867 lines
30 KiB
C++
867 lines
30 KiB
C++
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the actions class which performs semantic analysis and
|
|
// builds an AST out of a parse stream.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
using namespace clang;
|
|
|
|
/// Determines whether we should have an a.k.a. clause when
|
|
/// pretty-printing a type. There are three main criteria:
|
|
///
|
|
/// 1) Some types provide very minimal sugar that doesn't impede the
|
|
/// user's understanding --- for example, elaborated type
|
|
/// specifiers. If this is all the sugar we see, we don't want an
|
|
/// a.k.a. clause.
|
|
/// 2) Some types are technically sugared but are much more familiar
|
|
/// when seen in their sugared form --- for example, va_list,
|
|
/// vector types, and the magic Objective C types. We don't
|
|
/// want to desugar these, even if we do produce an a.k.a. clause.
|
|
/// 3) Some types may have already been desugared previously in this diagnostic.
|
|
/// if this is the case, doing another "aka" would just be clutter.
|
|
///
|
|
static bool ShouldAKA(ASTContext &Context, QualType QT,
|
|
const Diagnostic::ArgumentValue *PrevArgs,
|
|
unsigned NumPrevArgs,
|
|
QualType &DesugaredQT) {
|
|
QualType InputTy = QT;
|
|
|
|
bool AKA = false;
|
|
QualifierCollector Qc;
|
|
|
|
while (true) {
|
|
const Type *Ty = Qc.strip(QT);
|
|
|
|
// Don't aka just because we saw an elaborated type...
|
|
if (isa<ElaboratedType>(Ty)) {
|
|
QT = cast<ElaboratedType>(Ty)->desugar();
|
|
continue;
|
|
}
|
|
|
|
// ...or a qualified name type...
|
|
if (isa<QualifiedNameType>(Ty)) {
|
|
QT = cast<QualifiedNameType>(Ty)->desugar();
|
|
continue;
|
|
}
|
|
|
|
// ...or a substituted template type parameter.
|
|
if (isa<SubstTemplateTypeParmType>(Ty)) {
|
|
QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
|
|
continue;
|
|
}
|
|
|
|
// Don't desugar template specializations.
|
|
if (isa<TemplateSpecializationType>(Ty))
|
|
break;
|
|
|
|
// Don't desugar magic Objective-C types.
|
|
if (QualType(Ty,0) == Context.getObjCIdType() ||
|
|
QualType(Ty,0) == Context.getObjCClassType() ||
|
|
QualType(Ty,0) == Context.getObjCSelType() ||
|
|
QualType(Ty,0) == Context.getObjCProtoType())
|
|
break;
|
|
|
|
// Don't desugar va_list.
|
|
if (QualType(Ty,0) == Context.getBuiltinVaListType())
|
|
break;
|
|
|
|
// Otherwise, do a single-step desugar.
|
|
QualType Underlying;
|
|
bool IsSugar = false;
|
|
switch (Ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define TYPE(Class, Base) \
|
|
case Type::Class: { \
|
|
const Class##Type *CTy = cast<Class##Type>(Ty); \
|
|
if (CTy->isSugared()) { \
|
|
IsSugar = true; \
|
|
Underlying = CTy->desugar(); \
|
|
} \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
|
|
// If it wasn't sugared, we're done.
|
|
if (!IsSugar)
|
|
break;
|
|
|
|
// If the desugared type is a vector type, we don't want to expand
|
|
// it, it will turn into an attribute mess. People want their "vec4".
|
|
if (isa<VectorType>(Underlying))
|
|
break;
|
|
|
|
// Otherwise, we're tearing through something opaque; note that
|
|
// we'll eventually need an a.k.a. clause and keep going.
|
|
AKA = true;
|
|
QT = Underlying;
|
|
continue;
|
|
}
|
|
|
|
// If we never tore through opaque sugar, don't print aka.
|
|
if (!AKA) return false;
|
|
|
|
// If we did, check to see if we already desugared this type in this
|
|
// diagnostic. If so, don't do it again.
|
|
for (unsigned i = 0; i != NumPrevArgs; ++i) {
|
|
// TODO: Handle ak_declcontext case.
|
|
if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
|
|
void *Ptr = (void*)PrevArgs[i].second;
|
|
QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
|
|
if (PrevTy == InputTy)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DesugaredQT = Qc.apply(QT);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Convert the given type to a string suitable for printing as part of
|
|
/// a diagnostic.
|
|
///
|
|
/// \param Context the context in which the type was allocated
|
|
/// \param Ty the type to print
|
|
static std::string
|
|
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
|
|
const Diagnostic::ArgumentValue *PrevArgs,
|
|
unsigned NumPrevArgs) {
|
|
// FIXME: Playing with std::string is really slow.
|
|
std::string S = Ty.getAsString(Context.PrintingPolicy);
|
|
|
|
// Consider producing an a.k.a. clause if removing all the direct
|
|
// sugar gives us something "significantly different".
|
|
|
|
QualType DesugaredTy;
|
|
if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
|
|
S = "'"+S+"' (aka '";
|
|
S += DesugaredTy.getAsString(Context.PrintingPolicy);
|
|
S += "')";
|
|
return S;
|
|
}
|
|
|
|
S = "'" + S + "'";
|
|
return S;
|
|
}
|
|
|
|
/// ConvertQualTypeToStringFn - This function is used to pretty print the
|
|
/// specified QualType as a string in diagnostics.
|
|
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
|
|
const char *Modifier, unsigned ModLen,
|
|
const char *Argument, unsigned ArgLen,
|
|
const Diagnostic::ArgumentValue *PrevArgs,
|
|
unsigned NumPrevArgs,
|
|
llvm::SmallVectorImpl<char> &Output,
|
|
void *Cookie) {
|
|
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
|
|
|
|
std::string S;
|
|
bool NeedQuotes = true;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "unknown ArgumentKind");
|
|
case Diagnostic::ak_qualtype: {
|
|
assert(ModLen == 0 && ArgLen == 0 &&
|
|
"Invalid modifier for QualType argument");
|
|
|
|
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
|
|
S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
|
|
NeedQuotes = false;
|
|
break;
|
|
}
|
|
case Diagnostic::ak_declarationname: {
|
|
DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
|
|
S = N.getAsString();
|
|
|
|
if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
|
|
S = '+' + S;
|
|
else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
|
|
S = '-' + S;
|
|
else
|
|
assert(ModLen == 0 && ArgLen == 0 &&
|
|
"Invalid modifier for DeclarationName argument");
|
|
break;
|
|
}
|
|
case Diagnostic::ak_nameddecl: {
|
|
bool Qualified;
|
|
if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
|
|
Qualified = true;
|
|
else {
|
|
assert(ModLen == 0 && ArgLen == 0 &&
|
|
"Invalid modifier for NamedDecl* argument");
|
|
Qualified = false;
|
|
}
|
|
reinterpret_cast<NamedDecl*>(Val)->
|
|
getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
|
|
break;
|
|
}
|
|
case Diagnostic::ak_nestednamespec: {
|
|
llvm::raw_string_ostream OS(S);
|
|
reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
|
|
Context.PrintingPolicy);
|
|
NeedQuotes = false;
|
|
break;
|
|
}
|
|
case Diagnostic::ak_declcontext: {
|
|
DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
|
|
assert(DC && "Should never have a null declaration context");
|
|
|
|
if (DC->isTranslationUnit()) {
|
|
// FIXME: Get these strings from some localized place
|
|
if (Context.getLangOptions().CPlusPlus)
|
|
S = "the global namespace";
|
|
else
|
|
S = "the global scope";
|
|
} else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
|
|
S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type),
|
|
PrevArgs, NumPrevArgs);
|
|
} else {
|
|
// FIXME: Get these strings from some localized place
|
|
NamedDecl *ND = cast<NamedDecl>(DC);
|
|
if (isa<NamespaceDecl>(ND))
|
|
S += "namespace ";
|
|
else if (isa<ObjCMethodDecl>(ND))
|
|
S += "method ";
|
|
else if (isa<FunctionDecl>(ND))
|
|
S += "function ";
|
|
|
|
S += "'";
|
|
ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
|
|
S += "'";
|
|
}
|
|
NeedQuotes = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (NeedQuotes)
|
|
Output.push_back('\'');
|
|
|
|
Output.append(S.begin(), S.end());
|
|
|
|
if (NeedQuotes)
|
|
Output.push_back('\'');
|
|
}
|
|
|
|
|
|
static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
|
|
if (C.getLangOptions().CPlusPlus)
|
|
return CXXRecordDecl::Create(C, TagDecl::TK_struct,
|
|
C.getTranslationUnitDecl(),
|
|
SourceLocation(), &C.Idents.get(Name));
|
|
|
|
return RecordDecl::Create(C, TagDecl::TK_struct,
|
|
C.getTranslationUnitDecl(),
|
|
SourceLocation(), &C.Idents.get(Name));
|
|
}
|
|
|
|
void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
|
|
TUScope = S;
|
|
PushDeclContext(S, Context.getTranslationUnitDecl());
|
|
|
|
if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
|
|
DeclaratorInfo *DInfo;
|
|
|
|
// Install [u]int128_t for 64-bit targets.
|
|
DInfo = Context.getTrivialDeclaratorInfo(Context.Int128Ty);
|
|
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
|
|
SourceLocation(),
|
|
&Context.Idents.get("__int128_t"),
|
|
DInfo), TUScope);
|
|
|
|
DInfo = Context.getTrivialDeclaratorInfo(Context.UnsignedInt128Ty);
|
|
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
|
|
SourceLocation(),
|
|
&Context.Idents.get("__uint128_t"),
|
|
DInfo), TUScope);
|
|
}
|
|
|
|
|
|
if (!PP.getLangOptions().ObjC1) return;
|
|
|
|
// Built-in ObjC types may already be set by PCHReader (hence isNull checks).
|
|
if (Context.getObjCSelType().isNull()) {
|
|
// Create the built-in typedef for 'SEL'.
|
|
QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy);
|
|
DeclaratorInfo *SelInfo = Context.getTrivialDeclaratorInfo(SelT);
|
|
TypedefDecl *SelTypedef
|
|
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
|
|
&Context.Idents.get("SEL"), SelInfo);
|
|
PushOnScopeChains(SelTypedef, TUScope);
|
|
Context.setObjCSelType(Context.getTypeDeclType(SelTypedef));
|
|
Context.ObjCSelRedefinitionType = Context.getObjCSelType();
|
|
}
|
|
|
|
// Synthesize "@class Protocol;
|
|
if (Context.getObjCProtoType().isNull()) {
|
|
ObjCInterfaceDecl *ProtocolDecl =
|
|
ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
|
|
&Context.Idents.get("Protocol"),
|
|
SourceLocation(), true);
|
|
Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
|
|
PushOnScopeChains(ProtocolDecl, TUScope, false);
|
|
}
|
|
// Create the built-in typedef for 'id'.
|
|
if (Context.getObjCIdType().isNull()) {
|
|
QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy);
|
|
DeclaratorInfo *IdInfo = Context.getTrivialDeclaratorInfo(IdT);
|
|
TypedefDecl *IdTypedef
|
|
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
|
|
&Context.Idents.get("id"), IdInfo);
|
|
PushOnScopeChains(IdTypedef, TUScope);
|
|
Context.setObjCIdType(Context.getTypeDeclType(IdTypedef));
|
|
Context.ObjCIdRedefinitionType = Context.getObjCIdType();
|
|
}
|
|
// Create the built-in typedef for 'Class'.
|
|
if (Context.getObjCClassType().isNull()) {
|
|
QualType ClassType
|
|
= Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy);
|
|
DeclaratorInfo *ClassInfo = Context.getTrivialDeclaratorInfo(ClassType);
|
|
TypedefDecl *ClassTypedef
|
|
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
|
|
&Context.Idents.get("Class"), ClassInfo);
|
|
PushOnScopeChains(ClassTypedef, TUScope);
|
|
Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef));
|
|
Context.ObjCClassRedefinitionType = Context.getObjCClassType();
|
|
}
|
|
}
|
|
|
|
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
|
|
bool CompleteTranslationUnit,
|
|
CodeCompleteConsumer *CodeCompleter)
|
|
: LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
|
|
Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
|
|
ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0),
|
|
PreDeclaratorDC(0), CurBlock(0), PackContext(0), ParsingDeclDepth(0),
|
|
IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0),
|
|
GlobalNewDeleteDeclared(false),
|
|
CompleteTranslationUnit(CompleteTranslationUnit),
|
|
NumSFINAEErrors(0), NonInstantiationEntries(0),
|
|
CurrentInstantiationScope(0)
|
|
{
|
|
TUScope = 0;
|
|
if (getLangOptions().CPlusPlus)
|
|
FieldCollector.reset(new CXXFieldCollector());
|
|
|
|
// Tell diagnostics how to render things from the AST library.
|
|
PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);
|
|
|
|
ExprEvalContexts.push_back(
|
|
ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0));
|
|
}
|
|
|
|
/// Retrieves the width and signedness of the given integer type,
|
|
/// or returns false if it is not an integer type.
|
|
///
|
|
/// \param T must be canonical
|
|
static bool getIntProperties(ASTContext &C, const Type *T,
|
|
unsigned &BitWidth, bool &Signed) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
|
|
if (!BT->isInteger()) return false;
|
|
|
|
BitWidth = C.getIntWidth(QualType(T, 0));
|
|
Signed = BT->isSignedInteger();
|
|
return true;
|
|
}
|
|
|
|
if (const FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
|
|
BitWidth = FWIT->getWidth();
|
|
Signed = FWIT->isSigned();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks whether the given value will have the same value if it it
|
|
/// is truncated to the given width, then extended back to the
|
|
/// original width.
|
|
static bool IsSameIntAfterCast(const llvm::APSInt &value,
|
|
unsigned TargetWidth) {
|
|
unsigned SourceWidth = value.getBitWidth();
|
|
llvm::APSInt truncated = value;
|
|
truncated.trunc(TargetWidth);
|
|
truncated.extend(SourceWidth);
|
|
return (truncated == value);
|
|
}
|
|
|
|
/// Checks whether the given value will have the same value if it
|
|
/// is truncated to the given width, then extended back to the original
|
|
/// width.
|
|
///
|
|
/// The value might be a vector or a complex.
|
|
static bool IsSameIntAfterCast(const APValue &value, unsigned TargetWidth) {
|
|
if (value.isInt())
|
|
return IsSameIntAfterCast(value.getInt(), TargetWidth);
|
|
|
|
if (value.isVector()) {
|
|
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
|
|
if (!IsSameIntAfterCast(value.getVectorElt(i), TargetWidth))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if (value.isComplexInt()) {
|
|
return IsSameIntAfterCast(value.getComplexIntReal(), TargetWidth) &&
|
|
IsSameIntAfterCast(value.getComplexIntImag(), TargetWidth);
|
|
}
|
|
|
|
// This can happen with lossless casts to intptr_t of "based" lvalues.
|
|
// Assume it might use arbitrary bits.
|
|
assert(value.isLValue());
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
llvm::APFloat truncated = value;
|
|
|
|
bool ignored;
|
|
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
|
|
return truncated.bitwiseIsEqual(value);
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
///
|
|
/// The value might be a vector of floats (or a complex number).
|
|
static bool IsSameFloatAfterCast(const APValue &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
if (value.isFloat())
|
|
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
|
|
|
|
if (value.isVector()) {
|
|
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
|
|
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
assert(value.isComplexFloat());
|
|
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
|
|
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
|
|
}
|
|
|
|
/// Determines if it's reasonable for the given expression to be truncated
|
|
/// down to the given integer width.
|
|
/// * Boolean expressions are automatically white-listed.
|
|
/// * Arithmetic operations on implicitly-promoted operands of the
|
|
/// target width or less are okay --- not because the results are
|
|
/// actually guaranteed to fit within the width, but because the
|
|
/// user is effectively pretending that the operations are closed
|
|
/// within the implicitly-promoted type.
|
|
static bool IsExprValueWithinWidth(ASTContext &C, Expr *E, unsigned Width) {
|
|
E = E->IgnoreParens();
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();
|
|
unsigned EWidth;
|
|
bool ESigned;
|
|
|
|
if (!getIntProperties(C, ETy, EWidth, ESigned))
|
|
assert(0 && "expression not of integer type");
|
|
|
|
// The caller should never let this happen.
|
|
assert(EWidth > Width && "called on expr whose type is too small");
|
|
}
|
|
#endif
|
|
|
|
// Strip implicit casts off.
|
|
while (isa<ImplicitCastExpr>(E)) {
|
|
E = cast<ImplicitCastExpr>(E)->getSubExpr();
|
|
|
|
const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();
|
|
|
|
unsigned EWidth;
|
|
bool ESigned;
|
|
if (!getIntProperties(C, ETy, EWidth, ESigned))
|
|
return false;
|
|
|
|
if (EWidth <= Width)
|
|
return true;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
|
|
// Boolean-valued operations are white-listed.
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GT:
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
return true;
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case BinaryOperator::PtrMemD:
|
|
case BinaryOperator::PtrMemI:
|
|
return false;
|
|
|
|
// Left shift gets black-listed based on a judgement call.
|
|
case BinaryOperator::Shl:
|
|
return false;
|
|
|
|
// Various special cases.
|
|
case BinaryOperator::Shr:
|
|
return IsExprValueWithinWidth(C, BO->getLHS(), Width);
|
|
case BinaryOperator::Comma:
|
|
return IsExprValueWithinWidth(C, BO->getRHS(), Width);
|
|
case BinaryOperator::Sub:
|
|
if (BO->getLHS()->getType()->isPointerType())
|
|
return false;
|
|
// fallthrough
|
|
|
|
// Any other operator is okay if the operands are
|
|
// promoted from expressions of appropriate size.
|
|
default:
|
|
return IsExprValueWithinWidth(C, BO->getLHS(), Width) &&
|
|
IsExprValueWithinWidth(C, BO->getRHS(), Width);
|
|
}
|
|
}
|
|
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
// Boolean-valued operations are white-listed.
|
|
case UnaryOperator::LNot:
|
|
return true;
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case UnaryOperator::Deref:
|
|
case UnaryOperator::AddrOf: // should be impossible
|
|
return false;
|
|
|
|
case UnaryOperator::OffsetOf:
|
|
return false;
|
|
|
|
default:
|
|
return IsExprValueWithinWidth(C, UO->getSubExpr(), Width);
|
|
}
|
|
}
|
|
|
|
// Don't diagnose if the expression is an integer constant
|
|
// whose value in the target type is the same as it was
|
|
// in the original type.
|
|
Expr::EvalResult result;
|
|
if (E->Evaluate(result, C))
|
|
if (IsSameIntAfterCast(result.Val, Width))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
|
|
S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
|
|
}
|
|
|
|
/// Implements -Wconversion.
|
|
static void CheckImplicitConversion(Sema &S, Expr *E, QualType T) {
|
|
// Don't diagnose in unevaluated contexts.
|
|
if (S.ExprEvalContexts.back().Context == Sema::Unevaluated)
|
|
return;
|
|
|
|
// Don't diagnose for value-dependent expressions.
|
|
if (E->isValueDependent())
|
|
return;
|
|
|
|
const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
|
|
const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
|
|
|
|
// Never diagnose implicit casts to bool.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
|
|
return;
|
|
|
|
// Strip vector types.
|
|
if (isa<VectorType>(Source)) {
|
|
if (!isa<VectorType>(Target))
|
|
return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
|
|
|
|
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
// Strip complex types.
|
|
if (isa<ComplexType>(Source)) {
|
|
if (!isa<ComplexType>(Target))
|
|
return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
|
|
|
|
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
|
|
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
|
|
|
|
// If the source is floating point...
|
|
if (SourceBT && SourceBT->isFloatingPoint()) {
|
|
// ...and the target is floating point...
|
|
if (TargetBT && TargetBT->isFloatingPoint()) {
|
|
// ...then warn if we're dropping FP rank.
|
|
|
|
// Builtin FP kinds are ordered by increasing FP rank.
|
|
if (SourceBT->getKind() > TargetBT->getKind()) {
|
|
// Don't warn about float constants that are precisely
|
|
// representable in the target type.
|
|
Expr::EvalResult result;
|
|
if (E->Evaluate(result, S.Context)) {
|
|
// Value might be a float, a float vector, or a float complex.
|
|
if (IsSameFloatAfterCast(result.Val,
|
|
S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
|
|
S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
|
|
return;
|
|
}
|
|
|
|
DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the target is integral, always warn.
|
|
if ((TargetBT && TargetBT->isInteger()) ||
|
|
isa<FixedWidthIntType>(Target))
|
|
// TODO: don't warn for integer values?
|
|
return DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
|
|
|
|
return;
|
|
}
|
|
|
|
unsigned SourceWidth, TargetWidth;
|
|
bool SourceSigned, TargetSigned;
|
|
|
|
if (!getIntProperties(S.Context, Source, SourceWidth, SourceSigned) ||
|
|
!getIntProperties(S.Context, Target, TargetWidth, TargetSigned))
|
|
return;
|
|
|
|
if (SourceWidth > TargetWidth) {
|
|
if (IsExprValueWithinWidth(S.Context, E, TargetWidth))
|
|
return;
|
|
|
|
// People want to build with -Wshorten-64-to-32 and not -Wconversion
|
|
// and by god we'll let them.
|
|
if (SourceWidth == 64 && TargetWidth == 32)
|
|
return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
|
|
return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
|
|
/// If there is already an implicit cast, merge into the existing one.
|
|
/// If isLvalue, the result of the cast is an lvalue.
|
|
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty,
|
|
CastExpr::CastKind Kind, bool isLvalue) {
|
|
QualType ExprTy = Context.getCanonicalType(Expr->getType());
|
|
QualType TypeTy = Context.getCanonicalType(Ty);
|
|
|
|
if (ExprTy == TypeTy)
|
|
return;
|
|
|
|
if (Expr->getType()->isPointerType() && Ty->isPointerType()) {
|
|
QualType ExprBaseType = cast<PointerType>(ExprTy)->getPointeeType();
|
|
QualType BaseType = cast<PointerType>(TypeTy)->getPointeeType();
|
|
if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
|
|
Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
|
|
<< Expr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
CheckImplicitConversion(*this, Expr, Ty);
|
|
|
|
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
|
|
if (ImpCast->getCastKind() == Kind) {
|
|
ImpCast->setType(Ty);
|
|
ImpCast->setLvalueCast(isLvalue);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue);
|
|
}
|
|
|
|
void Sema::DeleteExpr(ExprTy *E) {
|
|
if (E) static_cast<Expr*>(E)->Destroy(Context);
|
|
}
|
|
void Sema::DeleteStmt(StmtTy *S) {
|
|
if (S) static_cast<Stmt*>(S)->Destroy(Context);
|
|
}
|
|
|
|
/// ActOnEndOfTranslationUnit - This is called at the very end of the
|
|
/// translation unit when EOF is reached and all but the top-level scope is
|
|
/// popped.
|
|
void Sema::ActOnEndOfTranslationUnit() {
|
|
// C++: Perform implicit template instantiations.
|
|
//
|
|
// FIXME: When we perform these implicit instantiations, we do not carefully
|
|
// keep track of the point of instantiation (C++ [temp.point]). This means
|
|
// that name lookup that occurs within the template instantiation will
|
|
// always happen at the end of the translation unit, so it will find
|
|
// some names that should not be found. Although this is common behavior
|
|
// for C++ compilers, it is technically wrong. In the future, we either need
|
|
// to be able to filter the results of name lookup or we need to perform
|
|
// template instantiations earlier.
|
|
PerformPendingImplicitInstantiations();
|
|
|
|
// Check for #pragma weak identifiers that were never declared
|
|
// FIXME: This will cause diagnostics to be emitted in a non-determinstic
|
|
// order! Iterating over a densemap like this is bad.
|
|
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
|
|
I = WeakUndeclaredIdentifiers.begin(),
|
|
E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
|
|
if (I->second.getUsed()) continue;
|
|
|
|
Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
|
|
<< I->first;
|
|
}
|
|
|
|
if (!CompleteTranslationUnit)
|
|
return;
|
|
|
|
// C99 6.9.2p2:
|
|
// A declaration of an identifier for an object that has file
|
|
// scope without an initializer, and without a storage-class
|
|
// specifier or with the storage-class specifier static,
|
|
// constitutes a tentative definition. If a translation unit
|
|
// contains one or more tentative definitions for an identifier,
|
|
// and the translation unit contains no external definition for
|
|
// that identifier, then the behavior is exactly as if the
|
|
// translation unit contains a file scope declaration of that
|
|
// identifier, with the composite type as of the end of the
|
|
// translation unit, with an initializer equal to 0.
|
|
for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) {
|
|
VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]);
|
|
|
|
// If the tentative definition was completed, it will be in the list, but
|
|
// not the map.
|
|
if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
|
|
continue;
|
|
|
|
if (const IncompleteArrayType *ArrayT
|
|
= Context.getAsIncompleteArrayType(VD->getType())) {
|
|
if (RequireCompleteType(VD->getLocation(),
|
|
ArrayT->getElementType(),
|
|
diag::err_tentative_def_incomplete_type_arr)) {
|
|
VD->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
// Set the length of the array to 1 (C99 6.9.2p5).
|
|
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
|
|
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
|
|
QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
|
|
One, ArrayType::Normal, 0);
|
|
VD->setType(T);
|
|
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
|
|
diag::err_tentative_def_incomplete_type))
|
|
VD->setInvalidDecl();
|
|
|
|
// Notify the consumer that we've completed a tentative definition.
|
|
if (!VD->isInvalidDecl())
|
|
Consumer.CompleteTentativeDefinition(VD);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DeclContext *Sema::getFunctionLevelDeclContext() {
|
|
DeclContext *DC = PreDeclaratorDC ? PreDeclaratorDC : CurContext;
|
|
|
|
while (isa<BlockDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
return DC;
|
|
}
|
|
|
|
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
|
|
/// to the function decl for the function being parsed. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
FunctionDecl *Sema::getCurFunctionDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
return dyn_cast<FunctionDecl>(DC);
|
|
}
|
|
|
|
ObjCMethodDecl *Sema::getCurMethodDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
return dyn_cast<ObjCMethodDecl>(DC);
|
|
}
|
|
|
|
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
|
|
return cast<NamedDecl>(DC);
|
|
return 0;
|
|
}
|
|
|
|
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
|
|
if (!this->Emit())
|
|
return;
|
|
|
|
// If this is not a note, and we're in a template instantiation
|
|
// that is different from the last template instantiation where
|
|
// we emitted an error, print a template instantiation
|
|
// backtrace.
|
|
if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
|
|
!SemaRef.ActiveTemplateInstantiations.empty() &&
|
|
SemaRef.ActiveTemplateInstantiations.back()
|
|
!= SemaRef.LastTemplateInstantiationErrorContext) {
|
|
SemaRef.PrintInstantiationStack();
|
|
SemaRef.LastTemplateInstantiationErrorContext
|
|
= SemaRef.ActiveTemplateInstantiations.back();
|
|
}
|
|
}
|
|
|
|
Sema::SemaDiagnosticBuilder
|
|
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
|
|
SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
|
|
PD.Emit(Builder);
|
|
|
|
return Builder;
|
|
}
|
|
|
|
void Sema::ActOnComment(SourceRange Comment) {
|
|
Context.Comments.push_back(Comment);
|
|
}
|
|
|