freebsd-nq/sys/arm/freescale/imx/imx6_anatop.c
2015-05-05 23:27:49 +00:00

807 lines
23 KiB
C

/*-
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
* Also, temperature montoring and cpu frequency control. It was Freescale who
* kitchen-sinked this device, not us. :)
*
* We don't really do anything with analog PLLs, but the registers for
* controlling them belong to the same block as the power regulator registers.
* Since the newbus hierarchy makes it hard for anyone other than us to get at
* them, we just export a couple public functions to allow the imx6 CCM clock
* driver to read and write those registers.
*
* We also don't do anything about power regulation yet, but when the need
* arises, this would be the place for that code to live.
*
* I have no idea where the "anatop" name comes from. It's in the standard DTS
* source describing i.MX6 SoCs, and in the linux and u-boot code which comes
* from Freescale, but it's not in the SoC manual.
*
* Note that temperature values throughout this code are handled in two types of
* units. Items with '_cnt' in the name use the hardware temperature count
* units (higher counts are lower temperatures). Items with '_val' in the name
* are deci-Celcius, which are converted to/from deci-Kelvins in the sysctl
* handlers (dK is the standard unit for temperature in sysctl).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/sysctl.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <arm/arm/mpcore_timervar.h>
#include <arm/freescale/fsl_ocotpreg.h>
#include <arm/freescale/fsl_ocotpvar.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <arm/freescale/imx/imx6_anatopreg.h>
#include <arm/freescale/imx/imx6_anatopvar.h>
static SYSCTL_NODE(_hw, OID_AUTO, imx6, CTLFLAG_RW, NULL, "i.MX6 container");
static struct resource_spec imx6_anatop_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define MEMRES 0
#define IRQRES 1
struct imx6_anatop_softc {
device_t dev;
struct resource *res[2];
struct intr_config_hook
intr_setup_hook;
uint32_t cpu_curmhz;
uint32_t cpu_curmv;
uint32_t cpu_minmhz;
uint32_t cpu_minmv;
uint32_t cpu_maxmhz;
uint32_t cpu_maxmv;
uint32_t cpu_maxmhz_hw;
boolean_t cpu_overclock_enable;
boolean_t cpu_init_done;
uint32_t refosc_mhz;
void *temp_intrhand;
uint32_t temp_high_val;
uint32_t temp_high_cnt;
uint32_t temp_last_cnt;
uint32_t temp_room_cnt;
struct callout temp_throttle_callout;
sbintime_t temp_throttle_delay;
uint32_t temp_throttle_reset_cnt;
uint32_t temp_throttle_trigger_cnt;
uint32_t temp_throttle_val;
};
static struct imx6_anatop_softc *imx6_anatop_sc;
/*
* Table of "operating points".
* These are combinations of frequency and voltage blessed by Freescale.
* While the datasheet says the ARM voltage can be as low as 925mV at
* 396MHz, it also says that the ARM and SOC voltages can't differ by
* more than 200mV, and the minimum SOC voltage is 1150mV, so that
* dictates the 950mV entry in this table.
*/
static struct oppt {
uint32_t mhz;
uint32_t mv;
} imx6_oppt_table[] = {
{ 396, 950},
{ 792, 1150},
{ 852, 1225},
{ 996, 1225},
{1200, 1275},
};
/*
* Table of CPU max frequencies. This is used to translate the max frequency
* value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
* up in the operating points table.
*/
static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
#define TZ_ZEROC 2732 /* deci-Kelvin <-> deci-Celcius offset. */
uint32_t
imx6_anatop_read_4(bus_size_t offset)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
}
void
imx6_anatop_write_4(bus_size_t offset, uint32_t value)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
}
static void
vdd_set(struct imx6_anatop_softc *sc, int mv)
{
int newtarg, newtargSoc, oldtarg;
uint32_t delay, pmureg;
static boolean_t init_done = false;
/*
* The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
* can't be more than 50mV above or 200mV below them. We keep them the
* same except in the case of the lowest operating point, which is
* handled as a special case below.
*/
pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
/* Convert mV to target value. Clamp target to valid range. */
if (mv < 725)
newtarg = 0x00;
else if (mv > 1450)
newtarg = 0x1F;
else
newtarg = (mv - 700) / 25;
/*
* The SOC voltage can't go below 1150mV, and thus because of the 200mV
* rule, the ARM voltage can't go below 950mV. The 950 is encoded in
* our oppt table, here we handle the SOC 1150 rule as a special case.
* (1150-700/25=18).
*/
newtargSoc = (newtarg < 18) ? 18 : newtarg;
/*
* The first time through the 3 voltages might not be equal so use a
* long conservative delay. After that we need to delay 3uS for every
* 25mV step upward; we actually delay 6uS because empirically, it works
* and the 3uS per step recommended by the docs doesn't (3uS fails when
* going from 400->1200, but works for smaller changes).
*/
if (init_done) {
if (newtarg == oldtarg)
return;
else if (newtarg > oldtarg)
delay = (newtarg - oldtarg) * 6;
else
delay = 0;
} else {
delay = (700 / 25) * 6;
init_done = true;
}
/*
* Make the change and wait for it to take effect.
*/
pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
IMX6_ANALOG_PMU_REG1_TARG_MASK |
IMX6_ANALOG_PMU_REG2_TARG_MASK);
pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
DELAY(delay);
sc->cpu_curmv = newtarg * 25 + 700;
}
static inline uint32_t
cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv,
uint32_t plldiv)
{
return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1));
}
static inline void
cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz,
uint32_t *corediv, uint32_t *plldiv)
{
*corediv = (cpu_mhz < 650) ? 1 : 0;
*plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2);
}
static inline uint32_t
cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
{
uint32_t corediv, plldiv;
cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv);
return (cpufreq_mhz_from_div(sc, corediv, plldiv));
}
static struct oppt *
cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
{
int d, diff, i, nearest;
if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
cpu_newmhz = sc->cpu_maxmhz_hw;
diff = INT_MAX;
nearest = 0;
for (i = 0; i < nitems(imx6_oppt_table); ++i) {
d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
if (diff > d) {
diff = d;
nearest = i;
}
}
return (&imx6_oppt_table[nearest]);
}
static void
cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
{
uint32_t corediv, plldiv, timeout, wrk32;
/* If increasing the frequency, we must first increase the voltage. */
if (op->mhz > sc->cpu_curmhz) {
vdd_set(sc, op->mv);
}
/*
* I can't find a documented procedure for changing the ARM PLL divisor,
* but some trial and error came up with this:
* - Set the bypass clock source to REF_CLK_24M (source #0).
* - Set the PLL into bypass mode; cpu should now be running at 24mhz.
* - Change the divisor.
* - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
* - Turn off bypass mode; cpu should now be running at the new speed.
*/
cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
wrk32 |= plldiv;
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
timeout = 10000;
while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
if (--timeout == 0)
panic("imx6_set_cpu_clock(): PLL never locked");
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
imx_ccm_set_cacrr(corediv);
/* If lowering the frequency, it is now safe to lower the voltage. */
if (op->mhz < sc->cpu_curmhz)
vdd_set(sc, op->mv);
sc->cpu_curmhz = op->mhz;
/* Tell the mpcore timer that its frequency has changed. */
arm_tmr_change_frequency(
cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
}
static int
cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc;
struct oppt * op;
uint32_t temp;
int err;
sc = arg1;
temp = sc->cpu_minmhz;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
op = cpufreq_nearest_oppt(sc, temp);
if (op->mhz > sc->cpu_maxmhz)
return (ERANGE);
else if (op->mhz == sc->cpu_minmhz)
return (0);
/*
* Value changed, update softc. If the new min is higher than the
* current speed, raise the current speed to match.
*/
sc->cpu_minmhz = op->mhz;
if (sc->cpu_minmhz > sc->cpu_curmhz) {
cpufreq_set_clock(sc, op);
}
return (err);
}
static int
cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc;
struct oppt * op;
uint32_t temp;
int err;
sc = arg1;
temp = sc->cpu_maxmhz;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
op = cpufreq_nearest_oppt(sc, temp);
if (op->mhz < sc->cpu_minmhz)
return (ERANGE);
else if (op->mhz == sc->cpu_maxmhz)
return (0);
/*
* Value changed, update softc and hardware. The hardware update is
* unconditional. We always try to run at max speed, so any change of
* the max means we need to change the current speed too, regardless of
* whether it is higher or lower than the old max.
*/
sc->cpu_maxmhz = op->mhz;
cpufreq_set_clock(sc, op);
return (err);
}
static void
cpufreq_initialize(struct imx6_anatop_softc *sc)
{
uint32_t cfg3speed;
struct oppt * op;
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
"CPU frequency");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0,
"Maximum CPU frequency allowed by hardware");
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN,
&sc->cpu_overclock_enable, 0,
"Allow setting CPU frequency higher than cpu_maxmhz_hw");
/*
* XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
* (even though in the real world it will always be 24mhz). Oh wait a
* sec, I never wrote imx6_ccm.
*/
sc->refosc_mhz = 24;
/*
* Get the maximum speed this cpu can be set to. The values in the
* OCOTP CFG3 register are not documented in the reference manual.
* The following info was in an archived email found via web search:
* - 2b'11: 1200000000Hz;
* - 2b'10: 996000000Hz;
* - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
* - 2b'00: 792000000Hz;
* The default hardware max speed can be overridden by a tunable.
*/
cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
sc->cpu_minmhz = op->mhz;
sc->cpu_minmv = op->mv;
TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
sc->cpu_maxmhz = op->mhz;
sc->cpu_maxmv = op->mv;
/*
* Set the CPU to maximum speed.
*
* We won't have thermal throttling until interrupts are enabled, but we
* want to run at full speed through all the device init stuff. This
* basically assumes that a single core can't overheat before interrupts
* are enabled; empirical testing shows that to be a safe assumption.
*/
cpufreq_set_clock(sc, op);
}
static inline uint32_t
temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
{
return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
(sc->temp_high_val - 250) /
(sc->temp_room_cnt - sc->temp_high_cnt))));
}
static inline uint32_t
temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
{
return ((sc->temp_room_cnt - sc->temp_high_cnt) *
(sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
sc->temp_high_cnt);
}
static void
temp_update_count(struct imx6_anatop_softc *sc)
{
uint32_t val;
val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
return;
sc->temp_last_cnt =
(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
}
static int
temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
uint32_t t;
temp_update_count(sc);
t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
return (sysctl_handle_int(oidp, &t, 0, req));
}
static int
temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
int err;
uint32_t temp;
temp = sc->temp_throttle_val + TZ_ZEROC;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (temp < TZ_ZEROC)
return (ERANGE);
temp -= TZ_ZEROC;
if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
return (err);
/* Value changed, update counts in softc and hardware. */
sc->temp_throttle_val = temp;
sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
return (err);
}
static void
tempmon_gofast(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curmhz < sc->cpu_maxmhz) {
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
}
}
static void
tempmon_goslow(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curmhz > sc->cpu_minmhz) {
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
}
}
static int
tempmon_intr(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/*
* XXX Note that this code doesn't currently run (for some mysterious
* reason we just never get an interrupt), so the real monitoring is
* done by tempmon_throttle_check().
*/
tempmon_goslow(sc);
/* XXX Schedule callout to speed back up eventually. */
return (FILTER_HANDLED);
}
static void
tempmon_throttle_check(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/* Lower counts are higher temperatures. */
if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
tempmon_goslow(sc);
else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
tempmon_gofast(sc);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
}
static void
initialize_tempmon(struct imx6_anatop_softc *sc)
{
uint32_t cal;
/*
* Fetch calibration data: a sensor count at room temperature (25C),
* a sensor count at a high temperature, and that temperature
*/
cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
sc->temp_high_val = (cal & 0x000000FF) * 10;
/*
* Throttle to a lower cpu freq at 10C below the "hot" temperature, and
* reset back to max cpu freq at 5C below the trigger.
*/
sc->temp_throttle_val = sc->temp_high_val - 100;
sc->temp_throttle_trigger_cnt =
temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt =
temp_to_count(sc, sc->temp_throttle_val - 50);
/*
* Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
* the throttle count, and begin making measurements.
*/
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
/*
* XXX Note that the alarm-interrupt feature isn't working yet, so
* we'll use a callout handler to check at 10Hz. Make sure we have an
* initial temperature reading before starting up the callouts so we
* don't get a bogus reading of zero.
*/
while (sc->temp_last_cnt == 0)
temp_update_count(sc);
sc->temp_throttle_delay = 100 * SBT_1MS;
callout_init(&sc->temp_throttle_callout, 0);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
temp_sysctl_handler, "IK", "Current die temperature");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc,
0, temp_throttle_sysctl_handler, "IK",
"Throttle CPU when exceeding this temperature");
}
static void
intr_setup(void *arg)
{
struct imx6_anatop_softc *sc;
sc = arg;
bus_setup_intr(sc->dev, sc->res[IRQRES], INTR_TYPE_MISC | INTR_MPSAFE,
tempmon_intr, NULL, sc, &sc->temp_intrhand);
config_intrhook_disestablish(&sc->intr_setup_hook);
}
static void
imx6_anatop_new_pass(device_t dev)
{
struct imx6_anatop_softc *sc;
const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
/*
* We attach during BUS_PASS_BUS (because some day we will be a
* simplebus that has regulator devices as children), but some of our
* init work cannot be done until BUS_PASS_CPU (we rely on other devices
* that attach on the CPU pass).
*/
sc = device_get_softc(dev);
if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) {
sc->cpu_init_done = true;
cpufreq_initialize(sc);
initialize_tempmon(sc);
if (bootverbose) {
device_printf(sc->dev, "CPU %uMHz @ %umV\n",
sc->cpu_curmhz, sc->cpu_curmv);
}
}
bus_generic_new_pass(dev);
}
static int
imx6_anatop_detach(device_t dev)
{
/* This device can never detach. */
return (EBUSY);
}
static int
imx6_anatop_attach(device_t dev)
{
struct imx6_anatop_softc *sc;
int err;
sc = device_get_softc(dev);
sc->dev = dev;
/* Allocate bus_space resources. */
if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
device_printf(dev, "Cannot allocate resources\n");
err = ENXIO;
goto out;
}
sc->intr_setup_hook.ich_func = intr_setup;
sc->intr_setup_hook.ich_arg = sc;
config_intrhook_establish(&sc->intr_setup_hook);
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "cpu_voltage", CTLFLAG_RD,
&sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
imx6_anatop_sc = sc;
/*
* Other code seen on the net sets this SELFBIASOFF flag around the same
* time the temperature sensor is set up, although it's unclear how the
* two are related (if at all).
*/
imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
/*
* Some day, when we're ready to deal with the actual anatop regulators
* that are described in fdt data as children of this "bus", this would
* be the place to invoke a simplebus helper routine to instantiate the
* children from the fdt data.
*/
err = 0;
out:
if (err != 0) {
bus_release_resources(dev, imx6_anatop_spec, sc->res);
}
return (err);
}
uint32_t
pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
{
int reg;
/*
* Audio PLL (PLL4).
* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
*/
reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
return (0);
}
static int
imx6_anatop_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
return (ENXIO);
device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
return (BUS_PROBE_DEFAULT);
}
uint32_t
imx6_get_cpu_clock()
{
uint32_t corediv, plldiv;
corediv = imx_ccm_get_cacrr();
plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv));
}
static device_method_t imx6_anatop_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, imx6_anatop_probe),
DEVMETHOD(device_attach, imx6_anatop_attach),
DEVMETHOD(device_detach, imx6_anatop_detach),
/* Bus interface */
DEVMETHOD(bus_new_pass, imx6_anatop_new_pass),
DEVMETHOD_END
};
static driver_t imx6_anatop_driver = {
"imx6_anatop",
imx6_anatop_methods,
sizeof(struct imx6_anatop_softc)
};
static devclass_t imx6_anatop_devclass;
EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver,
imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver,
imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);