Navdeep Parhar 5c2bacde58 Update the iw_cxgbe bits in the projects branch.
Submitted by:	Krishnamraju Eraparaju @ Chelsio
Sponsored by:	Chelsio Communications
2017-11-07 23:52:14 +00:00

736 lines
20 KiB
C

/*
* Copyright (c) 2006-2016 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __T4_H__
#define __T4_H__
#include <assert.h>
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <syslog.h>
#include <infiniband/types.h>
#include <infiniband/udma_barrier.h>
#include <infiniband/endian.h>
/*
* Try and minimize the changes from the kernel code that is pull in
* here for kernel bypass ops.
*/
#define u8 uint8_t
#define u16 uint16_t
#define u32 uint32_t
#define u64 uint64_t
#define DECLARE_PCI_UNMAP_ADDR(a)
#define __iomem
#define BUG_ON(c) assert(!(c))
#define ROUND_UP(x, n) (((x) + (n) - 1u) & ~((n) - 1u))
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
/* FIXME: Move me to a generic PCI mmio accessor */
#define cpu_to_pci32(val) htole32(val)
#define writel(v, a) do { *((volatile u32 *)(a)) = cpu_to_pci32(v); } while (0)
#include "t4_regs.h"
#include "t4_chip_type.h"
#include "t4fw_api.h"
#include "t4fw_ri_api.h"
#ifdef DEBUG
#define DBGLOG(s)
#define PDBG(fmt, args...) do {syslog(LOG_DEBUG, fmt, ##args); } while (0)
#else
#define DBGLOG(s)
#define PDBG(fmt, args...) do {} while (0)
#endif
#define A_PCIE_MA_SYNC 0x30b4
#define T4_MAX_READ_DEPTH 16
#define T4_QID_BASE 1024
#define T4_MAX_QIDS 256
#define T4_MAX_NUM_PD 65536
#define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
#define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
#define T4_MAX_IQ_SIZE (65520 - 1)
#define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
#define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
#define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
#define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
#define T4_MAX_NUM_STAG (1<<15)
#define T4_MAX_MR_SIZE (~0ULL - 1)
#define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
#define T4_STAG_UNSET 0xffffffff
#define T4_FW_MAJ 0
struct t4_status_page {
__be32 rsvd1; /* flit 0 - hw owns */
__be16 rsvd2;
__be16 qid;
__be16 cidx;
__be16 pidx;
u8 qp_err; /* flit 1 - sw owns */
u8 db_off;
u8 pad;
u16 host_wq_pidx;
u16 host_cidx;
u16 host_pidx;
};
#define T4_EQ_ENTRY_SIZE 64
#define T4_SQ_NUM_SLOTS 5
#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_immd)))
#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_immd)))
#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - sizeof(struct fw_ri_immd)))
#define T4_MAX_FR_DEPTH 255
#define T4_RQ_NUM_SLOTS 2
#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
#define T4_MAX_RECV_SGE 4
union t4_wr {
struct fw_ri_res_wr res;
struct fw_ri_wr init;
struct fw_ri_rdma_write_wr write;
struct fw_ri_send_wr send;
struct fw_ri_rdma_read_wr read;
struct fw_ri_bind_mw_wr bind;
struct fw_ri_fr_nsmr_wr fr;
struct fw_ri_inv_lstag_wr inv;
struct t4_status_page status;
__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
};
union t4_recv_wr {
struct fw_ri_recv_wr recv;
struct t4_status_page status;
__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
};
static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
enum fw_wr_opcodes opcode, u8 flags, u8 len16)
{
wqe->send.opcode = (u8)opcode;
wqe->send.flags = flags;
wqe->send.wrid = wrid;
wqe->send.r1[0] = 0;
wqe->send.r1[1] = 0;
wqe->send.r1[2] = 0;
wqe->send.len16 = len16;
}
/* CQE/AE status codes */
#define T4_ERR_SUCCESS 0x0
#define T4_ERR_STAG 0x1 /* STAG invalid: either the */
/* STAG is offlimt, being 0, */
/* or STAG_key mismatch */
#define T4_ERR_PDID 0x2 /* PDID mismatch */
#define T4_ERR_QPID 0x3 /* QPID mismatch */
#define T4_ERR_ACCESS 0x4 /* Invalid access right */
#define T4_ERR_WRAP 0x5 /* Wrap error */
#define T4_ERR_BOUND 0x6 /* base and bounds voilation */
#define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
/* shared memory region */
#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
/* shared memory region */
#define T4_ERR_ECC 0x9 /* ECC error detected */
#define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
/* reading PSTAG for a MW */
/* Invalidate */
#define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
/* software error */
#define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
#define T4_ERR_CRC 0x10 /* CRC error */
#define T4_ERR_MARKER 0x11 /* Marker error */
#define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
#define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
#define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
#define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
#define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
#define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
#define T4_ERR_MSN 0x18 /* MSN error */
#define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
#define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
/* or READ_REQ */
#define T4_ERR_MSN_GAP 0x1B
#define T4_ERR_MSN_RANGE 0x1C
#define T4_ERR_IRD_OVERFLOW 0x1D
#define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
/* software error */
#define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
/* mismatch) */
/*
* CQE defs
*/
struct t4_cqe {
__be32 header;
__be32 len;
union {
struct {
__be32 stag;
__be32 msn;
} rcqe;
struct {
u32 nada1;
u16 nada2;
u16 cidx;
} scqe;
struct {
__be32 wrid_hi;
__be32 wrid_low;
} gen;
} u;
__be64 reserved;
__be64 bits_type_ts;
};
/* macros for flit 0 of the cqe */
#define S_CQE_QPID 12
#define M_CQE_QPID 0xFFFFF
#define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
#define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
#define S_CQE_SWCQE 11
#define M_CQE_SWCQE 0x1
#define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
#define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
#define S_CQE_STATUS 5
#define M_CQE_STATUS 0x1F
#define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
#define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
#define S_CQE_TYPE 4
#define M_CQE_TYPE 0x1
#define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
#define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
#define S_CQE_OPCODE 0
#define M_CQE_OPCODE 0xF
#define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
#define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
#define SW_CQE(x) (G_CQE_SWCQE(be32toh((x)->header)))
#define CQE_QPID(x) (G_CQE_QPID(be32toh((x)->header)))
#define CQE_TYPE(x) (G_CQE_TYPE(be32toh((x)->header)))
#define SQ_TYPE(x) (CQE_TYPE((x)))
#define RQ_TYPE(x) (!CQE_TYPE((x)))
#define CQE_STATUS(x) (G_CQE_STATUS(be32toh((x)->header)))
#define CQE_OPCODE(x) (G_CQE_OPCODE(be32toh((x)->header)))
#define CQE_SEND_OPCODE(x)( \
(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND) || \
(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE) || \
(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_INV) || \
(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE_INV))
#define CQE_LEN(x) (be32toh((x)->len))
/* used for RQ completion processing */
#define CQE_WRID_STAG(x) (be32toh((x)->u.rcqe.stag))
#define CQE_WRID_MSN(x) (be32toh((x)->u.rcqe.msn))
/* used for SQ completion processing */
#define CQE_WRID_SQ_IDX(x) (x)->u.scqe.cidx
/* generic accessor macros */
#define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
#define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
/* macros for flit 3 of the cqe */
#define S_CQE_GENBIT 63
#define M_CQE_GENBIT 0x1
#define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
#define S_CQE_OVFBIT 62
#define M_CQE_OVFBIT 0x1
#define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
#define S_CQE_IQTYPE 60
#define M_CQE_IQTYPE 0x3
#define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
#define M_CQE_TS 0x0fffffffffffffffULL
#define G_CQE_TS(x) ((x) & M_CQE_TS)
#define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64toh((x)->bits_type_ts)))
#define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64toh((x)->bits_type_ts)))
#define CQE_TS(x) (G_CQE_TS(be64toh((x)->bits_type_ts)))
struct t4_swsqe {
u64 wr_id;
struct t4_cqe cqe;
__be32 read_len;
int opcode;
int complete;
int signaled;
u16 idx;
int flushed;
};
enum {
T4_SQ_ONCHIP = (1<<0),
};
struct t4_sq {
/* queue is either host memory or WC MMIO memory if
* t4_sq_onchip(). */
union t4_wr *queue;
struct t4_swsqe *sw_sq;
struct t4_swsqe *oldest_read;
/* udb is either UC or WC MMIO memory depending on device version. */
volatile u32 *udb;
size_t memsize;
u32 qid;
u32 bar2_qid;
void *ma_sync;
u16 in_use;
u16 size;
u16 cidx;
u16 pidx;
u16 wq_pidx;
u16 flags;
short flush_cidx;
int wc_reg_available;
};
struct t4_swrqe {
u64 wr_id;
};
struct t4_rq {
union t4_recv_wr *queue;
struct t4_swrqe *sw_rq;
volatile u32 *udb;
size_t memsize;
u32 qid;
u32 bar2_qid;
u32 msn;
u32 rqt_hwaddr;
u16 rqt_size;
u16 in_use;
u16 size;
u16 cidx;
u16 pidx;
u16 wq_pidx;
int wc_reg_available;
};
struct t4_wq {
struct t4_sq sq;
struct t4_rq rq;
struct c4iw_rdev *rdev;
u32 qid_mask;
int error;
int flushed;
u8 *db_offp;
};
static inline int t4_rqes_posted(struct t4_wq *wq)
{
return wq->rq.in_use;
}
static inline int t4_rq_empty(struct t4_wq *wq)
{
return wq->rq.in_use == 0;
}
static inline int t4_rq_full(struct t4_wq *wq)
{
return wq->rq.in_use == (wq->rq.size - 1);
}
static inline u32 t4_rq_avail(struct t4_wq *wq)
{
return wq->rq.size - 1 - wq->rq.in_use;
}
static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
{
wq->rq.in_use++;
if (++wq->rq.pidx == wq->rq.size)
wq->rq.pidx = 0;
wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
if (!wq->error)
wq->rq.queue[wq->rq.size].status.host_pidx = wq->rq.pidx;
}
static inline void t4_rq_consume(struct t4_wq *wq)
{
wq->rq.in_use--;
wq->rq.msn++;
if (++wq->rq.cidx == wq->rq.size)
wq->rq.cidx = 0;
assert((wq->rq.cidx != wq->rq.pidx) || wq->rq.in_use == 0);
if (!wq->error)
wq->rq.queue[wq->rq.size].status.host_cidx = wq->rq.cidx;
}
static inline int t4_sq_empty(struct t4_wq *wq)
{
return wq->sq.in_use == 0;
}
static inline int t4_sq_full(struct t4_wq *wq)
{
return wq->sq.in_use == (wq->sq.size - 1);
}
static inline u32 t4_sq_avail(struct t4_wq *wq)
{
return wq->sq.size - 1 - wq->sq.in_use;
}
static inline int t4_sq_onchip(struct t4_wq *wq)
{
return wq->sq.flags & T4_SQ_ONCHIP;
}
static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
{
wq->sq.in_use++;
if (++wq->sq.pidx == wq->sq.size)
wq->sq.pidx = 0;
wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
if (!wq->error) {
/* This write is only for debugging, the value does not matter
* for DMA */
wq->sq.queue[wq->sq.size].status.host_pidx = (wq->sq.pidx);
}
}
static inline void t4_sq_consume(struct t4_wq *wq)
{
assert(wq->sq.in_use >= 1);
if (wq->sq.cidx == wq->sq.flush_cidx)
wq->sq.flush_cidx = -1;
wq->sq.in_use--;
if (++wq->sq.cidx == wq->sq.size)
wq->sq.cidx = 0;
assert((wq->sq.cidx != wq->sq.pidx) || wq->sq.in_use == 0);
if (!wq->error){
/* This write is only for debugging, the value does not matter
* for DMA */
wq->sq.queue[wq->sq.size].status.host_cidx = wq->sq.cidx;
}
}
/* Copies to WC MMIO memory */
static void copy_wqe_to_udb(volatile u32 *udb_offset, void *wqe)
{
u64 *src, *dst;
int len16 = 4;
src = (u64 *)wqe;
dst = (u64 *)udb_offset;
while (len16) {
*dst++ = *src++;
*dst++ = *src++;
len16--;
}
}
extern int ma_wr;
extern int t5_en_wc;
static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
union t4_wr *wqe)
{
if (!t4) {
mmio_wc_start();
if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
PDBG("%s: WC wq->sq.pidx = %d; len16=%d\n",
__func__, wq->sq.pidx, len16);
copy_wqe_to_udb(wq->sq.udb + 14, wqe);
} else {
PDBG("%s: DB wq->sq.pidx = %d; len16=%d\n",
__func__, wq->sq.pidx, len16);
writel(QID_V(wq->sq.bar2_qid) | PIDX_T5_V(inc),
wq->sq.udb);
}
/* udb is WC for > t4 devices */
mmio_flush_writes();
return;
}
udma_to_device_barrier();
if (ma_wr) {
if (t4_sq_onchip(wq)) {
int i;
mmio_wc_start();
for (i = 0; i < 16; i++)
*(volatile u32 *)&wq->sq.queue[wq->sq.size].flits[2+i] = i;
mmio_flush_writes();
}
} else {
if (t4_sq_onchip(wq)) {
int i;
mmio_wc_start();
for (i = 0; i < 16; i++)
/* FIXME: What is this supposed to be doing?
* Writing to the same address multiple times
* with WC memory is not guarenteed to
* generate any more than one TLP. Why isn't
* writing to WC memory marked volatile? */
*(u32 *)&wq->sq.queue[wq->sq.size].flits[2] = i;
mmio_flush_writes();
}
}
/* udb is UC for t4 devices */
writel(QID_V(wq->sq.qid & wq->qid_mask) | PIDX_V(inc), wq->sq.udb);
}
static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
union t4_recv_wr *wqe)
{
if (!t4) {
mmio_wc_start();
if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
PDBG("%s: WC wq->rq.pidx = %d; len16=%d\n",
__func__, wq->rq.pidx, len16);
copy_wqe_to_udb(wq->rq.udb + 14, wqe);
} else {
PDBG("%s: DB wq->rq.pidx = %d; len16=%d\n",
__func__, wq->rq.pidx, len16);
writel(QID_V(wq->rq.bar2_qid) | PIDX_T5_V(inc),
wq->rq.udb);
}
/* udb is WC for > t4 devices */
mmio_flush_writes();
return;
}
/* udb is UC for t4 devices */
udma_to_device_barrier();
writel(QID_V(wq->rq.qid & wq->qid_mask) | PIDX_V(inc), wq->rq.udb);
}
static inline int t4_wq_in_error(struct t4_wq *wq)
{
return wq->error || wq->rq.queue[wq->rq.size].status.qp_err;
}
static inline void t4_set_wq_in_error(struct t4_wq *wq)
{
wq->rq.queue[wq->rq.size].status.qp_err = 1;
}
extern int c4iw_abi_version;
static inline int t4_wq_db_enabled(struct t4_wq *wq)
{
/*
* If iw_cxgb4 driver supports door bell drop recovery then its
* c4iw_abi_version would be greater than or equal to 2. In such
* case return the status of db_off flag to ring the kernel mode
* DB from user mode library.
*/
if ( c4iw_abi_version >= 2 )
return ! *wq->db_offp;
else
return 1;
}
struct t4_cq {
struct t4_cqe *queue;
struct t4_cqe *sw_queue;
struct c4iw_rdev *rdev;
volatile u32 *ugts;
size_t memsize;
u64 bits_type_ts;
u32 cqid;
u32 qid_mask;
u16 size; /* including status page */
u16 cidx;
u16 sw_pidx;
u16 sw_cidx;
u16 sw_in_use;
u16 cidx_inc;
u8 gen;
u8 error;
};
static inline int t4_arm_cq(struct t4_cq *cq, int se)
{
u32 val;
while (cq->cidx_inc > CIDXINC_M) {
val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7) |
INGRESSQID_V(cq->cqid & cq->qid_mask);
writel(val, cq->ugts);
cq->cidx_inc -= CIDXINC_M;
}
val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6) |
INGRESSQID_V(cq->cqid & cq->qid_mask);
writel(val, cq->ugts);
cq->cidx_inc = 0;
return 0;
}
static inline void t4_swcq_produce(struct t4_cq *cq)
{
cq->sw_in_use++;
if (cq->sw_in_use == cq->size) {
syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
cq->error = 1;
assert(0);
}
if (++cq->sw_pidx == cq->size)
cq->sw_pidx = 0;
}
static inline void t4_swcq_consume(struct t4_cq *cq)
{
assert(cq->sw_in_use >= 1);
cq->sw_in_use--;
if (++cq->sw_cidx == cq->size)
cq->sw_cidx = 0;
}
static inline void t4_hwcq_consume(struct t4_cq *cq)
{
cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
uint32_t val;
val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7) |
INGRESSQID_V(cq->cqid & cq->qid_mask);
writel(val, cq->ugts);
cq->cidx_inc = 0;
}
if (++cq->cidx == cq->size) {
cq->cidx = 0;
cq->gen ^= 1;
}
((struct t4_status_page *)&cq->queue[cq->size])->host_cidx = cq->cidx;
}
static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
{
return (CQE_GENBIT(cqe) == cq->gen);
}
static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
{
int ret;
u16 prev_cidx;
if (cq->cidx == 0)
prev_cidx = cq->size - 1;
else
prev_cidx = cq->cidx - 1;
if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
ret = -EOVERFLOW;
syslog(LOG_NOTICE, "cxgb4 cq overflow cqid %u\n", cq->cqid);
cq->error = 1;
assert(0);
} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
udma_from_device_barrier();
*cqe = &cq->queue[cq->cidx];
ret = 0;
} else
ret = -ENODATA;
return ret;
}
static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
{
if (cq->sw_in_use == cq->size) {
syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
cq->error = 1;
assert(0);
return NULL;
}
if (cq->sw_in_use)
return &cq->sw_queue[cq->sw_cidx];
return NULL;
}
static inline int t4_cq_notempty(struct t4_cq *cq)
{
return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
}
static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
{
int ret = 0;
if (cq->error)
ret = -ENODATA;
else if (cq->sw_in_use)
*cqe = &cq->sw_queue[cq->sw_cidx];
else ret = t4_next_hw_cqe(cq, cqe);
return ret;
}
static inline int t4_cq_in_error(struct t4_cq *cq)
{
return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
}
static inline void t4_set_cq_in_error(struct t4_cq *cq)
{
((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
}
static inline void t4_reset_cq_in_error(struct t4_cq *cq)
{
((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 0;
}
struct t4_dev_status_page
{
u8 db_off;
u8 wc_supported;
u16 pad2;
u32 pad3;
u64 qp_start;
u64 qp_size;
u64 cq_start;
u64 cq_size;
};
#endif