freebsd-nq/sys/boot/zfs/zfsimpl.c
Toomas Soome 0e75a50173 loader: zfs toplevel vdev must have spa set.
The salt based checksum mechanisms, such as skein, are storing the seed
in spa structure, and need to access the spa to use the seed. The current
mechanism for quick access to correct spa is via pointer provided by
vdev structure, but unfortunately the current code does set spa only
for the leaf vdev. This patch will fix the issue by making sure the
loader zfs reader will set spa also for top-level vdevs.

PR:		214375
Reported by:	lstewart
Reviewed by:	allanjude, imp
Approved by:	allanjude (mentor), imp (mentor)
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D8487
2016-11-17 19:38:30 +00:00

2389 lines
52 KiB
C

/*-
* Copyright (c) 2007 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Stand-alone ZFS file reader.
*/
#include <sys/stat.h>
#include <sys/stdint.h>
#include "zfsimpl.h"
#include "zfssubr.c"
struct zfsmount {
const spa_t *spa;
objset_phys_t objset;
uint64_t rootobj;
};
/*
* List of all vdevs, chained through v_alllink.
*/
static vdev_list_t zfs_vdevs;
/*
* List of ZFS features supported for read
*/
static const char *features_for_read[] = {
"org.illumos:lz4_compress",
"com.delphix:hole_birth",
"com.delphix:extensible_dataset",
"com.delphix:embedded_data",
"org.open-zfs:large_blocks",
"org.illumos:sha512",
"org.illumos:skein",
NULL
};
/*
* List of all pools, chained through spa_link.
*/
static spa_list_t zfs_pools;
static uint64_t zfs_crc64_table[256];
static const dnode_phys_t *dnode_cache_obj = 0;
static uint64_t dnode_cache_bn;
static char *dnode_cache_buf;
static char *zap_scratch;
static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
#define TEMP_SIZE (1024 * 1024)
static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
static int zfs_get_root(const spa_t *spa, uint64_t *objid);
static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
const char *name, uint64_t integer_size, uint64_t num_integers,
void *value);
static void
zfs_init(void)
{
STAILQ_INIT(&zfs_vdevs);
STAILQ_INIT(&zfs_pools);
zfs_temp_buf = malloc(TEMP_SIZE);
zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
zfs_temp_ptr = zfs_temp_buf;
dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
zap_scratch = malloc(SPA_MAXBLOCKSIZE);
zfs_init_crc();
}
static void *
zfs_alloc(size_t size)
{
char *ptr;
if (zfs_temp_ptr + size > zfs_temp_end) {
printf("ZFS: out of temporary buffer space\n");
for (;;) ;
}
ptr = zfs_temp_ptr;
zfs_temp_ptr += size;
return (ptr);
}
static void
zfs_free(void *ptr, size_t size)
{
zfs_temp_ptr -= size;
if (zfs_temp_ptr != ptr) {
printf("ZFS: zfs_alloc()/zfs_free() mismatch\n");
for (;;) ;
}
}
static int
xdr_int(const unsigned char **xdr, int *ip)
{
*ip = ((*xdr)[0] << 24)
| ((*xdr)[1] << 16)
| ((*xdr)[2] << 8)
| ((*xdr)[3] << 0);
(*xdr) += 4;
return (0);
}
static int
xdr_u_int(const unsigned char **xdr, u_int *ip)
{
*ip = ((*xdr)[0] << 24)
| ((*xdr)[1] << 16)
| ((*xdr)[2] << 8)
| ((*xdr)[3] << 0);
(*xdr) += 4;
return (0);
}
static int
xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
{
u_int hi, lo;
xdr_u_int(xdr, &hi);
xdr_u_int(xdr, &lo);
*lp = (((uint64_t) hi) << 32) | lo;
return (0);
}
static int
nvlist_find(const unsigned char *nvlist, const char *name, int type,
int* elementsp, void *valuep)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype, elements;
const char *pairname;
xdr_int(&p, &namelen);
pairname = (const char*) p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
if (!memcmp(name, pairname, namelen) && type == pairtype) {
xdr_int(&p, &elements);
if (elementsp)
*elementsp = elements;
if (type == DATA_TYPE_UINT64) {
xdr_uint64_t(&p, (uint64_t *) valuep);
return (0);
} else if (type == DATA_TYPE_STRING) {
int len;
xdr_int(&p, &len);
(*(const char**) valuep) = (const char*) p;
return (0);
} else if (type == DATA_TYPE_NVLIST
|| type == DATA_TYPE_NVLIST_ARRAY) {
(*(const unsigned char**) valuep) =
(const unsigned char*) p;
return (0);
} else {
return (EIO);
}
} else {
/*
* Not the pair we are looking for, skip to the next one.
*/
p = pair + encoded_size;
}
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (EIO);
}
static int
nvlist_check_features_for_read(const unsigned char *nvlist)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
int rc;
rc = 0;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype;
const char *pairname;
int i, found;
found = 0;
xdr_int(&p, &namelen);
pairname = (const char*) p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
for (i = 0; features_for_read[i] != NULL; i++) {
if (!memcmp(pairname, features_for_read[i], namelen)) {
found = 1;
break;
}
}
if (!found) {
printf("ZFS: unsupported feature: %s\n", pairname);
rc = EIO;
}
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (rc);
}
/*
* Return the next nvlist in an nvlist array.
*/
static const unsigned char *
nvlist_next(const unsigned char *nvlist)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return p;
}
#ifdef TEST
static const unsigned char *
nvlist_print(const unsigned char *nvlist, unsigned int indent)
{
static const char* typenames[] = {
"DATA_TYPE_UNKNOWN",
"DATA_TYPE_BOOLEAN",
"DATA_TYPE_BYTE",
"DATA_TYPE_INT16",
"DATA_TYPE_UINT16",
"DATA_TYPE_INT32",
"DATA_TYPE_UINT32",
"DATA_TYPE_INT64",
"DATA_TYPE_UINT64",
"DATA_TYPE_STRING",
"DATA_TYPE_BYTE_ARRAY",
"DATA_TYPE_INT16_ARRAY",
"DATA_TYPE_UINT16_ARRAY",
"DATA_TYPE_INT32_ARRAY",
"DATA_TYPE_UINT32_ARRAY",
"DATA_TYPE_INT64_ARRAY",
"DATA_TYPE_UINT64_ARRAY",
"DATA_TYPE_STRING_ARRAY",
"DATA_TYPE_HRTIME",
"DATA_TYPE_NVLIST",
"DATA_TYPE_NVLIST_ARRAY",
"DATA_TYPE_BOOLEAN_VALUE",
"DATA_TYPE_INT8",
"DATA_TYPE_UINT8",
"DATA_TYPE_BOOLEAN_ARRAY",
"DATA_TYPE_INT8_ARRAY",
"DATA_TYPE_UINT8_ARRAY"
};
unsigned int i, j;
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype, elements;
const char *pairname;
xdr_int(&p, &namelen);
pairname = (const char*) p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
for (i = 0; i < indent; i++)
printf(" ");
printf("%s %s", typenames[pairtype], pairname);
xdr_int(&p, &elements);
switch (pairtype) {
case DATA_TYPE_UINT64: {
uint64_t val;
xdr_uint64_t(&p, &val);
printf(" = 0x%jx\n", (uintmax_t)val);
break;
}
case DATA_TYPE_STRING: {
int len;
xdr_int(&p, &len);
printf(" = \"%s\"\n", p);
break;
}
case DATA_TYPE_NVLIST:
printf("\n");
nvlist_print(p, indent + 1);
break;
case DATA_TYPE_NVLIST_ARRAY:
for (j = 0; j < elements; j++) {
printf("[%d]\n", j);
p = nvlist_print(p, indent + 1);
if (j != elements - 1) {
for (i = 0; i < indent; i++)
printf(" ");
printf("%s %s", typenames[pairtype], pairname);
}
}
break;
default:
printf("\n");
}
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return p;
}
#endif
static int
vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t size)
{
size_t psize;
int rc;
if (!vdev->v_phys_read)
return (EIO);
if (bp) {
psize = BP_GET_PSIZE(bp);
} else {
psize = size;
}
/*printf("ZFS: reading %d bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
if (rc)
return (rc);
if (bp && zio_checksum_verify(vdev->spa, bp, buf))
return (EIO);
return (0);
}
static int
vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
return (vdev_read_phys(vdev, bp, buf,
offset + VDEV_LABEL_START_SIZE, bytes));
}
static int
vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
vdev_t *kid;
int rc;
rc = EIO;
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
if (kid->v_state != VDEV_STATE_HEALTHY)
continue;
rc = kid->v_read(kid, bp, buf, offset, bytes);
if (!rc)
return (0);
}
return (rc);
}
static int
vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
vdev_t *kid;
/*
* Here we should have two kids:
* First one which is the one we are replacing and we can trust
* only this one to have valid data, but it might not be present.
* Second one is that one we are replacing with. It is most likely
* healthy, but we can't trust it has needed data, so we won't use it.
*/
kid = STAILQ_FIRST(&vdev->v_children);
if (kid == NULL)
return (EIO);
if (kid->v_state != VDEV_STATE_HEALTHY)
return (EIO);
return (kid->v_read(kid, bp, buf, offset, bytes));
}
static vdev_t *
vdev_find(uint64_t guid)
{
vdev_t *vdev;
STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
if (vdev->v_guid == guid)
return (vdev);
return (0);
}
static vdev_t *
vdev_create(uint64_t guid, vdev_read_t *read)
{
vdev_t *vdev;
vdev = malloc(sizeof(vdev_t));
memset(vdev, 0, sizeof(vdev_t));
STAILQ_INIT(&vdev->v_children);
vdev->v_guid = guid;
vdev->v_state = VDEV_STATE_OFFLINE;
vdev->v_read = read;
vdev->v_phys_read = 0;
vdev->v_read_priv = 0;
STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
return (vdev);
}
static int
vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
vdev_t **vdevp, int is_newer)
{
int rc;
uint64_t guid, id, ashift, nparity;
const char *type;
const char *path;
vdev_t *vdev, *kid;
const unsigned char *kids;
int nkids, i, is_new;
uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID,
DATA_TYPE_UINT64, 0, &guid)
|| nvlist_find(nvlist, ZPOOL_CONFIG_ID,
DATA_TYPE_UINT64, 0, &id)
|| nvlist_find(nvlist, ZPOOL_CONFIG_TYPE,
DATA_TYPE_STRING, 0, &type)) {
printf("ZFS: can't find vdev details\n");
return (ENOENT);
}
if (strcmp(type, VDEV_TYPE_MIRROR)
&& strcmp(type, VDEV_TYPE_DISK)
#ifdef ZFS_TEST
&& strcmp(type, VDEV_TYPE_FILE)
#endif
&& strcmp(type, VDEV_TYPE_RAIDZ)
&& strcmp(type, VDEV_TYPE_REPLACING)) {
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
return (EIO);
}
is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, 0,
&is_offline);
nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, 0,
&is_removed);
nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, 0,
&is_faulted);
nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 0,
&is_degraded);
nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 0,
&isnt_present);
vdev = vdev_find(guid);
if (!vdev) {
is_new = 1;
if (!strcmp(type, VDEV_TYPE_MIRROR))
vdev = vdev_create(guid, vdev_mirror_read);
else if (!strcmp(type, VDEV_TYPE_RAIDZ))
vdev = vdev_create(guid, vdev_raidz_read);
else if (!strcmp(type, VDEV_TYPE_REPLACING))
vdev = vdev_create(guid, vdev_replacing_read);
else
vdev = vdev_create(guid, vdev_disk_read);
vdev->v_id = id;
vdev->v_top = pvdev != NULL ? pvdev : vdev;
if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
DATA_TYPE_UINT64, 0, &ashift) == 0)
vdev->v_ashift = ashift;
else
vdev->v_ashift = 0;
if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
DATA_TYPE_UINT64, 0, &nparity) == 0)
vdev->v_nparity = nparity;
else
vdev->v_nparity = 0;
if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
DATA_TYPE_STRING, 0, &path) == 0) {
if (strncmp(path, "/dev/", 5) == 0)
path += 5;
vdev->v_name = strdup(path);
} else {
if (!strcmp(type, "raidz")) {
if (vdev->v_nparity == 1)
vdev->v_name = "raidz1";
else if (vdev->v_nparity == 2)
vdev->v_name = "raidz2";
else if (vdev->v_nparity == 3)
vdev->v_name = "raidz3";
else {
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
return (EIO);
}
} else {
vdev->v_name = strdup(type);
}
}
} else {
is_new = 0;
}
if (is_new || is_newer) {
/*
* This is either new vdev or we've already seen this vdev,
* but from an older vdev label, so let's refresh its state
* from the newer label.
*/
if (is_offline)
vdev->v_state = VDEV_STATE_OFFLINE;
else if (is_removed)
vdev->v_state = VDEV_STATE_REMOVED;
else if (is_faulted)
vdev->v_state = VDEV_STATE_FAULTED;
else if (is_degraded)
vdev->v_state = VDEV_STATE_DEGRADED;
else if (isnt_present)
vdev->v_state = VDEV_STATE_CANT_OPEN;
}
rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN,
DATA_TYPE_NVLIST_ARRAY, &nkids, &kids);
/*
* Its ok if we don't have any kids.
*/
if (rc == 0) {
vdev->v_nchildren = nkids;
for (i = 0; i < nkids; i++) {
rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
if (rc)
return (rc);
if (is_new)
STAILQ_INSERT_TAIL(&vdev->v_children, kid,
v_childlink);
kids = nvlist_next(kids);
}
} else {
vdev->v_nchildren = 0;
}
if (vdevp)
*vdevp = vdev;
return (0);
}
static void
vdev_set_state(vdev_t *vdev)
{
vdev_t *kid;
int good_kids;
int bad_kids;
/*
* A mirror or raidz is healthy if all its kids are healthy. A
* mirror is degraded if any of its kids is healthy; a raidz
* is degraded if at most nparity kids are offline.
*/
if (STAILQ_FIRST(&vdev->v_children)) {
good_kids = 0;
bad_kids = 0;
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
if (kid->v_state == VDEV_STATE_HEALTHY)
good_kids++;
else
bad_kids++;
}
if (bad_kids == 0) {
vdev->v_state = VDEV_STATE_HEALTHY;
} else {
if (vdev->v_read == vdev_mirror_read) {
if (good_kids) {
vdev->v_state = VDEV_STATE_DEGRADED;
} else {
vdev->v_state = VDEV_STATE_OFFLINE;
}
} else if (vdev->v_read == vdev_raidz_read) {
if (bad_kids > vdev->v_nparity) {
vdev->v_state = VDEV_STATE_OFFLINE;
} else {
vdev->v_state = VDEV_STATE_DEGRADED;
}
}
}
}
}
static spa_t *
spa_find_by_guid(uint64_t guid)
{
spa_t *spa;
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
if (spa->spa_guid == guid)
return (spa);
return (0);
}
static spa_t *
spa_find_by_name(const char *name)
{
spa_t *spa;
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
if (!strcmp(spa->spa_name, name))
return (spa);
return (0);
}
#ifdef BOOT2
static spa_t *
spa_get_primary(void)
{
return (STAILQ_FIRST(&zfs_pools));
}
static vdev_t *
spa_get_primary_vdev(const spa_t *spa)
{
vdev_t *vdev;
vdev_t *kid;
if (spa == NULL)
spa = spa_get_primary();
if (spa == NULL)
return (NULL);
vdev = STAILQ_FIRST(&spa->spa_vdevs);
if (vdev == NULL)
return (NULL);
for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
kid = STAILQ_FIRST(&vdev->v_children))
vdev = kid;
return (vdev);
}
#endif
static spa_t *
spa_create(uint64_t guid)
{
spa_t *spa;
spa = malloc(sizeof(spa_t));
memset(spa, 0, sizeof(spa_t));
STAILQ_INIT(&spa->spa_vdevs);
spa->spa_guid = guid;
STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
return (spa);
}
static const char *
state_name(vdev_state_t state)
{
static const char* names[] = {
"UNKNOWN",
"CLOSED",
"OFFLINE",
"REMOVED",
"CANT_OPEN",
"FAULTED",
"DEGRADED",
"ONLINE"
};
return names[state];
}
#ifdef BOOT2
#define pager_printf printf
#else
static int
pager_printf(const char *fmt, ...)
{
char line[80];
va_list args;
va_start(args, fmt);
vsprintf(line, fmt, args);
va_end(args);
return (pager_output(line));
}
#endif
#define STATUS_FORMAT " %s %s\n"
static int
print_state(int indent, const char *name, vdev_state_t state)
{
int i;
char buf[512];
buf[0] = 0;
for (i = 0; i < indent; i++)
strcat(buf, " ");
strcat(buf, name);
return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
}
static int
vdev_status(vdev_t *vdev, int indent)
{
vdev_t *kid;
int ret;
ret = print_state(indent, vdev->v_name, vdev->v_state);
if (ret != 0)
return (ret);
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
ret = vdev_status(kid, indent + 1);
if (ret != 0)
return (ret);
}
return (ret);
}
static int
spa_status(spa_t *spa)
{
static char bootfs[ZFS_MAXNAMELEN];
uint64_t rootid;
vdev_t *vdev;
int good_kids, bad_kids, degraded_kids, ret;
vdev_state_t state;
ret = pager_printf(" pool: %s\n", spa->spa_name);
if (ret != 0)
return (ret);
if (zfs_get_root(spa, &rootid) == 0 &&
zfs_rlookup(spa, rootid, bootfs) == 0) {
if (bootfs[0] == '\0')
ret = pager_printf("bootfs: %s\n", spa->spa_name);
else
ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
bootfs);
if (ret != 0)
return (ret);
}
ret = pager_printf("config:\n\n");
if (ret != 0)
return (ret);
ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
if (ret != 0)
return (ret);
good_kids = 0;
degraded_kids = 0;
bad_kids = 0;
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
if (vdev->v_state == VDEV_STATE_HEALTHY)
good_kids++;
else if (vdev->v_state == VDEV_STATE_DEGRADED)
degraded_kids++;
else
bad_kids++;
}
state = VDEV_STATE_CLOSED;
if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
state = VDEV_STATE_HEALTHY;
else if ((good_kids + degraded_kids) > 0)
state = VDEV_STATE_DEGRADED;
ret = print_state(0, spa->spa_name, state);
if (ret != 0)
return (ret);
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
ret = vdev_status(vdev, 1);
if (ret != 0)
return (ret);
}
return (ret);
}
static int
spa_all_status(void)
{
spa_t *spa;
int first = 1, ret = 0;
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
if (!first) {
ret = pager_printf("\n");
if (ret != 0)
return (ret);
}
first = 0;
ret = spa_status(spa);
if (ret != 0)
return (ret);
}
return (ret);
}
static int
vdev_probe(vdev_phys_read_t *read, void *read_priv, spa_t **spap)
{
vdev_t vtmp;
vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch;
spa_t *spa;
vdev_t *vdev, *top_vdev, *pool_vdev;
off_t off;
blkptr_t bp;
const unsigned char *nvlist;
uint64_t val;
uint64_t guid;
uint64_t pool_txg, pool_guid;
uint64_t is_log;
const char *pool_name;
const unsigned char *vdevs;
const unsigned char *features;
int i, rc, is_newer;
char *upbuf;
const struct uberblock *up;
/*
* Load the vdev label and figure out which
* uberblock is most current.
*/
memset(&vtmp, 0, sizeof(vtmp));
vtmp.v_phys_read = read;
vtmp.v_read_priv = read_priv;
off = offsetof(vdev_label_t, vl_vdev_phys);
BP_ZERO(&bp);
BP_SET_LSIZE(&bp, sizeof(vdev_phys_t));
BP_SET_PSIZE(&bp, sizeof(vdev_phys_t));
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
if (vdev_read_phys(&vtmp, &bp, vdev_label, off, 0))
return (EIO);
if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) {
return (EIO);
}
nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4;
if (nvlist_find(nvlist,
ZPOOL_CONFIG_VERSION,
DATA_TYPE_UINT64, 0, &val)) {
return (EIO);
}
if (!SPA_VERSION_IS_SUPPORTED(val)) {
printf("ZFS: unsupported ZFS version %u (should be %u)\n",
(unsigned) val, (unsigned) SPA_VERSION);
return (EIO);
}
/* Check ZFS features for read */
if (nvlist_find(nvlist,
ZPOOL_CONFIG_FEATURES_FOR_READ,
DATA_TYPE_NVLIST, 0, &features) == 0
&& nvlist_check_features_for_read(features) != 0)
return (EIO);
if (nvlist_find(nvlist,
ZPOOL_CONFIG_POOL_STATE,
DATA_TYPE_UINT64, 0, &val)) {
return (EIO);
}
if (val == POOL_STATE_DESTROYED) {
/* We don't boot only from destroyed pools. */
return (EIO);
}
if (nvlist_find(nvlist,
ZPOOL_CONFIG_POOL_TXG,
DATA_TYPE_UINT64, 0, &pool_txg)
|| nvlist_find(nvlist,
ZPOOL_CONFIG_POOL_GUID,
DATA_TYPE_UINT64, 0, &pool_guid)
|| nvlist_find(nvlist,
ZPOOL_CONFIG_POOL_NAME,
DATA_TYPE_STRING, 0, &pool_name)) {
/*
* Cache and spare devices end up here - just ignore
* them.
*/
/*printf("ZFS: can't find pool details\n");*/
return (EIO);
}
is_log = 0;
(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 0,
&is_log);
if (is_log)
return (EIO);
/*
* Create the pool if this is the first time we've seen it.
*/
spa = spa_find_by_guid(pool_guid);
if (!spa) {
spa = spa_create(pool_guid);
spa->spa_name = strdup(pool_name);
}
if (pool_txg > spa->spa_txg) {
spa->spa_txg = pool_txg;
is_newer = 1;
} else
is_newer = 0;
/*
* Get the vdev tree and create our in-core copy of it.
* If we already have a vdev with this guid, this must
* be some kind of alias (overlapping slices, dangerously dedicated
* disks etc).
*/
if (nvlist_find(nvlist,
ZPOOL_CONFIG_GUID,
DATA_TYPE_UINT64, 0, &guid)) {
return (EIO);
}
vdev = vdev_find(guid);
if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */
return (EIO);
if (nvlist_find(nvlist,
ZPOOL_CONFIG_VDEV_TREE,
DATA_TYPE_NVLIST, 0, &vdevs)) {
return (EIO);
}
rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
if (rc)
return (rc);
/*
* Add the toplevel vdev to the pool if its not already there.
*/
STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
if (top_vdev == pool_vdev)
break;
if (!pool_vdev && top_vdev) {
top_vdev->spa = spa;
STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
}
/*
* We should already have created an incomplete vdev for this
* vdev. Find it and initialise it with our read proc.
*/
vdev = vdev_find(guid);
if (vdev) {
vdev->v_phys_read = read;
vdev->v_read_priv = read_priv;
vdev->v_state = VDEV_STATE_HEALTHY;
} else {
printf("ZFS: inconsistent nvlist contents\n");
return (EIO);
}
/*
* Re-evaluate top-level vdev state.
*/
vdev_set_state(top_vdev);
/*
* Ok, we are happy with the pool so far. Lets find
* the best uberblock and then we can actually access
* the contents of the pool.
*/
upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev));
up = (const struct uberblock *)upbuf;
for (i = 0;
i < VDEV_UBERBLOCK_COUNT(vdev);
i++) {
off = VDEV_UBERBLOCK_OFFSET(vdev, i);
BP_ZERO(&bp);
DVA_SET_OFFSET(&bp.blk_dva[0], off);
BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
if (vdev_read_phys(vdev, &bp, upbuf, off, 0))
continue;
if (up->ub_magic != UBERBLOCK_MAGIC)
continue;
if (up->ub_txg < spa->spa_txg)
continue;
if (up->ub_txg > spa->spa_uberblock.ub_txg) {
spa->spa_uberblock = *up;
} else if (up->ub_txg == spa->spa_uberblock.ub_txg) {
if (up->ub_timestamp > spa->spa_uberblock.ub_timestamp)
spa->spa_uberblock = *up;
}
}
zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev));
vdev->spa = spa;
if (spap)
*spap = spa;
return (0);
}
static int
ilog2(int n)
{
int v;
for (v = 0; v < 32; v++)
if (n == (1 << v))
return v;
return -1;
}
static int
zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
{
blkptr_t gbh_bp;
zio_gbh_phys_t zio_gb;
char *pbuf;
int i;
/* Artificial BP for gang block header. */
gbh_bp = *bp;
BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
for (i = 0; i < SPA_DVAS_PER_BP; i++)
DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
/* Read gang header block using the artificial BP. */
if (zio_read(spa, &gbh_bp, &zio_gb))
return (EIO);
pbuf = buf;
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
blkptr_t *gbp = &zio_gb.zg_blkptr[i];
if (BP_IS_HOLE(gbp))
continue;
if (zio_read(spa, gbp, pbuf))
return (EIO);
pbuf += BP_GET_PSIZE(gbp);
}
if (zio_checksum_verify(spa, bp, buf))
return (EIO);
return (0);
}
static int
zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
{
int cpfunc = BP_GET_COMPRESS(bp);
uint64_t align, size;
void *pbuf;
int i, error;
/*
* Process data embedded in block pointer
*/
if (BP_IS_EMBEDDED(bp)) {
ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
size = BPE_GET_PSIZE(bp);
ASSERT(size <= BPE_PAYLOAD_SIZE);
if (cpfunc != ZIO_COMPRESS_OFF)
pbuf = zfs_alloc(size);
else
pbuf = buf;
decode_embedded_bp_compressed(bp, pbuf);
error = 0;
if (cpfunc != ZIO_COMPRESS_OFF) {
error = zio_decompress_data(cpfunc, pbuf,
size, buf, BP_GET_LSIZE(bp));
zfs_free(pbuf, size);
}
if (error != 0)
printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n",
error);
return (error);
}
error = EIO;
for (i = 0; i < SPA_DVAS_PER_BP; i++) {
const dva_t *dva = &bp->blk_dva[i];
vdev_t *vdev;
int vdevid;
off_t offset;
if (!dva->dva_word[0] && !dva->dva_word[1])
continue;
vdevid = DVA_GET_VDEV(dva);
offset = DVA_GET_OFFSET(dva);
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
if (vdev->v_id == vdevid)
break;
}
if (!vdev || !vdev->v_read)
continue;
size = BP_GET_PSIZE(bp);
if (vdev->v_read == vdev_raidz_read) {
align = 1ULL << vdev->v_top->v_ashift;
if (P2PHASE(size, align) != 0)
size = P2ROUNDUP(size, align);
}
if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
pbuf = zfs_alloc(size);
else
pbuf = buf;
if (DVA_GET_GANG(dva))
error = zio_read_gang(spa, bp, pbuf);
else
error = vdev->v_read(vdev, bp, pbuf, offset, size);
if (error == 0) {
if (cpfunc != ZIO_COMPRESS_OFF)
error = zio_decompress_data(cpfunc, pbuf,
BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
else if (size != BP_GET_PSIZE(bp))
bcopy(pbuf, buf, BP_GET_PSIZE(bp));
}
if (buf != pbuf)
zfs_free(pbuf, size);
if (error == 0)
break;
}
if (error != 0)
printf("ZFS: i/o error - all block copies unavailable\n");
return (error);
}
static int
dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
{
int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
int nlevels = dnode->dn_nlevels;
int i, rc;
if (bsize > SPA_MAXBLOCKSIZE) {
printf("ZFS: I/O error - blocks larger than %llu are not "
"supported\n", SPA_MAXBLOCKSIZE);
return (EIO);
}
/*
* Note: bsize may not be a power of two here so we need to do an
* actual divide rather than a bitshift.
*/
while (buflen > 0) {
uint64_t bn = offset / bsize;
int boff = offset % bsize;
int ibn;
const blkptr_t *indbp;
blkptr_t bp;
if (bn > dnode->dn_maxblkid)
return (EIO);
if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
goto cached;
indbp = dnode->dn_blkptr;
for (i = 0; i < nlevels; i++) {
/*
* Copy the bp from the indirect array so that
* we can re-use the scratch buffer for multi-level
* objects.
*/
ibn = bn >> ((nlevels - i - 1) * ibshift);
ibn &= ((1 << ibshift) - 1);
bp = indbp[ibn];
if (BP_IS_HOLE(&bp)) {
memset(dnode_cache_buf, 0, bsize);
break;
}
rc = zio_read(spa, &bp, dnode_cache_buf);
if (rc)
return (rc);
indbp = (const blkptr_t *) dnode_cache_buf;
}
dnode_cache_obj = dnode;
dnode_cache_bn = bn;
cached:
/*
* The buffer contains our data block. Copy what we
* need from it and loop.
*/
i = bsize - boff;
if (i > buflen) i = buflen;
memcpy(buf, &dnode_cache_buf[boff], i);
buf = ((char*) buf) + i;
offset += i;
buflen -= i;
}
return (0);
}
/*
* Lookup a value in a microzap directory. Assumes that the zap
* scratch buffer contains the directory contents.
*/
static int
mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *) zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (!strcmp(mze->mze_name, name)) {
*value = mze->mze_value;
return (0);
}
}
return (ENOENT);
}
/*
* Compare a name with a zap leaf entry. Return non-zero if the name
* matches.
*/
static int
fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
{
size_t namelen;
const zap_leaf_chunk_t *nc;
const char *p;
namelen = zc->l_entry.le_name_numints;
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
size_t len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
if (memcmp(p, nc->l_array.la_array, len))
return (0);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
}
return 1;
}
/*
* Extract a uint64_t value from a zap leaf entry.
*/
static uint64_t
fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
{
const zap_leaf_chunk_t *vc;
int i;
uint64_t value;
const uint8_t *p;
vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
value = (value << 8) | p[i];
}
return value;
}
static void
stv(int len, void *addr, uint64_t value)
{
switch (len) {
case 1:
*(uint8_t *)addr = value;
return;
case 2:
*(uint16_t *)addr = value;
return;
case 4:
*(uint32_t *)addr = value;
return;
case 8:
*(uint64_t *)addr = value;
return;
}
}
/*
* Extract a array from a zap leaf entry.
*/
static void
fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
uint64_t integer_size, uint64_t num_integers, void *buf)
{
uint64_t array_int_len = zc->l_entry.le_value_intlen;
uint64_t value = 0;
uint64_t *u64 = buf;
char *p = buf;
int len = MIN(zc->l_entry.le_value_numints, num_integers);
int chunk = zc->l_entry.le_value_chunk;
int byten = 0;
if (integer_size == 8 && len == 1) {
*u64 = fzap_leaf_value(zl, zc);
return;
}
while (len > 0) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
int i;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
value = (value << 8) | la->la_array[i];
byten++;
if (byten == array_int_len) {
stv(integer_size, p, value);
byten = 0;
len--;
if (len == 0)
return;
p += integer_size;
}
}
chunk = la->la_next;
}
}
/*
* Lookup a value in a fatzap directory. Assumes that the zap scratch
* buffer contains the directory header.
*/
static int
fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
uint64_t integer_size, uint64_t num_integers, void *value)
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
fat_zap_t z;
uint64_t *ptrtbl;
uint64_t hash;
int rc;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *) zap_scratch;
/*
* Figure out where the pointer table is and read it in if necessary.
*/
if (zh.zap_ptrtbl.zt_blk) {
rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
zap_scratch, bsize);
if (rc)
return (rc);
ptrtbl = (uint64_t *) zap_scratch;
} else {
ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
}
hash = zap_hash(zh.zap_salt, name);
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
zap_leaf_chunk_t *zc;
rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
if (rc)
return (rc);
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
/*
* Make sure this chunk matches our hash.
*/
if (zl.l_phys->l_hdr.lh_prefix_len > 0
&& zl.l_phys->l_hdr.lh_prefix
!= hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
return (ENOENT);
/*
* Hash within the chunk to find our entry.
*/
int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
h = zl.l_phys->l_hash[h];
if (h == 0xffff)
return (ENOENT);
zc = &ZAP_LEAF_CHUNK(&zl, h);
while (zc->l_entry.le_hash != hash) {
if (zc->l_entry.le_next == 0xffff) {
zc = 0;
break;
}
zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
}
if (fzap_name_equal(&zl, zc, name)) {
if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
integer_size * num_integers)
return (E2BIG);
fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
return (0);
}
return (ENOENT);
}
/*
* Lookup a name in a zap object and return its value as a uint64_t.
*/
static int
zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
uint64_t integer_size, uint64_t num_integers, void *value)
{
int rc;
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
if (rc)
return (rc);
zap_type = *(uint64_t *) zap_scratch;
if (zap_type == ZBT_MICRO)
return mzap_lookup(dnode, name, value);
else if (zap_type == ZBT_HEADER) {
return fzap_lookup(spa, dnode, name, integer_size,
num_integers, value);
}
printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
return (EIO);
}
/*
* List a microzap directory. Assumes that the zap scratch buffer contains
* the directory contents.
*/
static int
mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i, rc;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *) zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (mze->mze_name[0]) {
rc = callback(mze->mze_name, mze->mze_value);
if (rc != 0)
return (rc);
}
}
return (0);
}
/*
* List a fatzap directory. Assumes that the zap scratch buffer contains
* the directory header.
*/
static int
fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
fat_zap_t z;
int i, j, rc;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *) zap_scratch;
/*
* This assumes that the leaf blocks start at block 1. The
* documentation isn't exactly clear on this.
*/
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
for (i = 0; i < zh.zap_num_leafs; i++) {
off_t off = (i + 1) << zl.l_bs;
char name[256], *p;
uint64_t value;
if (dnode_read(spa, dnode, off, zap_scratch, bsize))
return (EIO);
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
zap_leaf_chunk_t *zc, *nc;
int namelen;
zc = &ZAP_LEAF_CHUNK(&zl, j);
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
continue;
namelen = zc->l_entry.le_name_numints;
if (namelen > sizeof(name))
namelen = sizeof(name);
/*
* Paste the name back together.
*/
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
int len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
}
/*
* Assume the first eight bytes of the value are
* a uint64_t.
*/
value = fzap_leaf_value(&zl, zc);
//printf("%s 0x%jx\n", name, (uintmax_t)value);
rc = callback((const char *)name, value);
if (rc != 0)
return (rc);
}
}
return (0);
}
static int zfs_printf(const char *name, uint64_t value __unused)
{
printf("%s\n", name);
return (0);
}
/*
* List a zap directory.
*/
static int
zap_list(const spa_t *spa, const dnode_phys_t *dnode)
{
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec * 512;
if (dnode_read(spa, dnode, 0, zap_scratch, size))
return (EIO);
zap_type = *(uint64_t *) zap_scratch;
if (zap_type == ZBT_MICRO)
return mzap_list(dnode, zfs_printf);
else
return fzap_list(spa, dnode, zfs_printf);
}
static int
objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
{
off_t offset;
offset = objnum * sizeof(dnode_phys_t);
return dnode_read(spa, &os->os_meta_dnode, offset,
dnode, sizeof(dnode_phys_t));
}
static int
mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *) zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (value == mze->mze_value) {
strcpy(name, mze->mze_name);
return (0);
}
}
return (ENOENT);
}
static void
fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
{
size_t namelen;
const zap_leaf_chunk_t *nc;
char *p;
namelen = zc->l_entry.le_name_numints;
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
size_t len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
}
*p = '\0';
}
static int
fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
fat_zap_t z;
int i, j;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *) zap_scratch;
/*
* This assumes that the leaf blocks start at block 1. The
* documentation isn't exactly clear on this.
*/
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
for (i = 0; i < zh.zap_num_leafs; i++) {
off_t off = (i + 1) << zl.l_bs;
if (dnode_read(spa, dnode, off, zap_scratch, bsize))
return (EIO);
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
zap_leaf_chunk_t *zc;
zc = &ZAP_LEAF_CHUNK(&zl, j);
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
continue;
if (zc->l_entry.le_value_intlen != 8 ||
zc->l_entry.le_value_numints != 1)
continue;
if (fzap_leaf_value(&zl, zc) == value) {
fzap_name_copy(&zl, zc, name);
return (0);
}
}
}
return (ENOENT);
}
static int
zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
{
int rc;
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec * 512;
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
if (rc)
return (rc);
zap_type = *(uint64_t *) zap_scratch;
if (zap_type == ZBT_MICRO)
return mzap_rlookup(spa, dnode, name, value);
else
return fzap_rlookup(spa, dnode, name, value);
}
static int
zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
{
char name[256];
char component[256];
uint64_t dir_obj, parent_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dataset, dir, parent;
dsl_dir_phys_t *dd;
dsl_dataset_phys_t *ds;
char *p;
int len;
p = &name[sizeof(name) - 1];
*p = '\0';
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
for (;;) {
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
return (EIO);
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
/* Actual loop condition. */
parent_obj = dd->dd_parent_obj;
if (parent_obj == 0)
break;
if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
return (EIO);
dd = (dsl_dir_phys_t *)&parent.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
return (EIO);
if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
return (EIO);
len = strlen(component);
p -= len;
memcpy(p, component, len);
--p;
*p = '/';
/* Actual loop iteration. */
dir_obj = parent_obj;
}
if (*p != '\0')
++p;
strcpy(result, p);
return (0);
}
static int
zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
{
char element[256];
uint64_t dir_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dir;
dsl_dir_phys_t *dd;
const char *p, *q;
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
return (EIO);
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
1, &dir_obj))
return (EIO);
p = name;
for (;;) {
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
return (EIO);
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
while (*p == '/')
p++;
/* Actual loop condition #1. */
if (*p == '\0')
break;
q = strchr(p, '/');
if (q) {
memcpy(element, p, q - p);
element[q - p] = '\0';
p = q + 1;
} else {
strcpy(element, p);
p += strlen(p);
}
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
return (EIO);
/* Actual loop condition #2. */
if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
1, &dir_obj) != 0)
return (ENOENT);
}
*objnum = dd->dd_head_dataset_obj;
return (0);
}
#ifndef BOOT2
static int
zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
{
uint64_t dir_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dir, dataset;
dsl_dataset_phys_t *ds;
dsl_dir_phys_t *dd;
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
return (EIO);
}
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
return (EIO);
}
return (zap_list(spa, &child_dir_zap) != 0);
}
int
zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t))
{
uint64_t dir_obj, child_dir_zapobj, zap_type;
dnode_phys_t child_dir_zap, dir, dataset;
dsl_dataset_phys_t *ds;
dsl_dir_phys_t *dd;
int err;
err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
if (err != 0) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (err);
}
ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
if (err != 0) {
printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
return (err);
}
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap);
if (err != 0) {
printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
return (err);
}
err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512);
if (err != 0)
return (err);
zap_type = *(uint64_t *) zap_scratch;
if (zap_type == ZBT_MICRO)
return mzap_list(&child_dir_zap, callback);
else
return fzap_list(spa, &child_dir_zap, callback);
}
#endif
/*
* Find the object set given the object number of its dataset object
* and return its details in *objset
*/
static int
zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
{
dnode_phys_t dataset;
dsl_dataset_phys_t *ds;
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
if (zio_read(spa, &ds->ds_bp, objset)) {
printf("ZFS: can't read object set for dataset %ju\n",
(uintmax_t)objnum);
return (EIO);
}
return (0);
}
/*
* Find the object set pointed to by the BOOTFS property or the root
* dataset if there is none and return its details in *objset
*/
static int
zfs_get_root(const spa_t *spa, uint64_t *objid)
{
dnode_phys_t dir, propdir;
uint64_t props, bootfs, root;
*objid = 0;
/*
* Start with the MOS directory object.
*/
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
printf("ZFS: can't read MOS object directory\n");
return (EIO);
}
/*
* Lookup the pool_props and see if we can find a bootfs.
*/
if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0
&& objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
&& zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0
&& bootfs != 0)
{
*objid = bootfs;
return (0);
}
/*
* Lookup the root dataset directory
*/
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root)
|| objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
printf("ZFS: can't find root dsl_dir\n");
return (EIO);
}
/*
* Use the information from the dataset directory's bonus buffer
* to find the dataset object and from that the object set itself.
*/
dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
*objid = dd->dd_head_dataset_obj;
return (0);
}
static int
zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
{
mount->spa = spa;
/*
* Find the root object set if not explicitly provided
*/
if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
printf("ZFS: can't find root filesystem\n");
return (EIO);
}
if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
printf("ZFS: can't open root filesystem\n");
return (EIO);
}
mount->rootobj = rootobj;
return (0);
}
/*
* callback function for feature name checks.
*/
static int
check_feature(const char *name, uint64_t value)
{
int i;
if (value == 0)
return (0);
if (name[0] == '\0')
return (0);
for (i = 0; features_for_read[i] != NULL; i++) {
if (strcmp(name, features_for_read[i]) == 0)
return (0);
}
printf("ZFS: unsupported feature: %s\n", name);
return (EIO);
}
/*
* Checks whether the MOS features that are active are supported.
*/
static int
check_mos_features(const spa_t *spa)
{
dnode_phys_t dir;
uint64_t objnum, zap_type;
size_t size;
int rc;
if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
&dir)) != 0)
return (rc);
if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
sizeof (objnum), 1, &objnum)) != 0) {
/*
* It is older pool without features. As we have already
* tested the label, just return without raising the error.
*/
return (0);
}
if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
return (rc);
if (dir.dn_type != DMU_OTN_ZAP_METADATA)
return (EIO);
size = dir.dn_datablkszsec * 512;
if (dnode_read(spa, &dir, 0, zap_scratch, size))
return (EIO);
zap_type = *(uint64_t *) zap_scratch;
if (zap_type == ZBT_MICRO)
rc = mzap_list(&dir, check_feature);
else
rc = fzap_list(spa, &dir, check_feature);
return (rc);
}
static int
zfs_spa_init(spa_t *spa)
{
dnode_phys_t dir;
int rc;
if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
return (EIO);
}
if (spa->spa_mos.os_type != DMU_OST_META) {
printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
return (EIO);
}
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
&dir)) {
printf("ZFS: failed to read pool %s directory object\n",
spa->spa_name);
return (EIO);
}
/* this is allowed to fail, older pools do not have salt */
rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
sizeof (spa->spa_cksum_salt.zcs_bytes),
spa->spa_cksum_salt.zcs_bytes);
rc = check_mos_features(spa);
if (rc != 0) {
printf("ZFS: pool %s is not supported\n", spa->spa_name);
}
return (rc);
}
static int
zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
{
if (dn->dn_bonustype != DMU_OT_SA) {
znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
sb->st_mode = zp->zp_mode;
sb->st_uid = zp->zp_uid;
sb->st_gid = zp->zp_gid;
sb->st_size = zp->zp_size;
} else {
sa_hdr_phys_t *sahdrp;
int hdrsize;
size_t size = 0;
void *buf = NULL;
if (dn->dn_bonuslen != 0)
sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
else {
if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
blkptr_t *bp = &dn->dn_spill;
int error;
size = BP_GET_LSIZE(bp);
buf = zfs_alloc(size);
error = zio_read(spa, bp, buf);
if (error != 0) {
zfs_free(buf, size);
return (error);
}
sahdrp = buf;
} else {
return (EIO);
}
}
hdrsize = SA_HDR_SIZE(sahdrp);
sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_MODE_OFFSET);
sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_UID_OFFSET);
sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_GID_OFFSET);
sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_SIZE_OFFSET);
if (buf != NULL)
zfs_free(buf, size);
}
return (0);
}
/*
* Lookup a file and return its dnode.
*/
static int
zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
{
int rc;
uint64_t objnum, rootnum, parentnum;
const spa_t *spa;
dnode_phys_t dn;
const char *p, *q;
char element[256];
char path[1024];
int symlinks_followed = 0;
struct stat sb;
spa = mount->spa;
if (mount->objset.os_type != DMU_OST_ZFS) {
printf("ZFS: unexpected object set type %ju\n",
(uintmax_t)mount->objset.os_type);
return (EIO);
}
/*
* Get the root directory dnode.
*/
rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
if (rc)
return (rc);
rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (rootnum), 1, &rootnum);
if (rc)
return (rc);
rc = objset_get_dnode(spa, &mount->objset, rootnum, &dn);
if (rc)
return (rc);
objnum = rootnum;
p = upath;
while (p && *p) {
while (*p == '/')
p++;
if (!*p)
break;
q = strchr(p, '/');
if (q) {
memcpy(element, p, q - p);
element[q - p] = 0;
p = q;
} else {
strcpy(element, p);
p = 0;
}
rc = zfs_dnode_stat(spa, &dn, &sb);
if (rc)
return (rc);
if (!S_ISDIR(sb.st_mode))
return (ENOTDIR);
parentnum = objnum;
rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
if (rc)
return (rc);
objnum = ZFS_DIRENT_OBJ(objnum);
rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
if (rc)
return (rc);
/*
* Check for symlink.
*/
rc = zfs_dnode_stat(spa, &dn, &sb);
if (rc)
return (rc);
if (S_ISLNK(sb.st_mode)) {
if (symlinks_followed > 10)
return (EMLINK);
symlinks_followed++;
/*
* Read the link value and copy the tail of our
* current path onto the end.
*/
if (p)
strcpy(&path[sb.st_size], p);
else
path[sb.st_size] = 0;
/*
* Second test is purely to silence bogus compiler
* warning about accessing past the end of dn_bonus.
*/
if (sb.st_size + sizeof(znode_phys_t) <=
dn.dn_bonuslen && sizeof(znode_phys_t) <=
sizeof(dn.dn_bonus)) {
memcpy(path, &dn.dn_bonus[sizeof(znode_phys_t)],
sb.st_size);
} else {
rc = dnode_read(spa, &dn, 0, path, sb.st_size);
if (rc)
return (rc);
}
/*
* Restart with the new path, starting either at
* the root or at the parent depending whether or
* not the link is relative.
*/
p = path;
if (*p == '/')
objnum = rootnum;
else
objnum = parentnum;
objset_get_dnode(spa, &mount->objset, objnum, &dn);
}
}
*dnode = dn;
return (0);
}