freebsd-nq/lib/libc/sparc64/fpu/fpu.c
2002-06-18 02:15:11 +00:00

472 lines
14 KiB
C

/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright 2001 by Thomas Moestl <tmm@FreeBSD.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
* $NetBSD: fpu.c,v 1.11 2000/12/06 01:47:50 mrg Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include "namespace.h"
#include <errno.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include "un-namespace.h"
#include "libc_private.h"
#include <machine/fp.h>
#include <machine/frame.h>
#include <machine/fsr.h>
#include <machine/instr.h>
#include <machine/pcb.h>
#include <machine/tstate.h>
#include "__sparc_utrap_private.h"
#include "fpu_emu.h"
#include "fpu_extern.h"
/*
* Translate current exceptions into `first' exception. The
* bits go the wrong way for ffs() (0x10 is most important, etc).
* There are only 5, so do it the obvious way.
*/
#define X1(x) x
#define X2(x) x,x
#define X4(x) x,x,x,x
#define X8(x) X4(x),X4(x)
#define X16(x) X8(x),X8(x)
static char cx_to_trapx[] = {
X1(FSR_NX),
X2(FSR_DZ),
X4(FSR_UF),
X8(FSR_OF),
X16(FSR_NV)
};
#ifdef FPU_DEBUG
#ifdef FPU_DEBUG_MASK
int __fpe_debug = FPU_DEBUG_MASK;
#else
int __fpe_debug = 0;
#endif
#endif /* FPU_DEBUG */
static int __fpu_execute(struct utrapframe *, struct fpemu *, u_int32_t, u_long);
/*
* Need to use an fpstate on the stack; we could switch, so we cannot safely
* modify the pcb one, it might get overwritten.
*/
int
__fpu_exception(struct utrapframe *uf)
{
struct fpemu fe;
u_long fsr, tstate;
u_int insn;
int sig;
fsr = uf->uf_fsr;
switch (FSR_GET_FTT(fsr)) {
case FSR_FTT_NONE:
__utrap_write("lost FPU trap type\n");
return (0);
case FSR_FTT_IEEE:
return (SIGFPE);
case FSR_FTT_SEQERR:
__utrap_write("FPU sequence error\n");
return (SIGFPE);
case FSR_FTT_HWERR:
__utrap_write("FPU hardware error\n");
return (SIGFPE);
case FSR_FTT_UNFIN:
case FSR_FTT_UNIMP:
break;
default:
__utrap_write("unknown FPU error\n");
return (SIGFPE);
}
fe.fe_fsr = fsr & ~FSR_FTT_MASK;
insn = *(u_int32_t *)uf->uf_pc;
if (IF_OP(insn) != IOP_MISC || (IF_F3_OP3(insn) != INS2_FPop1 &&
IF_F3_OP3(insn) != INS2_FPop2))
__utrap_panic("bogus FP fault");
tstate = uf->uf_state;
sig = __fpu_execute(uf, &fe, insn, tstate);
if (sig != 0)
return (sig);
__asm __volatile("ldx %0, %%fsr" : : "m" (fe.fe_fsr));
return (0);
}
#ifdef FPU_DEBUG
/*
* Dump a `fpn' structure.
*/
void
__fpu_dumpfpn(struct fpn *fp)
{
static char *class[] = {
"SNAN", "QNAN", "ZERO", "NUM", "INF"
};
printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
fp->fp_sign ? '-' : ' ',
fp->fp_mant[0], fp->fp_mant[1],
fp->fp_mant[2], fp->fp_mant[3],
fp->fp_exp);
}
#endif
static int opmask[] = {0, 0, 1, 3};
/* Decode 5 bit register field depending on the type. */
#define RN_DECODE(tp, rn) \
((tp == FTYPE_DBL || tp == FTYPE_EXT ? INSFPdq_RN((rn)) : (rn)) & \
~opmask[tp])
/* Operand size in 32-bit registers. */
#define OPSZ(tp) ((tp) == FTYPE_LNG ? 2 : (1 << (tp)))
/*
* Helper for forming the below case statements. Build only the op3 and opf
* field of the instruction, these are the only ones that need to match.
*/
#define FOP(op3, opf) \
((op3) << IF_F3_OP3_SHIFT | (opf) << IF_F3_OPF_SHIFT)
/*
* Implement a move operation for all supported operand types. The additional
* nand and xor parameters will be applied to the upper 32 bit word of the
* source operand. This allows to implement fabs and fneg (for fp operands
* only!) using this functions, too, by passing (1 << 31) for one of the
* parameters, and 0 for the other.
*/
static void
__fpu_mov(struct fpemu *fe, int type, int rd, int rs2, u_int32_t nand,
u_int32_t xor)
{
u_int64_t tmp64;
u_int32_t *p32;
int i;
if (type == FTYPE_INT || type == FTYPE_SNG)
__fpu_setreg(rd, (__fpu_getreg(rs2) & ~nand) ^ xor);
else {
/*
* Need to use the double versions to be able to access
* the upper 32 fp registers.
*/
for (i = 0; i < OPSZ(type); i += 2, rd += 2, rs2 += 2) {
tmp64 = __fpu_getreg64(rs2);
if (i == 0)
tmp64 = (tmp64 & ~((u_int64_t)nand << 32)) ^
((u_int64_t)xor << 32);
__fpu_setreg64(rd, tmp64);
}
}
}
static __inline void
__fpu_ccmov(struct fpemu *fe, int type, int rd, int rs2,
u_int32_t insn, int fcc)
{
if (IF_F4_COND(insn) == fcc)
__fpu_mov(fe, type, rd, rs2, 0, 0);
}
static int
__fpu_cmpck(struct fpemu *fe)
{
u_long fsr;
int cx;
/*
* The only possible exception here is NV; catch it
* early and get out, as there is no result register.
*/
cx = fe->fe_cx;
fsr = fe->fe_fsr | (cx << FSR_CEXC_SHIFT);
if (cx != 0) {
if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
fe->fe_fsr = (fsr & ~FSR_FTT_MASK) |
FSR_FTT(FSR_FTT_IEEE);
return (SIGFPE);
}
fsr |= FSR_NV << FSR_AEXC_SHIFT;
}
fe->fe_fsr = fsr;
return (0);
}
/*
* Execute an FPU instruction (one that runs entirely in the FPU; not
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
* modified to reflect the setting the hardware would have left.
*
* Note that we do not catch all illegal opcodes, so you can, for instance,
* multiply two integers this way.
*/
static int
__fpu_execute(struct utrapframe *uf, struct fpemu *fe, u_int32_t insn, u_long tstate)
{
struct fpn *fp;
int opf, rs1, rs2, rd, type, mask, cx, cond;
u_long reg, fsr;
u_int space[4];
int i;
/*
* `Decode' and execute instruction. Start with no exceptions.
* The type of any opf opcode is in the bottom two bits, so we
* squish them out here.
*/
opf = insn & (IF_MASK(IF_F3_OP3_SHIFT, IF_F3_OP3_BITS) |
IF_MASK(IF_F3_OPF_SHIFT + 2, IF_F3_OPF_BITS - 2));
type = IF_F3_OPF(insn) & 3;
rs1 = RN_DECODE(type, IF_F3_RS1(insn));
rs2 = RN_DECODE(type, IF_F3_RS2(insn));
rd = RN_DECODE(type, IF_F3_RD(insn));
cond = 0;
#ifdef notdef
if ((rs1 | rs2 | rd) & opmask[type])
return (SIGILL);
#endif
fsr = fe->fe_fsr;
fe->fe_fsr &= ~FSR_CEXC_MASK;
fe->fe_cx = 0;
switch (opf) {
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_FCC(0))):
__fpu_ccmov(fe, type, rd, rs2, insn, FSR_GET_FCC0(fsr));
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_FCC(1))):
__fpu_ccmov(fe, type, rd, rs2, insn, FSR_GET_FCC1(fsr));
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_FCC(2))):
__fpu_ccmov(fe, type, rd, rs2, insn, FSR_GET_FCC2(fsr));
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_FCC(3))):
__fpu_ccmov(fe, type, rd, rs2, insn, FSR_GET_FCC3(fsr));
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_ICC)):
__fpu_ccmov(fe, type, rd, rs2, insn,
(tstate & TSTATE_ICC_MASK) >> TSTATE_ICC_SHIFT);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_CC(IFCC_XCC)):
__fpu_ccmov(fe, type, rd, rs2, insn,
(tstate & TSTATE_XCC_MASK) >> (TSTATE_XCC_SHIFT));
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_Z)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg == 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_LEZ)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg <= 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_LZ)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg < 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_NZ)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg != 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_GZ)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg > 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FMOV_RC(IRCOND_GEZ)):
reg = __emul_fetch_reg(uf, IF_F4_RS1(insn));
if (reg >= 0)
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop2, INSFP2_FCMP):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
__fpu_compare(fe, 0, IF_F3_CC(insn));
return (__fpu_cmpck(fe));
case FOP(INS2_FPop2, INSFP2_FCMPE):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
__fpu_compare(fe, 1, IF_F3_CC(insn));
return (__fpu_cmpck(fe));
case FOP(INS2_FPop1, INSFP1_FMOV): /* these should all be pretty obvious */
__fpu_mov(fe, type, rd, rs2, 0, 0);
return (0);
case FOP(INS2_FPop1, INSFP1_FNEG):
__fpu_mov(fe, type, rd, rs2, 0, (1 << 31));
return (0);
case FOP(INS2_FPop1, INSFP1_FABS):
__fpu_mov(fe, type, rd, rs2, (1 << 31), 0);
return (0);
case FOP(INS2_FPop1, INSFP1_FSQRT):
__fpu_explode(fe, &fe->fe_f1, type, rs2);
fp = __fpu_sqrt(fe);
break;
case FOP(INS2_FPop1, INSFP1_FADD):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = __fpu_add(fe);
break;
case FOP(INS2_FPop1, INSFP1_FSUB):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = __fpu_sub(fe);
break;
case FOP(INS2_FPop1, INSFP1_FMUL):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = __fpu_mul(fe);
break;
case FOP(INS2_FPop1, INSFP1_FDIV):
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = __fpu_div(fe);
break;
case FOP(INS2_FPop1, INSFP1_FsMULd):
case FOP(INS2_FPop1, INSFP1_FdMULq):
if (type == FTYPE_EXT)
return (SIGILL);
__fpu_explode(fe, &fe->fe_f1, type, rs1);
__fpu_explode(fe, &fe->fe_f2, type, rs2);
type++; /* single to double, or double to quad */
/*
* Recalculate rd (the old type applied for the source regs
* only, the target one has a different size).
*/
rd = RN_DECODE(type, IF_F3_RD(insn));
fp = __fpu_mul(fe);
break;
case FOP(INS2_FPop1, INSFP1_FxTOs):
case FOP(INS2_FPop1, INSFP1_FxTOd):
case FOP(INS2_FPop1, INSFP1_FxTOq):
type = FTYPE_LNG;
__fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
/* sneaky; depends on instruction encoding */
type = (IF_F3_OPF(insn) >> 2) & 3;
rd = RN_DECODE(type, IF_F3_RD(insn));
break;
case FOP(INS2_FPop1, INSFP1_FTOx):
__fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
type = FTYPE_LNG;
mask = 1; /* needs 2 registers */
rd = IF_F3_RD(insn) & ~mask;
break;
case FOP(INS2_FPop1, INSFP1_FTOs):
case FOP(INS2_FPop1, INSFP1_FTOd):
case FOP(INS2_FPop1, INSFP1_FTOq):
case FOP(INS2_FPop1, INSFP1_FTOi):
__fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
/* sneaky; depends on instruction encoding */
type = (IF_F3_OPF(insn) >> 2) & 3;
rd = RN_DECODE(type, IF_F3_RD(insn));
break;
default:
return (SIGILL);
}
/*
* ALU operation is complete. Collapse the result and then check
* for exceptions. If we got any, and they are enabled, do not
* alter the destination register, just stop with an exception.
* Otherwise set new current exceptions and accrue.
*/
__fpu_implode(fe, fp, type, space);
cx = fe->fe_cx;
if (cx != 0) {
mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
if (cx & mask) {
/* not accrued??? */
fsr = (fsr & ~FSR_FTT_MASK) |
FSR_FTT(FSR_FTT_IEEE) |
FSR_CEXC(cx_to_trapx[(cx & mask) - 1]);
return (SIGFPE);
}
fsr |= (cx << FSR_CEXC_SHIFT) | (cx << FSR_AEXC_SHIFT);
}
fe->fe_fsr = fsr;
if (type == FTYPE_INT || type == FTYPE_SNG)
__fpu_setreg(rd, space[0]);
else {
for (i = 0; i < OPSZ(type); i += 2) {
__fpu_setreg64(rd + i, ((u_int64_t)space[i] << 32) |
space[i + 1]);
}
}
return (0); /* success */
}