ap->a_fsizetd);
} else if (error != 0)
*ap->a_lenp = 0;
if (error != 0)
error = nfscl_maperr(curthread, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs ioctl call
*/
static int
nfs_ioctl(struct vop_ioctl_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsvattr nfsva;
struct nfsmount *nmp;
int attrflag, content, error, ret;
bool eof = false; /* shut up compiler. */
if (vp->v_type != VREG)
return (ENOTTY);
nmp = VFSTONFS(vp->v_mount);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION) {
error = vop_stdioctl(ap);
return (error);
}
/* Do the actual NFSv4.2 RPC. */
switch (ap->a_command) {
case FIOSEEKDATA:
content = NFSV4CONTENT_DATA;
break;
case FIOSEEKHOLE:
content = NFSV4CONTENT_HOLE;
break;
default:
return (ENOTTY);
}
error = vn_lock(vp, LK_SHARED);
if (error != 0)
return (EBADF);
attrflag = 0;
if (*((off_t *)ap->a_data) >= VTONFS(vp)->n_size)
error = ENXIO;
else {
/*
* Flush all writes, so that the server is up to date.
* Although a Commit is not required, the commit argument
* is set so that, for a pNFS File/Flexible File Layout
* server, the LayoutCommit will be done to ensure the file
* size is up to date on the Metadata Server.
*/
error = ncl_flush(vp, MNT_WAIT, ap->a_td, 1, 0);
if (error == 0)
error = nfsrpc_seek(vp, (off_t *)ap->a_data, &eof,
content, ap->a_cred, &nfsva, &attrflag);
/* If at eof for FIOSEEKDATA, return ENXIO. */
if (eof && error == 0 && content == NFSV4CONTENT_DATA)
error = ENXIO;
}
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
NFSVOPUNLOCK(vp);
if (error != 0)
error = ENXIO;
return (error);
}
/*
* nfs getextattr call
*/
static int
nfs_getextattr(struct vop_getextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
ssize_t len;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_getextattr(vp, ap->a_name, ap->a_uio, &len, &nfsva,
&attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
if (error == 0 && ap->a_size != NULL)
*ap->a_size = len;
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs setextattr call
*/
static int
nfs_setextattr(struct vop_setextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
if (ap->a_uio->uio_resid < 0)
return (EINVAL);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_setextattr(vp, ap->a_name, ap->a_uio, &nfsva,
&attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs listextattr call
*/
static int
nfs_listextattr(struct vop_listextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct ucred *cred;
struct thread *td = ap->a_td;
struct nfsvattr nfsva;
size_t len, len2;
uint64_t cookie;
int attrflag, error, ret;
bool eof;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
cred = ap->a_cred;
if (cred == NULL)
cred = td->td_ucred;
/* Loop around doing List Extended Attribute RPCs. */
eof = false;
cookie = 0;
len2 = 0;
error = 0;
while (!eof && error == 0) {
len = nmp->nm_rsize;
attrflag = 0;
error = nfsrpc_listextattr(vp, &cookie, ap->a_uio, &len, &eof,
&nfsva, &attrflag, cred, td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (error == 0 && ret != 0)
error = ret;
}
if (error == 0) {
len2 += len;
if (len2 > SSIZE_MAX)
error = ENOATTR;
}
}
if (error == 0 && ap->a_size != NULL)
*ap->a_size = len2;
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(td, error, 0, 0);
break;
}
return (error);
}
/*
* nfs setextattr call
*/
static int
nfs_deleteextattr(struct vop_deleteextattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct nfsvattr nfsva;
int attrflag, error, ret;
nmp = VFSTONFS(vp->v_mount);
mtx_lock(&nmp->nm_mtx);
if (!NFSHASNFSV4(nmp) || nmp->nm_minorvers < NFSV42_MINORVERSION ||
(nmp->nm_privflag & NFSMNTP_NOXATTR) != 0 ||
ap->a_attrnamespace != EXTATTR_NAMESPACE_USER) {
mtx_unlock(&nmp->nm_mtx);
return (EOPNOTSUPP);
}
mtx_unlock(&nmp->nm_mtx);
/* Do the actual NFSv4.2 Optional Extended Attribute (RFC-8276) RPC. */
attrflag = 0;
error = nfsrpc_rmextattr(vp, ap->a_name, &nfsva, &attrflag, ap->a_cred,
ap->a_td);
if (attrflag != 0) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (error == 0 && ret != 0)
error = ret;
}
switch (error) {
case NFSERR_NOTSUPP:
case NFSERR_OPILLEGAL:
mtx_lock(&nmp->nm_mtx);
nmp->nm_privflag |= NFSMNTP_NOXATTR;
mtx_unlock(&nmp->nm_mtx);
error = EOPNOTSUPP;
break;
case NFSERR_NOXATTR:
case NFSERR_XATTR2BIG:
error = ENOATTR;
break;
default:
error = nfscl_maperr(ap->a_td, error, 0, 0);
break;
}
return (error);
}
/*
* Return POSIX pathconf information applicable to nfs filesystems.
*/
static int
nfs_pathconf(struct vop_pathconf_args *ap)
{
struct nfsv3_pathconf pc;
struct nfsvattr nfsva;
struct vnode *vp = ap->a_vp;
struct nfsmount *nmp;
struct thread *td = curthread;
off_t off;
bool eof;
int attrflag, error;
if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
ap->a_name == _PC_NO_TRUNC)) ||
(NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
/*
* Since only the above 4 a_names are returned by the NFSv3
* Pathconf RPC, there is no point in doing it for others.
* For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
* be used for _PC_NFS4_ACL as well.
*/
error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
&attrflag, NULL);
if (attrflag != 0)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (error != 0)
return (error);
} else {
/*
* For NFSv2 (or NFSv3 when not one of the above 4 a_names),
* just fake them.
*/
pc.pc_linkmax = NFS_LINK_MAX;
pc.pc_namemax = NFS_MAXNAMLEN;
pc.pc_notrunc = 1;
pc.pc_chownrestricted = 1;
pc.pc_caseinsensitive = 0;
pc.pc_casepreserving = 1;
error = 0;
}
switch (ap->a_name) {
case _PC_LINK_MAX:
#ifdef _LP64
*ap->a_retval = pc.pc_linkmax;
#else
*ap->a_retval = MIN(LONG_MAX, pc.pc_linkmax);
#endif
break;
case _PC_NAME_MAX:
*ap->a_retval = pc.pc_namemax;
break;
case _PC_PIPE_BUF:
if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO)
*ap->a_retval = PIPE_BUF;
else
error = EINVAL;
break;
case _PC_CHOWN_RESTRICTED:
*ap->a_retval = pc.pc_chownrestricted;
break;
case _PC_NO_TRUNC:
*ap->a_retval = pc.pc_notrunc;
break;
case _PC_ACL_NFS4:
if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
*ap->a_retval = 1;
else
*ap->a_retval = 0;
break;
case _PC_ACL_PATH_MAX:
if (NFS_ISV4(vp))
*ap->a_retval = ACL_MAX_ENTRIES;
else
*ap->a_retval = 3;
break;
case _PC_PRIO_IO:
*ap->a_retval = 0;
break;
case _PC_SYNC_IO:
*ap->a_retval = 0;
break;
case _PC_ALLOC_SIZE_MIN:
*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
break;
case _PC_FILESIZEBITS:
if (NFS_ISV34(vp))
*ap->a_retval = 64;
else
*ap->a_retval = 32;
break;
case _PC_REC_INCR_XFER_SIZE:
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
break;
case _PC_REC_MAX_XFER_SIZE:
*ap->a_retval = -1; /* means ``unlimited'' */
break;
case _PC_REC_MIN_XFER_SIZE:
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
break;
case _PC_REC_XFER_ALIGN:
*ap->a_retval = PAGE_SIZE;
break;
case _PC_SYMLINK_MAX:
*ap->a_retval = NFS_MAXPATHLEN;
break;
case _PC_MIN_HOLE_SIZE:
/* Only some NFSv4.2 servers support Seek for Holes. */
*ap->a_retval = 0;
nmp = VFSTONFS(vp->v_mount);
if (NFS_ISV4(vp) && nmp->nm_minorvers == NFSV42_MINORVERSION) {
/*
* NFSv4.2 doesn't have an attribute for hole size,
* so all we can do is see if the Seek operation is
* supported and then use f_iosize as a "best guess".
*/
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_privflag & NFSMNTP_SEEKTESTED) == 0) {
mtx_unlock(&nmp->nm_mtx);
off = 0;
attrflag = 0;
error = nfsrpc_seek(vp, &off, &eof,
NFSV4CONTENT_HOLE, td->td_ucred, &nfsva,
&attrflag);
if (attrflag != 0)
nfscl_loadattrcache(&vp, &nfsva,
NULL, NULL, 0, 1);
mtx_lock(&nmp->nm_mtx);
if (error == NFSERR_NOTSUPP)
nmp->nm_privflag |= NFSMNTP_SEEKTESTED;
else
nmp->nm_privflag |= NFSMNTP_SEEKTESTED |
NFSMNTP_SEEK;
error = 0;
}
if ((nmp->nm_privflag & NFSMNTP_SEEK) != 0)
*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
mtx_unlock(&nmp->nm_mtx);
}
break;
default:
error = vop_stdpathconf(ap);
break;
}
return (error);
}