freebsd-nq/module/zfs/zfs_znode.c
Richard Yao b8d06fca08 Switch KM_SLEEP to KM_PUSHPAGE
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.

  * The txg_sync thread
  * The zvol write/discard threads
  * The zpl_putpage() VFS callback

This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages.  If a lock is held over this operation the potential exists to
deadlock the system.  To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.

Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread.  However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA.  This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.

This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:

  21ade34 Disable direct reclaim for z_wr_* threads
  cfc9a5c Fix zpl_writepage() deadlock
  eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
2012-08-27 12:01:37 -07:00

1801 lines
43 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2007 Jeremy Teo */
#ifdef _KERNEL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/mntent.h>
#include <sys/mkdev.h>
#include <sys/u8_textprep.h>
#include <sys/dsl_dataset.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/mode.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include "fs/fs_subr.h"
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_rlock.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/dnode.h>
#include <sys/fs/zfs.h>
#include <sys/kidmap.h>
#include <sys/zpl.h>
#endif /* _KERNEL */
#include <sys/dmu.h>
#include <sys/refcount.h>
#include <sys/stat.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#include <sys/sa.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_stat.h>
#include "zfs_prop.h"
#include "zfs_comutil.h"
/*
* Define ZNODE_STATS to turn on statistic gathering. By default, it is only
* turned on when DEBUG is also defined.
*/
#ifdef DEBUG
#define ZNODE_STATS
#endif /* DEBUG */
#ifdef ZNODE_STATS
#define ZNODE_STAT_ADD(stat) ((stat)++)
#else
#define ZNODE_STAT_ADD(stat) /* nothing */
#endif /* ZNODE_STATS */
/*
* Functions needed for userland (ie: libzpool) are not put under
* #ifdef_KERNEL; the rest of the functions have dependencies
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
static kmem_cache_t *znode_cache = NULL;
/*ARGSUSED*/
static int
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_t *zp = buf;
inode_init_once(ZTOI(zp));
list_link_init(&zp->z_link_node);
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&zp->z_range_avl, zfs_range_compare,
sizeof (rl_t), offsetof(rl_t, r_node));
zp->z_dirlocks = NULL;
zp->z_acl_cached = NULL;
zp->z_xattr_cached = NULL;
zp->z_moved = 0;
return (0);
}
/*ARGSUSED*/
static void
zfs_znode_cache_destructor(void *buf, void *arg)
{
znode_t *zp = buf;
ASSERT(!list_link_active(&zp->z_link_node));
mutex_destroy(&zp->z_lock);
rw_destroy(&zp->z_parent_lock);
rw_destroy(&zp->z_name_lock);
mutex_destroy(&zp->z_acl_lock);
rw_destroy(&zp->z_xattr_lock);
avl_destroy(&zp->z_range_avl);
mutex_destroy(&zp->z_range_lock);
ASSERT(zp->z_dirlocks == NULL);
ASSERT(zp->z_acl_cached == NULL);
ASSERT(zp->z_xattr_cached == NULL);
}
void
zfs_znode_init(void)
{
/*
* Initialize zcache
*/
ASSERT(znode_cache == NULL);
znode_cache = kmem_cache_create("zfs_znode_cache",
sizeof (znode_t), 0, zfs_znode_cache_constructor,
zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_KMEM);
}
void
zfs_znode_fini(void)
{
/*
* Cleanup zcache
*/
if (znode_cache)
kmem_cache_destroy(znode_cache);
znode_cache = NULL;
}
int
zfs_create_share_dir(zfs_sb_t *zsb, dmu_tx_t *tx)
{
#ifdef HAVE_SMB_SHARE
zfs_acl_ids_t acl_ids;
vattr_t vattr;
znode_t *sharezp;
vnode_t *vp;
znode_t *zp;
int error;
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
vattr.va_mode = S_IFDIR | 0555;
vattr.va_uid = crgetuid(kcred);
vattr.va_gid = crgetgid(kcred);
sharezp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
sharezp->z_moved = 0;
sharezp->z_unlinked = 0;
sharezp->z_atime_dirty = 0;
sharezp->z_zfsvfs = zfsvfs;
sharezp->z_is_sa = zfsvfs->z_use_sa;
vp = ZTOV(sharezp);
vn_reinit(vp);
vp->v_type = VDIR;
VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
kcred, NULL, &acl_ids));
zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
ASSERT3P(zp, ==, sharezp);
ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
POINTER_INVALIDATE(&sharezp->z_zfsvfs);
error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
zfsvfs->z_shares_dir = sharezp->z_id;
zfs_acl_ids_free(&acl_ids);
// ZTOV(sharezp)->v_count = 0;
sa_handle_destroy(sharezp->z_sa_hdl);
kmem_cache_free(znode_cache, sharezp);
return (error);
#else
return (0);
#endif /* HAVE_SMB_SHARE */
}
static void
zfs_znode_sa_init(zfs_sb_t *zsb, znode_t *zp,
dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
{
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zsb, zp->z_id)));
mutex_enter(&zp->z_lock);
ASSERT(zp->z_sa_hdl == NULL);
ASSERT(zp->z_acl_cached == NULL);
if (sa_hdl == NULL) {
VERIFY(0 == sa_handle_get_from_db(zsb->z_os, db, zp,
SA_HDL_SHARED, &zp->z_sa_hdl));
} else {
zp->z_sa_hdl = sa_hdl;
sa_set_userp(sa_hdl, zp);
}
zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
mutex_exit(&zp->z_lock);
}
void
zfs_znode_dmu_fini(znode_t *zp)
{
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(ZTOZSB(zp), zp->z_id)) ||
zp->z_unlinked ||
RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
sa_handle_destroy(zp->z_sa_hdl);
zp->z_sa_hdl = NULL;
}
/*
* Called by new_inode() to allocate a new inode.
*/
int
zfs_inode_alloc(struct super_block *sb, struct inode **ip)
{
znode_t *zp;
zp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
*ip = ZTOI(zp);
return (0);
}
/*
* Called in multiple places when an inode should be destroyed.
*/
void
zfs_inode_destroy(struct inode *ip)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ZTOZSB(zp);
if (zfsctl_is_node(ip))
zfsctl_inode_destroy(ip);
mutex_enter(&zsb->z_znodes_lock);
list_remove(&zsb->z_all_znodes, zp);
zsb->z_nr_znodes--;
mutex_exit(&zsb->z_znodes_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
if (zp->z_xattr_cached) {
nvlist_free(zp->z_xattr_cached);
zp->z_xattr_cached = NULL;
}
kmem_cache_free(znode_cache, zp);
}
static void
zfs_inode_set_ops(zfs_sb_t *zsb, struct inode *ip)
{
uint64_t rdev = 0;
switch (ip->i_mode & S_IFMT) {
case S_IFREG:
ip->i_op = &zpl_inode_operations;
ip->i_fop = &zpl_file_operations;
ip->i_mapping->a_ops = &zpl_address_space_operations;
break;
case S_IFDIR:
ip->i_op = &zpl_dir_inode_operations;
ip->i_fop = &zpl_dir_file_operations;
ITOZ(ip)->z_zn_prefetch = B_TRUE;
break;
case S_IFLNK:
ip->i_op = &zpl_symlink_inode_operations;
break;
/*
* rdev is only stored in a SA only for device files.
*/
case S_IFCHR:
case S_IFBLK:
VERIFY(sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zsb),
&rdev, sizeof (rdev)) == 0);
/*FALLTHROUGH*/
case S_IFIFO:
case S_IFSOCK:
init_special_inode(ip, ip->i_mode, rdev);
ip->i_op = &zpl_special_inode_operations;
break;
default:
printk("ZFS: Invalid mode: 0x%x\n", ip->i_mode);
VERIFY(0);
}
}
/*
* Construct a znode+inode and initialize.
*
* This does not do a call to dmu_set_user() that is
* up to the caller to do, in case you don't want to
* return the znode
*/
static znode_t *
zfs_znode_alloc(zfs_sb_t *zsb, dmu_buf_t *db, int blksz,
dmu_object_type_t obj_type, uint64_t obj, sa_handle_t *hdl,
struct dentry *dentry, struct inode *dip)
{
znode_t *zp;
struct inode *ip;
uint64_t parent;
sa_bulk_attr_t bulk[9];
int count = 0;
ASSERT(zsb != NULL);
ip = new_inode(zsb->z_sb);
if (ip == NULL)
return (NULL);
zp = ITOZ(ip);
ASSERT(zp->z_dirlocks == NULL);
ASSERT3P(zp->z_acl_cached, ==, NULL);
ASSERT3P(zp->z_xattr_cached, ==, NULL);
zp->z_moved = 0;
zp->z_sa_hdl = NULL;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_mapcnt = 0;
zp->z_id = db->db_object;
zp->z_blksz = blksz;
zp->z_seq = 0x7A4653;
zp->z_sync_cnt = 0;
zp->z_is_zvol = B_FALSE;
zp->z_is_mapped = B_FALSE;
zp->z_is_ctldir = B_FALSE;
zfs_znode_sa_init(zsb, zp, db, obj_type, hdl);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL, &zp->z_mode, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zsb), NULL, &zp->z_gen, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zsb), NULL, &zp->z_links, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
&zp->z_pflags, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zsb), NULL,
&parent, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
&zp->z_atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL, &zp->z_uid, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb), NULL, &zp->z_gid, 8);
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
if (hdl == NULL)
sa_handle_destroy(zp->z_sa_hdl);
goto error;
}
ip->i_ino = obj;
zfs_inode_update(zp);
zfs_inode_set_ops(zsb, ip);
if (insert_inode_locked(ip))
goto error;
if (dentry) {
if (zpl_xattr_security_init(ip, dip, &dentry->d_name))
goto error;
d_instantiate(dentry, ip);
}
mutex_enter(&zsb->z_znodes_lock);
list_insert_tail(&zsb->z_all_znodes, zp);
zsb->z_nr_znodes++;
membar_producer();
mutex_exit(&zsb->z_znodes_lock);
unlock_new_inode(ip);
return (zp);
error:
unlock_new_inode(ip);
iput(ip);
return NULL;
}
/*
* Update the embedded inode given the znode. We should work toward
* eliminating this function as soon as possible by removing values
* which are duplicated between the znode and inode. If the generic
* inode has the correct field it should be used, and the ZFS code
* updated to access the inode. This can be done incrementally.
*/
void
zfs_inode_update(znode_t *zp)
{
zfs_sb_t *zsb;
struct inode *ip;
uint32_t blksize;
uint64_t atime[2], mtime[2], ctime[2];
ASSERT(zp != NULL);
zsb = ZTOZSB(zp);
ip = ZTOI(zp);
/* Skip .zfs control nodes which do not exist on disk. */
if (zfsctl_is_node(ip))
return;
sa_lookup(zp->z_sa_hdl, SA_ZPL_ATIME(zsb), &atime, 16);
sa_lookup(zp->z_sa_hdl, SA_ZPL_MTIME(zsb), &mtime, 16);
sa_lookup(zp->z_sa_hdl, SA_ZPL_CTIME(zsb), &ctime, 16);
spin_lock(&ip->i_lock);
ip->i_generation = zp->z_gen;
ip->i_uid = zp->z_uid;
ip->i_gid = zp->z_gid;
set_nlink(ip, zp->z_links);
ip->i_mode = zp->z_mode;
ip->i_blkbits = SPA_MINBLOCKSHIFT;
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize,
(u_longlong_t *)&ip->i_blocks);
ZFS_TIME_DECODE(&ip->i_atime, atime);
ZFS_TIME_DECODE(&ip->i_mtime, mtime);
ZFS_TIME_DECODE(&ip->i_ctime, ctime);
i_size_write(ip, zp->z_size);
spin_unlock(&ip->i_lock);
}
static uint64_t empty_xattr;
static uint64_t pad[4];
static zfs_acl_phys_t acl_phys;
/*
* Create a new DMU object to hold a zfs znode.
*
* IN: dzp - parent directory for new znode
* vap - file attributes for new znode
* tx - dmu transaction id for zap operations
* cr - credentials of caller
* flag - flags:
* IS_ROOT_NODE - new object will be root
* IS_XATTR - new object is an attribute
* bonuslen - length of bonus buffer
* setaclp - File/Dir initial ACL
* fuidp - Tracks fuid allocation.
*
* OUT: zpp - allocated znode
*
*/
void
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
{
uint64_t crtime[2], atime[2], mtime[2], ctime[2];
uint64_t mode, size, links, parent, pflags;
uint64_t dzp_pflags = 0;
uint64_t rdev = 0;
zfs_sb_t *zsb = ZTOZSB(dzp);
dmu_buf_t *db;
timestruc_t now;
uint64_t gen, obj;
int err;
int bonuslen;
sa_handle_t *sa_hdl;
dmu_object_type_t obj_type;
sa_bulk_attr_t *sa_attrs;
int cnt = 0;
zfs_acl_locator_cb_t locate = { 0 };
if (zsb->z_replay) {
obj = vap->va_nodeid;
now = vap->va_ctime; /* see zfs_replay_create() */
gen = vap->va_nblocks; /* ditto */
} else {
obj = 0;
gethrestime(&now);
gen = dmu_tx_get_txg(tx);
}
obj_type = zsb->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
bonuslen = (obj_type == DMU_OT_SA) ?
DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
/*
* Create a new DMU object.
*/
/*
* There's currently no mechanism for pre-reading the blocks that will
* be needed to allocate a new object, so we accept the small chance
* that there will be an i/o error and we will fail one of the
* assertions below.
*/
if (S_ISDIR(vap->va_mode)) {
if (zsb->z_replay) {
err = zap_create_claim_norm(zsb->z_os, obj,
zsb->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, tx);
ASSERT3U(err, ==, 0);
} else {
obj = zap_create_norm(zsb->z_os,
zsb->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, tx);
}
} else {
if (zsb->z_replay) {
err = dmu_object_claim(zsb->z_os, obj,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, tx);
ASSERT3U(err, ==, 0);
} else {
obj = dmu_object_alloc(zsb->z_os,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, tx);
}
}
ZFS_OBJ_HOLD_ENTER(zsb, obj);
VERIFY(0 == sa_buf_hold(zsb->z_os, obj, NULL, &db));
/*
* If this is the root, fix up the half-initialized parent pointer
* to reference the just-allocated physical data area.
*/
if (flag & IS_ROOT_NODE) {
dzp->z_id = obj;
} else {
dzp_pflags = dzp->z_pflags;
}
/*
* If parent is an xattr, so am I.
*/
if (dzp_pflags & ZFS_XATTR) {
flag |= IS_XATTR;
}
if (zsb->z_use_fuids)
pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
else
pflags = 0;
if (S_ISDIR(vap->va_mode)) {
size = 2; /* contents ("." and "..") */
links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
} else {
size = links = 0;
}
if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
rdev = vap->va_rdev;
parent = dzp->z_id;
mode = acl_ids->z_mode;
if (flag & IS_XATTR)
pflags |= ZFS_XATTR;
/*
* No execs denied will be deterimed when zfs_mode_compute() is called.
*/
pflags |= acl_ids->z_aclp->z_hints &
(ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
ZFS_TIME_ENCODE(&now, crtime);
ZFS_TIME_ENCODE(&now, ctime);
if (vap->va_mask & ATTR_ATIME) {
ZFS_TIME_ENCODE(&vap->va_atime, atime);
} else {
ZFS_TIME_ENCODE(&now, atime);
}
if (vap->va_mask & ATTR_MTIME) {
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
} else {
ZFS_TIME_ENCODE(&now, mtime);
}
/* Now add in all of the "SA" attributes */
VERIFY(0 == sa_handle_get_from_db(zsb->z_os, db, NULL, SA_HDL_SHARED,
&sa_hdl));
/*
* Setup the array of attributes to be replaced/set on the new file
*
* order for DMU_OT_ZNODE is critical since it needs to be constructed
* in the old znode_phys_t format. Don't change this ordering
*/
sa_attrs = kmem_alloc(sizeof(sa_bulk_attr_t) * ZPL_END, KM_PUSHPAGE);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zsb),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zsb),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zsb),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zsb),
NULL, &crtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zsb),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zsb),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zsb),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zsb),
NULL, &parent, 8);
} else {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zsb),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zsb),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zsb),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zsb),
NULL, &acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zsb),
NULL, &acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zsb),
NULL, &parent, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zsb),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zsb),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zsb),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zsb),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zsb),
NULL, &crtime, 16);
}
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zsb), NULL, &links, 8);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zsb), NULL,
&empty_xattr, 8);
}
if (obj_type == DMU_OT_ZNODE ||
(S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zsb),
NULL, &rdev, 8);
}
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zsb),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zsb), NULL,
&acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zsb), NULL,
&acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zsb), NULL, pad,
sizeof (uint64_t) * 4);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zsb), NULL,
&acl_phys, sizeof (zfs_acl_phys_t));
} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zsb), NULL,
&acl_ids->z_aclp->z_acl_count, 8);
locate.cb_aclp = acl_ids->z_aclp;
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zsb),
zfs_acl_data_locator, &locate,
acl_ids->z_aclp->z_acl_bytes);
mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
acl_ids->z_fuid, acl_ids->z_fgid);
}
VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
if (!(flag & IS_ROOT_NODE)) {
*zpp = zfs_znode_alloc(zsb, db, 0, obj_type, obj, sa_hdl,
vap->va_dentry, ZTOI(dzp));
ASSERT(*zpp != NULL);
ASSERT(dzp != NULL);
} else {
/*
* If we are creating the root node, the "parent" we
* passed in is the znode for the root.
*/
*zpp = dzp;
(*zpp)->z_sa_hdl = sa_hdl;
}
(*zpp)->z_pflags = pflags;
(*zpp)->z_mode = mode;
if (obj_type == DMU_OT_ZNODE ||
acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
ASSERT3S(err, ==, 0);
}
kmem_free(sa_attrs, sizeof(sa_bulk_attr_t) * ZPL_END);
ZFS_OBJ_HOLD_EXIT(zsb, obj);
}
/*
* zfs_xvattr_set only updates the in-core attributes
* it is assumed the caller will be doing an sa_bulk_update
* to push the changes out
*/
void
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
{
xoptattr_t *xoap;
xoap = xva_getxoptattr(xvap);
ASSERT(xoap);
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
uint64_t times[2];
ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
&times, sizeof (times), tx);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
xoap->xoa_av_quarantined, zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
zfs_sa_set_scanstamp(zp, xvap, tx);
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
}
int
zfs_zget(zfs_sb_t *zsb, uint64_t obj_num, znode_t **zpp)
{
dmu_object_info_t doi;
dmu_buf_t *db;
znode_t *zp;
int err;
sa_handle_t *hdl;
struct inode *ip;
*zpp = NULL;
again:
ip = ilookup(zsb->z_sb, obj_num);
ZFS_OBJ_HOLD_ENTER(zsb, obj_num);
err = sa_buf_hold(zsb->z_os, obj_num, NULL, &db);
if (err) {
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
iput(ip);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
iput(ip);
return (EINVAL);
}
hdl = dmu_buf_get_user(db);
if (hdl != NULL) {
if (ip == NULL) {
/*
* ilookup returned NULL, which means
* the znode is dying - but the SA handle isn't
* quite dead yet, we need to drop any locks
* we're holding, re-schedule the task and try again.
*/
sa_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
schedule();
goto again;
}
zp = sa_get_userdata(hdl);
/*
* Since "SA" does immediate eviction we
* should never find a sa handle that doesn't
* know about the znode.
*/
ASSERT3P(zp, !=, NULL);
mutex_enter(&zp->z_lock);
ASSERT3U(zp->z_id, ==, obj_num);
if (zp->z_unlinked) {
err = ENOENT;
} else {
igrab(ZTOI(zp));
*zpp = zp;
err = 0;
}
sa_buf_rele(db, NULL);
mutex_exit(&zp->z_lock);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
iput(ip);
return (err);
}
ASSERT3P(ip, ==, NULL);
/*
* Not found create new znode/vnode but only if file exists.
*
* There is a small window where zfs_vget() could
* find this object while a file create is still in
* progress. This is checked for in zfs_znode_alloc()
*
* if zfs_znode_alloc() fails it will drop the hold on the
* bonus buffer.
*/
zp = zfs_znode_alloc(zsb, db, doi.doi_data_block_size,
doi.doi_bonus_type, obj_num, NULL, NULL, NULL);
if (zp == NULL) {
err = ENOENT;
} else {
*zpp = zp;
}
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (err);
}
int
zfs_rezget(znode_t *zp)
{
zfs_sb_t *zsb = ZTOZSB(zp);
dmu_object_info_t doi;
dmu_buf_t *db;
uint64_t obj_num = zp->z_id;
uint64_t mode;
sa_bulk_attr_t bulk[8];
int err;
int count = 0;
uint64_t gen;
ZFS_OBJ_HOLD_ENTER(zsb, obj_num);
mutex_enter(&zp->z_acl_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
mutex_exit(&zp->z_acl_lock);
ASSERT(zp->z_sa_hdl == NULL);
err = sa_buf_hold(zsb->z_os, obj_num, NULL, &db);
if (err) {
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (EINVAL);
}
zfs_znode_sa_init(zsb, zp, db, doi.doi_bonus_type, NULL);
/* reload cached values */
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zsb), NULL,
&gen, sizeof (gen));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL,
&zp->z_size, sizeof (zp->z_size));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zsb), NULL,
&zp->z_links, sizeof (zp->z_links));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
&zp->z_atime, sizeof (zp->z_atime));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
&zp->z_uid, sizeof (zp->z_uid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb), NULL,
&zp->z_gid, sizeof (zp->z_gid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
&mode, sizeof (mode));
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
zfs_znode_dmu_fini(zp);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (EIO);
}
zp->z_mode = mode;
if (gen != zp->z_gen) {
zfs_znode_dmu_fini(zp);
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (EIO);
}
zp->z_unlinked = (zp->z_links == 0);
zp->z_blksz = doi.doi_data_block_size;
ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
return (0);
}
void
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
{
zfs_sb_t *zsb = ZTOZSB(zp);
objset_t *os = zsb->z_os;
uint64_t obj = zp->z_id;
uint64_t acl_obj = zfs_external_acl(zp);
ZFS_OBJ_HOLD_ENTER(zsb, obj);
if (acl_obj) {
VERIFY(!zp->z_is_sa);
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
}
VERIFY(0 == dmu_object_free(os, obj, tx));
zfs_znode_dmu_fini(zp);
ZFS_OBJ_HOLD_EXIT(zsb, obj);
}
void
zfs_zinactive(znode_t *zp)
{
zfs_sb_t *zsb = ZTOZSB(zp);
uint64_t z_id = zp->z_id;
boolean_t drop_mutex = 0;
ASSERT(zp->z_sa_hdl);
/*
* Don't allow a zfs_zget() while were trying to release this znode.
*
* Linux allows direct memory reclaim which means that any KM_SLEEP
* allocation may trigger inode eviction. This can lead to a deadlock
* through the ->shrink_icache_memory()->evict()->zfs_inactive()->
* zfs_zinactive() call path. To avoid this deadlock the process
* must not reacquire the mutex when it is already holding it.
*/
if (!ZFS_OBJ_HOLD_OWNED(zsb, z_id)) {
ZFS_OBJ_HOLD_ENTER(zsb, z_id);
drop_mutex = 1;
}
mutex_enter(&zp->z_lock);
/*
* If this was the last reference to a file with no links,
* remove the file from the file system.
*/
if (zp->z_unlinked) {
mutex_exit(&zp->z_lock);
if (drop_mutex)
ZFS_OBJ_HOLD_EXIT(zsb, z_id);
zfs_rmnode(zp);
return;
}
mutex_exit(&zp->z_lock);
zfs_znode_dmu_fini(zp);
if (drop_mutex)
ZFS_OBJ_HOLD_EXIT(zsb, z_id);
}
void
zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
uint64_t ctime[2], boolean_t have_tx)
{
timestruc_t now;
gethrestime(&now);
if (have_tx) { /* will sa_bulk_update happen really soon? */
zp->z_atime_dirty = 0;
zp->z_seq++;
} else {
zp->z_atime_dirty = 1;
}
if (flag & ATTR_ATIME) {
ZFS_TIME_ENCODE(&now, zp->z_atime);
}
if (flag & ATTR_MTIME) {
ZFS_TIME_ENCODE(&now, mtime);
if (ZTOZSB(zp)->z_use_fuids) {
zp->z_pflags |= (ZFS_ARCHIVE |
ZFS_AV_MODIFIED);
}
}
if (flag & ATTR_CTIME) {
ZFS_TIME_ENCODE(&now, ctime);
if (ZTOZSB(zp)->z_use_fuids)
zp->z_pflags |= ZFS_ARCHIVE;
}
}
/*
* Grow the block size for a file.
*
* IN: zp - znode of file to free data in.
* size - requested block size
* tx - open transaction.
*
* NOTE: this function assumes that the znode is write locked.
*/
void
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
{
int error;
u_longlong_t dummy;
if (size <= zp->z_blksz)
return;
/*
* If the file size is already greater than the current blocksize,
* we will not grow. If there is more than one block in a file,
* the blocksize cannot change.
*/
if (zp->z_blksz && zp->z_size > zp->z_blksz)
return;
error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
size, 0, tx);
if (error == ENOTSUP)
return;
ASSERT3U(error, ==, 0);
/* What blocksize did we actually get? */
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
}
/*
* Increase the file length
*
* IN: zp - znode of file to free data in.
* end - new end-of-file
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_extend(znode_t *zp, uint64_t end)
{
zfs_sb_t *zsb = ZTOZSB(zp);
dmu_tx_t *tx;
rl_t *rl;
uint64_t newblksz;
int error;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end <= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
top:
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
if (end > zp->z_blksz &&
(!ISP2(zp->z_blksz) || zp->z_blksz < zsb->z_max_blksz)) {
/*
* We are growing the file past the current block size.
*/
if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
ASSERT(!ISP2(zp->z_blksz));
newblksz = MIN(end, SPA_MAXBLOCKSIZE);
} else {
newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
}
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
} else {
newblksz = 0;
}
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
if (newblksz)
zfs_grow_blocksize(zp, newblksz, tx);
zp->z_size = end;
VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
&zp->z_size, sizeof (zp->z_size), tx));
zfs_range_unlock(rl);
dmu_tx_commit(tx);
return (0);
}
/*
* Free space in a file.
*
* IN: zp - znode of file to free data in.
* off - start of section to free.
* len - length of section to free.
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
{
zfs_sb_t *zsb = ZTOZSB(zp);
rl_t *rl;
int error;
/*
* Lock the range being freed.
*/
rl = zfs_range_lock(zp, off, len, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (off >= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
if (off + len > zp->z_size)
len = zp->z_size - off;
error = dmu_free_long_range(zsb->z_os, zp->z_id, off, len);
zfs_range_unlock(rl);
return (error);
}
/*
* Truncate a file
*
* IN: zp - znode of file to free data in.
* end - new end-of-file.
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_trunc(znode_t *zp, uint64_t end)
{
zfs_sb_t *zsb = ZTOZSB(zp);
dmu_tx_t *tx;
rl_t *rl;
int error;
sa_bulk_attr_t bulk[2];
int count = 0;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end >= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
error = dmu_free_long_range(zsb->z_os, zp->z_id, end, -1);
if (error) {
zfs_range_unlock(rl);
return (error);
}
top:
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
zp->z_size = end;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb),
NULL, &zp->z_size, sizeof (zp->z_size));
if (end == 0) {
zp->z_pflags &= ~ZFS_SPARSE;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb),
NULL, &zp->z_pflags, 8);
}
VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
dmu_tx_commit(tx);
zfs_range_unlock(rl);
return (0);
}
/*
* Free space in a file
*
* IN: zp - znode of file to free data in.
* off - start of range
* len - end of range (0 => EOF)
* flag - current file open mode flags.
* log - TRUE if this action should be logged
*
* RETURN: 0 if success
* error code if failure
*/
int
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
{
struct inode *ip = ZTOI(zp);
dmu_tx_t *tx;
zfs_sb_t *zsb = ZTOZSB(zp);
zilog_t *zilog = zsb->z_log;
uint64_t mode;
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int count = 0;
int error;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zsb), &mode,
sizeof (mode))) != 0)
return (error);
if (off > zp->z_size) {
error = zfs_extend(zp, off+len);
if (error == 0 && log)
goto log;
else
return (error);
}
/*
* Check for any locks in the region to be freed.
*/
if (ip->i_flock && mandatory_lock(ip)) {
uint64_t length = (len ? len : zp->z_size - off);
if (!lock_may_write(ip, off, length))
return (EAGAIN);
}
if (len == 0) {
error = zfs_trunc(zp, off);
} else {
if ((error = zfs_free_range(zp, off, len)) == 0 &&
off + len > zp->z_size)
error = zfs_extend(zp, off+len);
}
if (error || !log)
return (error);
log:
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto log;
}
dmu_tx_abort(tx);
return (error);
}
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb),
NULL, &zp->z_pflags, 8);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
ASSERT(error == 0);
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
dmu_tx_commit(tx);
zfs_inode_update(zp);
return (0);
}
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
struct super_block *sb;
zfs_sb_t *zsb;
uint64_t moid, obj, sa_obj, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int error;
int i;
znode_t *rootzp = NULL;
vattr_t vattr;
znode_t *zp;
zfs_acl_ids_t acl_ids;
/*
* First attempt to create master node.
*/
/*
* In an empty objset, there are no blocks to read and thus
* there can be no i/o errors (which we assert below).
*/
moid = MASTER_NODE_OBJ;
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
/*
* Set starting attributes.
*/
version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
elem = NULL;
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
/* For the moment we expect all zpl props to be uint64_ts */
uint64_t val;
char *name;
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
VERIFY(nvpair_value_uint64(elem, &val) == 0);
name = nvpair_name(elem);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
if (val < version)
version = val;
} else {
error = zap_update(os, moid, name, 8, 1, &val, tx);
}
ASSERT(error == 0);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
norm = val;
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
sense = val;
}
ASSERT(version != 0);
error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
/*
* Create zap object used for SA attribute registration
*/
if (version >= ZPL_VERSION_SA) {
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT(error == 0);
} else {
sa_obj = 0;
}
/*
* Create a delete queue.
*/
obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
ASSERT(error == 0);
/*
* Create root znode. Create minimal znode/inode/zsb/sb
* to allow zfs_mknode to work.
*/
vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
vattr.va_mode = S_IFDIR|0755;
vattr.va_uid = crgetuid(cr);
vattr.va_gid = crgetgid(cr);
rootzp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
rootzp->z_moved = 0;
rootzp->z_unlinked = 0;
rootzp->z_atime_dirty = 0;
rootzp->z_is_sa = USE_SA(version, os);
zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_PUSHPAGE);
zsb->z_os = os;
zsb->z_parent = zsb;
zsb->z_version = version;
zsb->z_use_fuids = USE_FUIDS(version, os);
zsb->z_use_sa = USE_SA(version, os);
zsb->z_norm = norm;
sb = kmem_zalloc(sizeof (struct super_block), KM_PUSHPAGE);
sb->s_fs_info = zsb;
ZTOI(rootzp)->i_sb = sb;
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zsb->z_attr_table);
ASSERT(error == 0);
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
zsb->z_norm |= U8_TEXTPREP_TOUPPER;
mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zsb->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
cr, NULL, &acl_ids));
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
ASSERT3P(zp, ==, rootzp);
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
ASSERT(error == 0);
zfs_acl_ids_free(&acl_ids);
atomic_set(&ZTOI(rootzp)->i_count, 0);
sa_handle_destroy(rootzp->z_sa_hdl);
kmem_cache_free(znode_cache, rootzp);
/*
* Create shares directory
*/
error = zfs_create_share_dir(zsb, tx);
ASSERT(error == 0);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zsb->z_hold_mtx[i]);
kmem_free(sb, sizeof (struct super_block));
kmem_free(zsb, sizeof (zfs_sb_t));
}
#endif /* _KERNEL */
static int
zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
{
uint64_t sa_obj = 0;
int error;
error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
if (error != 0 && error != ENOENT)
return (error);
error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
return (error);
}
static int
zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
dmu_buf_t **db, void *tag)
{
dmu_object_info_t doi;
int error;
if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
return (error);
dmu_object_info_from_db(*db, &doi);
if ((doi.doi_bonus_type != DMU_OT_SA &&
doi.doi_bonus_type != DMU_OT_ZNODE) ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t))) {
sa_buf_rele(*db, tag);
return (ENOTSUP);
}
error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
if (error != 0) {
sa_buf_rele(*db, tag);
return (error);
}
return (0);
}
void
zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
{
sa_handle_destroy(hdl);
sa_buf_rele(db, tag);
}
/*
* Given an object number, return its parent object number and whether
* or not the object is an extended attribute directory.
*/
static int
zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp,
int *is_xattrdir)
{
uint64_t parent;
uint64_t pflags;
uint64_t mode;
sa_bulk_attr_t bulk[3];
int count = 0;
int error;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
&parent, sizeof (parent));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
&pflags, sizeof (pflags));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&mode, sizeof (mode));
if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
return (error);
*pobjp = parent;
*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
return (0);
}
/*
* Given an object number, return some zpl level statistics
*/
static int
zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
zfs_stat_t *sb)
{
sa_bulk_attr_t bulk[4];
int count = 0;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&sb->zs_mode, sizeof (sb->zs_mode));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
&sb->zs_gen, sizeof (sb->zs_gen));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
&sb->zs_links, sizeof (sb->zs_links));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
&sb->zs_ctime, sizeof (sb->zs_ctime));
return (sa_bulk_lookup(hdl, bulk, count));
}
static int
zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
sa_attr_type_t *sa_table, char *buf, int len)
{
sa_handle_t *sa_hdl;
sa_handle_t *prevhdl = NULL;
dmu_buf_t *prevdb = NULL;
dmu_buf_t *sa_db = NULL;
char *path = buf + len - 1;
int error;
*path = '\0';
sa_hdl = hdl;
for (;;) {
uint64_t pobj;
char component[MAXNAMELEN + 2];
size_t complen;
int is_xattrdir;
if (prevdb)
zfs_release_sa_handle(prevhdl, prevdb, FTAG);
if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj,
&is_xattrdir)) != 0)
break;
if (pobj == obj) {
if (path[0] != '/')
*--path = '/';
break;
}
component[0] = '/';
if (is_xattrdir) {
(void) sprintf(component + 1, "<xattrdir>");
} else {
error = zap_value_search(osp, pobj, obj,
ZFS_DIRENT_OBJ(-1ULL), component + 1);
if (error != 0)
break;
}
complen = strlen(component);
path -= complen;
ASSERT(path >= buf);
bcopy(component, path, complen);
obj = pobj;
if (sa_hdl != hdl) {
prevhdl = sa_hdl;
prevdb = sa_db;
}
error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
if (error != 0) {
sa_hdl = prevhdl;
sa_db = prevdb;
break;
}
}
if (sa_hdl != NULL && sa_hdl != hdl) {
ASSERT(sa_db != NULL);
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
}
if (error == 0)
(void) memmove(buf, path, buf + len - path);
return (error);
}
int
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
{
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
int
zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
char *buf, int len)
{
char *path = buf + len - 1;
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
*path = '\0';
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
if (error != 0) {
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(zfs_create_fs);
EXPORT_SYMBOL(zfs_obj_to_path);
#endif