freebsd-nq/sys/kern/kern_condvar.c
Mark Johnston 11f9ca696e Prevent cv_waiters wraparound.
r282971 attempted to fix this problem by decrementing cv_waiters after
waking up from sleeping on a condition variable, but this can result in
a use-after-free if the CV is freed before all woken threads have had a
chance to run. Instead, avoid incrementing cv_waiters past INT_MAX, and
have cv_signal() explicitly check for sleeping threads once cv_waiters has
reached this bound.

Reviewed by:	jhb
MFC after:	2 weeks
Sponsored by:	EMC / Isilon Storage Division
Differential Revision:	https://reviews.freebsd.org/D4822
2016-01-09 01:56:46 +00:00

477 lines
12 KiB
C

/*-
* Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/condvar.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/resourcevar.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
/*
* A bound below which cv_waiters is valid. Once cv_waiters reaches this bound,
* cv_signal must manually check the wait queue for threads.
*/
#define CV_WAITERS_BOUND INT_MAX
#define CV_WAITERS_INC(cvp) do { \
if ((cvp)->cv_waiters < CV_WAITERS_BOUND) \
(cvp)->cv_waiters++; \
} while (0)
/*
* Common sanity checks for cv_wait* functions.
*/
#define CV_ASSERT(cvp, lock, td) do { \
KASSERT((td) != NULL, ("%s: td NULL", __func__)); \
KASSERT(TD_IS_RUNNING(td), ("%s: not TDS_RUNNING", __func__)); \
KASSERT((cvp) != NULL, ("%s: cvp NULL", __func__)); \
KASSERT((lock) != NULL, ("%s: lock NULL", __func__)); \
} while (0)
/*
* Initialize a condition variable. Must be called before use.
*/
void
cv_init(struct cv *cvp, const char *desc)
{
cvp->cv_description = desc;
cvp->cv_waiters = 0;
}
/*
* Destroy a condition variable. The condition variable must be re-initialized
* in order to be re-used.
*/
void
cv_destroy(struct cv *cvp)
{
#ifdef INVARIANTS
struct sleepqueue *sq;
sleepq_lock(cvp);
sq = sleepq_lookup(cvp);
sleepq_release(cvp);
KASSERT(sq == NULL, ("%s: associated sleep queue non-empty", __func__));
#endif
}
/*
* Wait on a condition variable. The current thread is placed on the condition
* variable's wait queue and suspended. A cv_signal or cv_broadcast on the same
* condition variable will resume the thread. The mutex is released before
* sleeping and will be held on return. It is recommended that the mutex be
* held when cv_signal or cv_broadcast are called.
*/
void
_cv_wait(struct cv *cvp, struct lock_object *lock)
{
WITNESS_SAVE_DECL(lock_witness);
struct lock_class *class;
struct thread *td;
uintptr_t lock_state;
td = curthread;
lock_state = 0;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0, cv_wmesg(cvp));
#endif
CV_ASSERT(cvp, lock, td);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Waiting on \"%s\"", cvp->cv_description);
class = LOCK_CLASS(lock);
if (cold || panicstr) {
/*
* During autoconfiguration, just give interrupts
* a chance, then just return. Don't run any other
* thread or panic below, in case this is the idle
* process and already asleep.
*/
return;
}
sleepq_lock(cvp);
CV_WAITERS_INC(cvp);
if (lock == &Giant.lock_object)
mtx_assert(&Giant, MA_OWNED);
DROP_GIANT();
sleepq_add(cvp, lock, cvp->cv_description, SLEEPQ_CONDVAR, 0);
if (lock != &Giant.lock_object) {
if (class->lc_flags & LC_SLEEPABLE)
sleepq_release(cvp);
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_lock(cvp);
}
sleepq_wait(cvp, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0, cv_wmesg(cvp));
#endif
PICKUP_GIANT();
if (lock != &Giant.lock_object) {
class->lc_lock(lock, lock_state);
WITNESS_RESTORE(lock, lock_witness);
}
}
/*
* Wait on a condition variable. This function differs from cv_wait by
* not aquiring the mutex after condition variable was signaled.
*/
void
_cv_wait_unlock(struct cv *cvp, struct lock_object *lock)
{
struct lock_class *class;
struct thread *td;
td = curthread;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0, cv_wmesg(cvp));
#endif
CV_ASSERT(cvp, lock, td);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Waiting on \"%s\"", cvp->cv_description);
KASSERT(lock != &Giant.lock_object,
("cv_wait_unlock cannot be used with Giant"));
class = LOCK_CLASS(lock);
if (cold || panicstr) {
/*
* During autoconfiguration, just give interrupts
* a chance, then just return. Don't run any other
* thread or panic below, in case this is the idle
* process and already asleep.
*/
class->lc_unlock(lock);
return;
}
sleepq_lock(cvp);
CV_WAITERS_INC(cvp);
DROP_GIANT();
sleepq_add(cvp, lock, cvp->cv_description, SLEEPQ_CONDVAR, 0);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_release(cvp);
class->lc_unlock(lock);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_lock(cvp);
sleepq_wait(cvp, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0, cv_wmesg(cvp));
#endif
PICKUP_GIANT();
}
/*
* Wait on a condition variable, allowing interruption by signals. Return 0 if
* the thread was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if
* a signal was caught. If ERESTART is returned the system call should be
* restarted if possible.
*/
int
_cv_wait_sig(struct cv *cvp, struct lock_object *lock)
{
WITNESS_SAVE_DECL(lock_witness);
struct lock_class *class;
struct thread *td;
uintptr_t lock_state;
int rval;
td = curthread;
lock_state = 0;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0, cv_wmesg(cvp));
#endif
CV_ASSERT(cvp, lock, td);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Waiting on \"%s\"", cvp->cv_description);
class = LOCK_CLASS(lock);
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration, just give
* interrupts a chance, then just return; don't run any other
* procs or panic below, in case this is the idle process and
* already asleep.
*/
return (0);
}
sleepq_lock(cvp);
CV_WAITERS_INC(cvp);
if (lock == &Giant.lock_object)
mtx_assert(&Giant, MA_OWNED);
DROP_GIANT();
sleepq_add(cvp, lock, cvp->cv_description, SLEEPQ_CONDVAR |
SLEEPQ_INTERRUPTIBLE, 0);
if (lock != &Giant.lock_object) {
if (class->lc_flags & LC_SLEEPABLE)
sleepq_release(cvp);
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_lock(cvp);
}
rval = sleepq_wait_sig(cvp, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0, cv_wmesg(cvp));
#endif
PICKUP_GIANT();
if (lock != &Giant.lock_object) {
class->lc_lock(lock, lock_state);
WITNESS_RESTORE(lock, lock_witness);
}
return (rval);
}
/*
* Wait on a condition variable for (at most) the value specified in sbt
* argument. Returns 0 if the process was resumed by cv_signal or cv_broadcast,
* EWOULDBLOCK if the timeout expires.
*/
int
_cv_timedwait_sbt(struct cv *cvp, struct lock_object *lock, sbintime_t sbt,
sbintime_t pr, int flags)
{
WITNESS_SAVE_DECL(lock_witness);
struct lock_class *class;
struct thread *td;
int lock_state, rval;
td = curthread;
lock_state = 0;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0, cv_wmesg(cvp));
#endif
CV_ASSERT(cvp, lock, td);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Waiting on \"%s\"", cvp->cv_description);
class = LOCK_CLASS(lock);
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration, just give
* interrupts a chance, then just return; don't run any other
* thread or panic below, in case this is the idle process and
* already asleep.
*/
return 0;
}
sleepq_lock(cvp);
CV_WAITERS_INC(cvp);
if (lock == &Giant.lock_object)
mtx_assert(&Giant, MA_OWNED);
DROP_GIANT();
sleepq_add(cvp, lock, cvp->cv_description, SLEEPQ_CONDVAR, 0);
sleepq_set_timeout_sbt(cvp, sbt, pr, flags);
if (lock != &Giant.lock_object) {
if (class->lc_flags & LC_SLEEPABLE)
sleepq_release(cvp);
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_lock(cvp);
}
rval = sleepq_timedwait(cvp, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0, cv_wmesg(cvp));
#endif
PICKUP_GIANT();
if (lock != &Giant.lock_object) {
class->lc_lock(lock, lock_state);
WITNESS_RESTORE(lock, lock_witness);
}
return (rval);
}
/*
* Wait on a condition variable for (at most) the value specified in sbt
* argument, allowing interruption by signals.
* Returns 0 if the thread was resumed by cv_signal or cv_broadcast,
* EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if a signal
* was caught.
*/
int
_cv_timedwait_sig_sbt(struct cv *cvp, struct lock_object *lock,
sbintime_t sbt, sbintime_t pr, int flags)
{
WITNESS_SAVE_DECL(lock_witness);
struct lock_class *class;
struct thread *td;
int lock_state, rval;
td = curthread;
lock_state = 0;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0, cv_wmesg(cvp));
#endif
CV_ASSERT(cvp, lock, td);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Waiting on \"%s\"", cvp->cv_description);
class = LOCK_CLASS(lock);
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration, just give
* interrupts a chance, then just return; don't run any other
* thread or panic below, in case this is the idle process and
* already asleep.
*/
return 0;
}
sleepq_lock(cvp);
CV_WAITERS_INC(cvp);
if (lock == &Giant.lock_object)
mtx_assert(&Giant, MA_OWNED);
DROP_GIANT();
sleepq_add(cvp, lock, cvp->cv_description, SLEEPQ_CONDVAR |
SLEEPQ_INTERRUPTIBLE, 0);
sleepq_set_timeout_sbt(cvp, sbt, pr, flags);
if (lock != &Giant.lock_object) {
if (class->lc_flags & LC_SLEEPABLE)
sleepq_release(cvp);
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
if (class->lc_flags & LC_SLEEPABLE)
sleepq_lock(cvp);
}
rval = sleepq_timedwait_sig(cvp, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0, cv_wmesg(cvp));
#endif
PICKUP_GIANT();
if (lock != &Giant.lock_object) {
class->lc_lock(lock, lock_state);
WITNESS_RESTORE(lock, lock_witness);
}
return (rval);
}
/*
* Signal a condition variable, wakes up one waiting thread. Will also wakeup
* the swapper if the process is not in memory, so that it can bring the
* sleeping process in. Note that this may also result in additional threads
* being made runnable. Should be called with the same mutex as was passed to
* cv_wait held.
*/
void
cv_signal(struct cv *cvp)
{
int wakeup_swapper;
wakeup_swapper = 0;
sleepq_lock(cvp);
if (cvp->cv_waiters > 0) {
if (cvp->cv_waiters == CV_WAITERS_BOUND &&
sleepq_lookup(cvp) == NULL) {
cvp->cv_waiters = 0;
} else {
if (cvp->cv_waiters < CV_WAITERS_BOUND)
cvp->cv_waiters--;
wakeup_swapper = sleepq_signal(cvp, SLEEPQ_CONDVAR, 0,
0);
}
}
sleepq_release(cvp);
if (wakeup_swapper)
kick_proc0();
}
/*
* Broadcast a signal to a condition variable. Wakes up all waiting threads.
* Should be called with the same mutex as was passed to cv_wait held.
*/
void
cv_broadcastpri(struct cv *cvp, int pri)
{
int wakeup_swapper;
/*
* XXX sleepq_broadcast pri argument changed from -1 meaning
* no pri to 0 meaning no pri.
*/
wakeup_swapper = 0;
if (pri == -1)
pri = 0;
sleepq_lock(cvp);
if (cvp->cv_waiters > 0) {
cvp->cv_waiters = 0;
wakeup_swapper = sleepq_broadcast(cvp, SLEEPQ_CONDVAR, pri, 0);
}
sleepq_release(cvp);
if (wakeup_swapper)
kick_proc0();
}