4d675b80f0
Sponsored by: The FreeBSD Foundation MFC after: 1 week
1769 lines
43 KiB
C
1769 lines
43 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
#include "opt_witness.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msan.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bitstring.h>
|
|
#include <sys/epoch.h>
|
|
#include <sys/rangelock.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/dtrace_bsd.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/turnstile.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/umtxvar.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/cpuset.h>
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
#endif
|
|
#include <sys/priv.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <sys/eventhandler.h>
|
|
|
|
/*
|
|
* Asserts below verify the stability of struct thread and struct proc
|
|
* layout, as exposed by KBI to modules. On head, the KBI is allowed
|
|
* to drift, change to the structures must be accompanied by the
|
|
* assert update.
|
|
*
|
|
* On the stable branches after KBI freeze, conditions must not be
|
|
* violated. Typically new fields are moved to the end of the
|
|
* structures.
|
|
*/
|
|
#ifdef __amd64__
|
|
_Static_assert(offsetof(struct thread, td_flags) == 0x108,
|
|
"struct thread KBI td_flags");
|
|
_Static_assert(offsetof(struct thread, td_pflags) == 0x110,
|
|
"struct thread KBI td_pflags");
|
|
_Static_assert(offsetof(struct thread, td_frame) == 0x4a8,
|
|
"struct thread KBI td_frame");
|
|
_Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
|
|
"struct thread KBI td_emuldata");
|
|
_Static_assert(offsetof(struct proc, p_flag) == 0xb8,
|
|
"struct proc KBI p_flag");
|
|
_Static_assert(offsetof(struct proc, p_pid) == 0xc4,
|
|
"struct proc KBI p_pid");
|
|
_Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
|
|
"struct proc KBI p_filemon");
|
|
_Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
|
|
"struct proc KBI p_comm");
|
|
_Static_assert(offsetof(struct proc, p_emuldata) == 0x4c8,
|
|
"struct proc KBI p_emuldata");
|
|
#endif
|
|
#ifdef __i386__
|
|
_Static_assert(offsetof(struct thread, td_flags) == 0x9c,
|
|
"struct thread KBI td_flags");
|
|
_Static_assert(offsetof(struct thread, td_pflags) == 0xa4,
|
|
"struct thread KBI td_pflags");
|
|
_Static_assert(offsetof(struct thread, td_frame) == 0x308,
|
|
"struct thread KBI td_frame");
|
|
_Static_assert(offsetof(struct thread, td_emuldata) == 0x34c,
|
|
"struct thread KBI td_emuldata");
|
|
_Static_assert(offsetof(struct proc, p_flag) == 0x6c,
|
|
"struct proc KBI p_flag");
|
|
_Static_assert(offsetof(struct proc, p_pid) == 0x78,
|
|
"struct proc KBI p_pid");
|
|
_Static_assert(offsetof(struct proc, p_filemon) == 0x270,
|
|
"struct proc KBI p_filemon");
|
|
_Static_assert(offsetof(struct proc, p_comm) == 0x284,
|
|
"struct proc KBI p_comm");
|
|
_Static_assert(offsetof(struct proc, p_emuldata) == 0x310,
|
|
"struct proc KBI p_emuldata");
|
|
#endif
|
|
|
|
SDT_PROVIDER_DECLARE(proc);
|
|
SDT_PROBE_DEFINE(proc, , , lwp__exit);
|
|
|
|
/*
|
|
* thread related storage.
|
|
*/
|
|
static uma_zone_t thread_zone;
|
|
|
|
struct thread_domain_data {
|
|
struct thread *tdd_zombies;
|
|
int tdd_reapticks;
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
static struct thread_domain_data thread_domain_data[MAXMEMDOM];
|
|
|
|
static struct task thread_reap_task;
|
|
static struct callout thread_reap_callout;
|
|
|
|
static void thread_zombie(struct thread *);
|
|
static void thread_reap(void);
|
|
static void thread_reap_all(void);
|
|
static void thread_reap_task_cb(void *, int);
|
|
static void thread_reap_callout_cb(void *);
|
|
static int thread_unsuspend_one(struct thread *td, struct proc *p,
|
|
bool boundary);
|
|
static void thread_free_batched(struct thread *td);
|
|
|
|
static __exclusive_cache_line struct mtx tid_lock;
|
|
static bitstr_t *tid_bitmap;
|
|
|
|
static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
|
|
|
|
static int maxthread;
|
|
SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
|
|
&maxthread, 0, "Maximum number of threads");
|
|
|
|
static __exclusive_cache_line int nthreads;
|
|
|
|
static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
|
|
static u_long tidhash;
|
|
static u_long tidhashlock;
|
|
static struct rwlock *tidhashtbl_lock;
|
|
#define TIDHASH(tid) (&tidhashtbl[(tid) & tidhash])
|
|
#define TIDHASHLOCK(tid) (&tidhashtbl_lock[(tid) & tidhashlock])
|
|
|
|
EVENTHANDLER_LIST_DEFINE(thread_ctor);
|
|
EVENTHANDLER_LIST_DEFINE(thread_dtor);
|
|
EVENTHANDLER_LIST_DEFINE(thread_init);
|
|
EVENTHANDLER_LIST_DEFINE(thread_fini);
|
|
|
|
static bool
|
|
thread_count_inc_try(void)
|
|
{
|
|
int nthreads_new;
|
|
|
|
nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
|
|
if (nthreads_new >= maxthread - 100) {
|
|
if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
|
|
nthreads_new >= maxthread) {
|
|
atomic_subtract_int(&nthreads, 1);
|
|
return (false);
|
|
}
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
static bool
|
|
thread_count_inc(void)
|
|
{
|
|
static struct timeval lastfail;
|
|
static int curfail;
|
|
|
|
thread_reap();
|
|
if (thread_count_inc_try()) {
|
|
return (true);
|
|
}
|
|
|
|
thread_reap_all();
|
|
if (thread_count_inc_try()) {
|
|
return (true);
|
|
}
|
|
|
|
if (ppsratecheck(&lastfail, &curfail, 1)) {
|
|
printf("maxthread limit exceeded by uid %u "
|
|
"(pid %d); consider increasing kern.maxthread\n",
|
|
curthread->td_ucred->cr_ruid, curproc->p_pid);
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
static void
|
|
thread_count_sub(int n)
|
|
{
|
|
|
|
atomic_subtract_int(&nthreads, n);
|
|
}
|
|
|
|
static void
|
|
thread_count_dec(void)
|
|
{
|
|
|
|
thread_count_sub(1);
|
|
}
|
|
|
|
static lwpid_t
|
|
tid_alloc(void)
|
|
{
|
|
static lwpid_t trytid;
|
|
lwpid_t tid;
|
|
|
|
mtx_lock(&tid_lock);
|
|
/*
|
|
* It is an invariant that the bitmap is big enough to hold maxthread
|
|
* IDs. If we got to this point there has to be at least one free.
|
|
*/
|
|
if (trytid >= maxthread)
|
|
trytid = 0;
|
|
bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
|
|
if (tid == -1) {
|
|
KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
|
|
trytid = 0;
|
|
bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
|
|
KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
|
|
}
|
|
bit_set(tid_bitmap, tid);
|
|
trytid = tid + 1;
|
|
mtx_unlock(&tid_lock);
|
|
return (tid + NO_PID);
|
|
}
|
|
|
|
static void
|
|
tid_free_locked(lwpid_t rtid)
|
|
{
|
|
lwpid_t tid;
|
|
|
|
mtx_assert(&tid_lock, MA_OWNED);
|
|
KASSERT(rtid >= NO_PID,
|
|
("%s: invalid tid %d\n", __func__, rtid));
|
|
tid = rtid - NO_PID;
|
|
KASSERT(bit_test(tid_bitmap, tid) != 0,
|
|
("thread ID %d not allocated\n", rtid));
|
|
bit_clear(tid_bitmap, tid);
|
|
}
|
|
|
|
static void
|
|
tid_free(lwpid_t rtid)
|
|
{
|
|
|
|
mtx_lock(&tid_lock);
|
|
tid_free_locked(rtid);
|
|
mtx_unlock(&tid_lock);
|
|
}
|
|
|
|
static void
|
|
tid_free_batch(lwpid_t *batch, int n)
|
|
{
|
|
int i;
|
|
|
|
mtx_lock(&tid_lock);
|
|
for (i = 0; i < n; i++) {
|
|
tid_free_locked(batch[i]);
|
|
}
|
|
mtx_unlock(&tid_lock);
|
|
}
|
|
|
|
/*
|
|
* Batching for thread reapping.
|
|
*/
|
|
struct tidbatch {
|
|
lwpid_t tab[16];
|
|
int n;
|
|
};
|
|
|
|
static void
|
|
tidbatch_prep(struct tidbatch *tb)
|
|
{
|
|
|
|
tb->n = 0;
|
|
}
|
|
|
|
static void
|
|
tidbatch_add(struct tidbatch *tb, struct thread *td)
|
|
{
|
|
|
|
KASSERT(tb->n < nitems(tb->tab),
|
|
("%s: count too high %d", __func__, tb->n));
|
|
tb->tab[tb->n] = td->td_tid;
|
|
tb->n++;
|
|
}
|
|
|
|
static void
|
|
tidbatch_process(struct tidbatch *tb)
|
|
{
|
|
|
|
KASSERT(tb->n <= nitems(tb->tab),
|
|
("%s: count too high %d", __func__, tb->n));
|
|
if (tb->n == nitems(tb->tab)) {
|
|
tid_free_batch(tb->tab, tb->n);
|
|
tb->n = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tidbatch_final(struct tidbatch *tb)
|
|
{
|
|
|
|
KASSERT(tb->n <= nitems(tb->tab),
|
|
("%s: count too high %d", __func__, tb->n));
|
|
if (tb->n != 0) {
|
|
tid_free_batch(tb->tab, tb->n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare a thread for use.
|
|
*/
|
|
static int
|
|
thread_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
TD_SET_STATE(td, TDS_INACTIVE);
|
|
td->td_lastcpu = td->td_oncpu = NOCPU;
|
|
|
|
/*
|
|
* Note that td_critnest begins life as 1 because the thread is not
|
|
* running and is thereby implicitly waiting to be on the receiving
|
|
* end of a context switch.
|
|
*/
|
|
td->td_critnest = 1;
|
|
td->td_lend_user_pri = PRI_MAX;
|
|
#ifdef AUDIT
|
|
audit_thread_alloc(td);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
kdtrace_thread_ctor(td);
|
|
#endif
|
|
umtx_thread_alloc(td);
|
|
MPASS(td->td_sel == NULL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reclaim a thread after use.
|
|
*/
|
|
static void
|
|
thread_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
|
|
#ifdef INVARIANTS
|
|
/* Verify that this thread is in a safe state to free. */
|
|
switch (TD_GET_STATE(td)) {
|
|
case TDS_INHIBITED:
|
|
case TDS_RUNNING:
|
|
case TDS_CAN_RUN:
|
|
case TDS_RUNQ:
|
|
/*
|
|
* We must never unlink a thread that is in one of
|
|
* these states, because it is currently active.
|
|
*/
|
|
panic("bad state for thread unlinking");
|
|
/* NOTREACHED */
|
|
case TDS_INACTIVE:
|
|
break;
|
|
default:
|
|
panic("bad thread state");
|
|
/* NOTREACHED */
|
|
}
|
|
#endif
|
|
#ifdef AUDIT
|
|
audit_thread_free(td);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
kdtrace_thread_dtor(td);
|
|
#endif
|
|
/* Free all OSD associated to this thread. */
|
|
osd_thread_exit(td);
|
|
td_softdep_cleanup(td);
|
|
MPASS(td->td_su == NULL);
|
|
seltdfini(td);
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a thread (when newly created).
|
|
*/
|
|
static int
|
|
thread_init(void *mem, int size, int flags)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
|
|
td->td_allocdomain = vm_phys_domain(vtophys(td));
|
|
td->td_sleepqueue = sleepq_alloc();
|
|
td->td_turnstile = turnstile_alloc();
|
|
td->td_rlqe = NULL;
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
|
|
umtx_thread_init(td);
|
|
td->td_kstack = 0;
|
|
td->td_sel = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Tear down type-stable parts of a thread (just before being discarded).
|
|
*/
|
|
static void
|
|
thread_fini(void *mem, int size)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
|
|
rlqentry_free(td->td_rlqe);
|
|
turnstile_free(td->td_turnstile);
|
|
sleepq_free(td->td_sleepqueue);
|
|
umtx_thread_fini(td);
|
|
MPASS(td->td_sel == NULL);
|
|
}
|
|
|
|
/*
|
|
* For a newly created process,
|
|
* link up all the structures and its initial threads etc.
|
|
* called from:
|
|
* {arch}/{arch}/machdep.c {arch}_init(), init386() etc.
|
|
* proc_dtor() (should go away)
|
|
* proc_init()
|
|
*/
|
|
void
|
|
proc_linkup0(struct proc *p, struct thread *td)
|
|
{
|
|
TAILQ_INIT(&p->p_threads); /* all threads in proc */
|
|
proc_linkup(p, td);
|
|
}
|
|
|
|
void
|
|
proc_linkup(struct proc *p, struct thread *td)
|
|
{
|
|
|
|
sigqueue_init(&p->p_sigqueue, p);
|
|
p->p_ksi = ksiginfo_alloc(1);
|
|
if (p->p_ksi != NULL) {
|
|
/* XXX p_ksi may be null if ksiginfo zone is not ready */
|
|
p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
|
|
}
|
|
LIST_INIT(&p->p_mqnotifier);
|
|
p->p_numthreads = 0;
|
|
thread_link(td, p);
|
|
}
|
|
|
|
extern int max_threads_per_proc;
|
|
|
|
/*
|
|
* Initialize global thread allocation resources.
|
|
*/
|
|
void
|
|
threadinit(void)
|
|
{
|
|
u_long i;
|
|
lwpid_t tid0;
|
|
uint32_t flags;
|
|
|
|
/*
|
|
* Place an upper limit on threads which can be allocated.
|
|
*
|
|
* Note that other factors may make the de facto limit much lower.
|
|
*
|
|
* Platform limits are somewhat arbitrary but deemed "more than good
|
|
* enough" for the foreseable future.
|
|
*/
|
|
if (maxthread == 0) {
|
|
#ifdef _LP64
|
|
maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
|
|
#else
|
|
maxthread = MIN(maxproc * max_threads_per_proc, 100000);
|
|
#endif
|
|
}
|
|
|
|
mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
|
|
tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
|
|
/*
|
|
* Handle thread0.
|
|
*/
|
|
thread_count_inc();
|
|
tid0 = tid_alloc();
|
|
if (tid0 != THREAD0_TID)
|
|
panic("tid0 %d != %d\n", tid0, THREAD0_TID);
|
|
|
|
flags = UMA_ZONE_NOFREE;
|
|
#ifdef __aarch64__
|
|
/*
|
|
* Force thread structures to be allocated from the direct map.
|
|
* Otherwise, superpage promotions and demotions may temporarily
|
|
* invalidate thread structure mappings. For most dynamically allocated
|
|
* structures this is not a problem, but translation faults cannot be
|
|
* handled without accessing curthread.
|
|
*/
|
|
flags |= UMA_ZONE_CONTIG;
|
|
#endif
|
|
thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
|
|
thread_ctor, thread_dtor, thread_init, thread_fini,
|
|
32 - 1, flags);
|
|
tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
|
|
tidhashlock = (tidhash + 1) / 64;
|
|
if (tidhashlock > 0)
|
|
tidhashlock--;
|
|
tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
|
|
M_TIDHASH, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < tidhashlock + 1; i++)
|
|
rw_init(&tidhashtbl_lock[i], "tidhash");
|
|
|
|
TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
|
|
callout_init(&thread_reap_callout, 1);
|
|
callout_reset(&thread_reap_callout, 5 * hz,
|
|
thread_reap_callout_cb, NULL);
|
|
}
|
|
|
|
/*
|
|
* Place an unused thread on the zombie list.
|
|
*/
|
|
void
|
|
thread_zombie(struct thread *td)
|
|
{
|
|
struct thread_domain_data *tdd;
|
|
struct thread *ztd;
|
|
|
|
tdd = &thread_domain_data[td->td_allocdomain];
|
|
ztd = atomic_load_ptr(&tdd->tdd_zombies);
|
|
for (;;) {
|
|
td->td_zombie = ztd;
|
|
if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
|
|
(uintptr_t *)&ztd, (uintptr_t)td))
|
|
break;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a thread that has exited after cpu_throw().
|
|
*/
|
|
void
|
|
thread_stash(struct thread *td)
|
|
{
|
|
atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
|
|
thread_zombie(td);
|
|
}
|
|
|
|
/*
|
|
* Reap zombies from passed domain.
|
|
*/
|
|
static void
|
|
thread_reap_domain(struct thread_domain_data *tdd)
|
|
{
|
|
struct thread *itd, *ntd;
|
|
struct tidbatch tidbatch;
|
|
struct credbatch credbatch;
|
|
int tdcount;
|
|
struct plimit *lim;
|
|
int limcount;
|
|
|
|
/*
|
|
* Reading upfront is pessimal if followed by concurrent atomic_swap,
|
|
* but most of the time the list is empty.
|
|
*/
|
|
if (tdd->tdd_zombies == NULL)
|
|
return;
|
|
|
|
itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
|
|
(uintptr_t)NULL);
|
|
if (itd == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Multiple CPUs can get here, the race is fine as ticks is only
|
|
* advisory.
|
|
*/
|
|
tdd->tdd_reapticks = ticks;
|
|
|
|
tidbatch_prep(&tidbatch);
|
|
credbatch_prep(&credbatch);
|
|
tdcount = 0;
|
|
lim = NULL;
|
|
limcount = 0;
|
|
|
|
while (itd != NULL) {
|
|
ntd = itd->td_zombie;
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
|
|
tidbatch_add(&tidbatch, itd);
|
|
credbatch_add(&credbatch, itd);
|
|
MPASS(itd->td_limit != NULL);
|
|
if (lim != itd->td_limit) {
|
|
if (limcount != 0) {
|
|
lim_freen(lim, limcount);
|
|
limcount = 0;
|
|
}
|
|
}
|
|
lim = itd->td_limit;
|
|
limcount++;
|
|
thread_free_batched(itd);
|
|
tidbatch_process(&tidbatch);
|
|
credbatch_process(&credbatch);
|
|
tdcount++;
|
|
if (tdcount == 32) {
|
|
thread_count_sub(tdcount);
|
|
tdcount = 0;
|
|
}
|
|
itd = ntd;
|
|
}
|
|
|
|
tidbatch_final(&tidbatch);
|
|
credbatch_final(&credbatch);
|
|
if (tdcount != 0) {
|
|
thread_count_sub(tdcount);
|
|
}
|
|
MPASS(limcount != 0);
|
|
lim_freen(lim, limcount);
|
|
}
|
|
|
|
/*
|
|
* Reap zombies from all domains.
|
|
*/
|
|
static void
|
|
thread_reap_all(void)
|
|
{
|
|
struct thread_domain_data *tdd;
|
|
int i, domain;
|
|
|
|
domain = PCPU_GET(domain);
|
|
for (i = 0; i < vm_ndomains; i++) {
|
|
tdd = &thread_domain_data[(i + domain) % vm_ndomains];
|
|
thread_reap_domain(tdd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reap zombies from local domain.
|
|
*/
|
|
static void
|
|
thread_reap(void)
|
|
{
|
|
struct thread_domain_data *tdd;
|
|
int domain;
|
|
|
|
domain = PCPU_GET(domain);
|
|
tdd = &thread_domain_data[domain];
|
|
|
|
thread_reap_domain(tdd);
|
|
}
|
|
|
|
static void
|
|
thread_reap_task_cb(void *arg __unused, int pending __unused)
|
|
{
|
|
|
|
thread_reap_all();
|
|
}
|
|
|
|
static void
|
|
thread_reap_callout_cb(void *arg __unused)
|
|
{
|
|
struct thread_domain_data *tdd;
|
|
int i, cticks, lticks;
|
|
bool wantreap;
|
|
|
|
wantreap = false;
|
|
cticks = atomic_load_int(&ticks);
|
|
for (i = 0; i < vm_ndomains; i++) {
|
|
tdd = &thread_domain_data[i];
|
|
lticks = tdd->tdd_reapticks;
|
|
if (tdd->tdd_zombies != NULL &&
|
|
(u_int)(cticks - lticks) > 5 * hz) {
|
|
wantreap = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (wantreap)
|
|
taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
|
|
callout_reset(&thread_reap_callout, 5 * hz,
|
|
thread_reap_callout_cb, NULL);
|
|
}
|
|
|
|
/*
|
|
* Calling this function guarantees that any thread that exited before
|
|
* the call is reaped when the function returns. By 'exited' we mean
|
|
* a thread removed from the process linkage with thread_unlink().
|
|
* Practically this means that caller must lock/unlock corresponding
|
|
* process lock before the call, to synchronize with thread_exit().
|
|
*/
|
|
void
|
|
thread_reap_barrier(void)
|
|
{
|
|
struct task *t;
|
|
|
|
/*
|
|
* First do context switches to each CPU to ensure that all
|
|
* PCPU pc_deadthreads are moved to zombie list.
|
|
*/
|
|
quiesce_all_cpus("", PDROP);
|
|
|
|
/*
|
|
* Second, fire the task in the same thread as normal
|
|
* thread_reap() is done, to serialize reaping.
|
|
*/
|
|
t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
|
|
TASK_INIT(t, 0, thread_reap_task_cb, t);
|
|
taskqueue_enqueue(taskqueue_thread, t);
|
|
taskqueue_drain(taskqueue_thread, t);
|
|
free(t, M_TEMP);
|
|
}
|
|
|
|
/*
|
|
* Allocate a thread.
|
|
*/
|
|
struct thread *
|
|
thread_alloc(int pages)
|
|
{
|
|
struct thread *td;
|
|
lwpid_t tid;
|
|
|
|
if (!thread_count_inc()) {
|
|
return (NULL);
|
|
}
|
|
|
|
tid = tid_alloc();
|
|
td = uma_zalloc(thread_zone, M_WAITOK);
|
|
KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
|
|
if (!vm_thread_new(td, pages)) {
|
|
uma_zfree(thread_zone, td);
|
|
tid_free(tid);
|
|
thread_count_dec();
|
|
return (NULL);
|
|
}
|
|
td->td_tid = tid;
|
|
bzero(&td->td_sa.args, sizeof(td->td_sa.args));
|
|
kmsan_thread_alloc(td);
|
|
cpu_thread_alloc(td);
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
|
|
return (td);
|
|
}
|
|
|
|
int
|
|
thread_alloc_stack(struct thread *td, int pages)
|
|
{
|
|
|
|
KASSERT(td->td_kstack == 0,
|
|
("thread_alloc_stack called on a thread with kstack"));
|
|
if (!vm_thread_new(td, pages))
|
|
return (0);
|
|
cpu_thread_alloc(td);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a thread.
|
|
*/
|
|
static void
|
|
thread_free_batched(struct thread *td)
|
|
{
|
|
|
|
lock_profile_thread_exit(td);
|
|
if (td->td_cpuset)
|
|
cpuset_rel(td->td_cpuset);
|
|
td->td_cpuset = NULL;
|
|
cpu_thread_free(td);
|
|
if (td->td_kstack != 0)
|
|
vm_thread_dispose(td);
|
|
callout_drain(&td->td_slpcallout);
|
|
/*
|
|
* Freeing handled by the caller.
|
|
*/
|
|
td->td_tid = -1;
|
|
kmsan_thread_free(td);
|
|
uma_zfree(thread_zone, td);
|
|
}
|
|
|
|
void
|
|
thread_free(struct thread *td)
|
|
{
|
|
lwpid_t tid;
|
|
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
|
|
tid = td->td_tid;
|
|
thread_free_batched(td);
|
|
tid_free(tid);
|
|
thread_count_dec();
|
|
}
|
|
|
|
void
|
|
thread_cow_get_proc(struct thread *newtd, struct proc *p)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
newtd->td_realucred = crcowget(p->p_ucred);
|
|
newtd->td_ucred = newtd->td_realucred;
|
|
newtd->td_limit = lim_hold(p->p_limit);
|
|
newtd->td_cowgen = p->p_cowgen;
|
|
}
|
|
|
|
void
|
|
thread_cow_get(struct thread *newtd, struct thread *td)
|
|
{
|
|
|
|
MPASS(td->td_realucred == td->td_ucred);
|
|
newtd->td_realucred = crcowget(td->td_realucred);
|
|
newtd->td_ucred = newtd->td_realucred;
|
|
newtd->td_limit = lim_hold(td->td_limit);
|
|
newtd->td_cowgen = td->td_cowgen;
|
|
}
|
|
|
|
void
|
|
thread_cow_free(struct thread *td)
|
|
{
|
|
|
|
if (td->td_realucred != NULL)
|
|
crcowfree(td);
|
|
if (td->td_limit != NULL)
|
|
lim_free(td->td_limit);
|
|
}
|
|
|
|
void
|
|
thread_cow_update(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct ucred *oldcred;
|
|
struct plimit *oldlimit;
|
|
|
|
p = td->td_proc;
|
|
oldlimit = NULL;
|
|
PROC_LOCK(p);
|
|
oldcred = crcowsync();
|
|
if (td->td_limit != p->p_limit) {
|
|
oldlimit = td->td_limit;
|
|
td->td_limit = lim_hold(p->p_limit);
|
|
}
|
|
td->td_cowgen = p->p_cowgen;
|
|
PROC_UNLOCK(p);
|
|
if (oldcred != NULL)
|
|
crfree(oldcred);
|
|
if (oldlimit != NULL)
|
|
lim_free(oldlimit);
|
|
}
|
|
|
|
/*
|
|
* Discard the current thread and exit from its context.
|
|
* Always called with scheduler locked.
|
|
*
|
|
* Because we can't free a thread while we're operating under its context,
|
|
* push the current thread into our CPU's deadthread holder. This means
|
|
* we needn't worry about someone else grabbing our context before we
|
|
* do a cpu_throw().
|
|
*/
|
|
void
|
|
thread_exit(void)
|
|
{
|
|
uint64_t runtime, new_switchtime;
|
|
struct thread *td;
|
|
struct thread *td2;
|
|
struct proc *p;
|
|
int wakeup_swapper;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(p != NULL, ("thread exiting without a process"));
|
|
CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
|
|
(long)p->p_pid, td->td_name);
|
|
SDT_PROBE0(proc, , , lwp__exit);
|
|
KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
|
|
MPASS(td->td_realucred == td->td_ucred);
|
|
|
|
/*
|
|
* drop FPU & debug register state storage, or any other
|
|
* architecture specific resources that
|
|
* would not be on a new untouched process.
|
|
*/
|
|
cpu_thread_exit(td);
|
|
|
|
/*
|
|
* The last thread is left attached to the process
|
|
* So that the whole bundle gets recycled. Skip
|
|
* all this stuff if we never had threads.
|
|
* EXIT clears all sign of other threads when
|
|
* it goes to single threading, so the last thread always
|
|
* takes the short path.
|
|
*/
|
|
if (p->p_flag & P_HADTHREADS) {
|
|
if (p->p_numthreads > 1) {
|
|
atomic_add_int(&td->td_proc->p_exitthreads, 1);
|
|
thread_unlink(td);
|
|
td2 = FIRST_THREAD_IN_PROC(p);
|
|
sched_exit_thread(td2, td);
|
|
|
|
/*
|
|
* The test below is NOT true if we are the
|
|
* sole exiting thread. P_STOPPED_SINGLE is unset
|
|
* in exit1() after it is the only survivor.
|
|
*/
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
thread_lock(p->p_singlethread);
|
|
wakeup_swapper = thread_unsuspend_one(
|
|
p->p_singlethread, p, false);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
}
|
|
|
|
PCPU_SET(deadthread, td);
|
|
} else {
|
|
/*
|
|
* The last thread is exiting.. but not through exit()
|
|
*/
|
|
panic ("thread_exit: Last thread exiting on its own");
|
|
}
|
|
}
|
|
#ifdef HWPMC_HOOKS
|
|
/*
|
|
* If this thread is part of a process that is being tracked by hwpmc(4),
|
|
* inform the module of the thread's impending exit.
|
|
*/
|
|
if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
|
|
PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
|
|
PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
|
|
} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
|
|
PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
|
|
#endif
|
|
PROC_UNLOCK(p);
|
|
PROC_STATLOCK(p);
|
|
thread_lock(td);
|
|
PROC_SUNLOCK(p);
|
|
|
|
/* Do the same timestamp bookkeeping that mi_switch() would do. */
|
|
new_switchtime = cpu_ticks();
|
|
runtime = new_switchtime - PCPU_GET(switchtime);
|
|
td->td_runtime += runtime;
|
|
td->td_incruntime += runtime;
|
|
PCPU_SET(switchtime, new_switchtime);
|
|
PCPU_SET(switchticks, ticks);
|
|
VM_CNT_INC(v_swtch);
|
|
|
|
/* Save our resource usage in our process. */
|
|
td->td_ru.ru_nvcsw++;
|
|
ruxagg_locked(p, td);
|
|
rucollect(&p->p_ru, &td->td_ru);
|
|
PROC_STATUNLOCK(p);
|
|
|
|
TD_SET_STATE(td, TDS_INACTIVE);
|
|
#ifdef WITNESS
|
|
witness_thread_exit(td);
|
|
#endif
|
|
CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
|
|
sched_throw(td);
|
|
panic("I'm a teapot!");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Do any thread specific cleanups that may be needed in wait()
|
|
* called with Giant, proc and schedlock not held.
|
|
*/
|
|
void
|
|
thread_wait(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
|
|
KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
|
|
td = FIRST_THREAD_IN_PROC(p);
|
|
/* Lock the last thread so we spin until it exits cpu_throw(). */
|
|
thread_lock(td);
|
|
thread_unlock(td);
|
|
lock_profile_thread_exit(td);
|
|
cpuset_rel(td->td_cpuset);
|
|
td->td_cpuset = NULL;
|
|
cpu_thread_clean(td);
|
|
thread_cow_free(td);
|
|
callout_drain(&td->td_slpcallout);
|
|
thread_reap(); /* check for zombie threads etc. */
|
|
}
|
|
|
|
/*
|
|
* Link a thread to a process.
|
|
* set up anything that needs to be initialized for it to
|
|
* be used by the process.
|
|
*/
|
|
void
|
|
thread_link(struct thread *td, struct proc *p)
|
|
{
|
|
|
|
/*
|
|
* XXX This can't be enabled because it's called for proc0 before
|
|
* its lock has been created.
|
|
* PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
*/
|
|
TD_SET_STATE(td, TDS_INACTIVE);
|
|
td->td_proc = p;
|
|
td->td_flags = TDF_INMEM;
|
|
|
|
LIST_INIT(&td->td_contested);
|
|
LIST_INIT(&td->td_lprof[0]);
|
|
LIST_INIT(&td->td_lprof[1]);
|
|
#ifdef EPOCH_TRACE
|
|
SLIST_INIT(&td->td_epochs);
|
|
#endif
|
|
sigqueue_init(&td->td_sigqueue, p);
|
|
callout_init(&td->td_slpcallout, 1);
|
|
TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
|
|
p->p_numthreads++;
|
|
}
|
|
|
|
/*
|
|
* Called from:
|
|
* thread_exit()
|
|
*/
|
|
void
|
|
thread_unlink(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
#ifdef EPOCH_TRACE
|
|
MPASS(SLIST_EMPTY(&td->td_epochs));
|
|
#endif
|
|
|
|
TAILQ_REMOVE(&p->p_threads, td, td_plist);
|
|
p->p_numthreads--;
|
|
/* could clear a few other things here */
|
|
/* Must NOT clear links to proc! */
|
|
}
|
|
|
|
static int
|
|
calc_remaining(struct proc *p, int mode)
|
|
{
|
|
int remaining;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
if (mode == SINGLE_EXIT)
|
|
remaining = p->p_numthreads;
|
|
else if (mode == SINGLE_BOUNDARY)
|
|
remaining = p->p_numthreads - p->p_boundary_count;
|
|
else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
|
|
remaining = p->p_numthreads - p->p_suspcount;
|
|
else
|
|
panic("calc_remaining: wrong mode %d", mode);
|
|
return (remaining);
|
|
}
|
|
|
|
static int
|
|
remain_for_mode(int mode)
|
|
{
|
|
|
|
return (mode == SINGLE_ALLPROC ? 0 : 1);
|
|
}
|
|
|
|
static int
|
|
weed_inhib(int mode, struct thread *td2, struct proc *p)
|
|
{
|
|
int wakeup_swapper;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
THREAD_LOCK_ASSERT(td2, MA_OWNED);
|
|
|
|
wakeup_swapper = 0;
|
|
|
|
/*
|
|
* Since the thread lock is dropped by the scheduler we have
|
|
* to retry to check for races.
|
|
*/
|
|
restart:
|
|
switch (mode) {
|
|
case SINGLE_EXIT:
|
|
if (TD_IS_SUSPENDED(td2)) {
|
|
wakeup_swapper |= thread_unsuspend_one(td2, p, true);
|
|
thread_lock(td2);
|
|
goto restart;
|
|
}
|
|
if (TD_CAN_ABORT(td2)) {
|
|
wakeup_swapper |= sleepq_abort(td2, EINTR);
|
|
return (wakeup_swapper);
|
|
}
|
|
break;
|
|
case SINGLE_BOUNDARY:
|
|
case SINGLE_NO_EXIT:
|
|
if (TD_IS_SUSPENDED(td2) &&
|
|
(td2->td_flags & TDF_BOUNDARY) == 0) {
|
|
wakeup_swapper |= thread_unsuspend_one(td2, p, false);
|
|
thread_lock(td2);
|
|
goto restart;
|
|
}
|
|
if (TD_CAN_ABORT(td2)) {
|
|
wakeup_swapper |= sleepq_abort(td2, ERESTART);
|
|
return (wakeup_swapper);
|
|
}
|
|
break;
|
|
case SINGLE_ALLPROC:
|
|
/*
|
|
* ALLPROC suspend tries to avoid spurious EINTR for
|
|
* threads sleeping interruptable, by suspending the
|
|
* thread directly, similarly to sig_suspend_threads().
|
|
* Since such sleep is not performed at the user
|
|
* boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
|
|
* is used to avoid immediate un-suspend.
|
|
*/
|
|
if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
|
|
TDF_ALLPROCSUSP)) == 0) {
|
|
wakeup_swapper |= thread_unsuspend_one(td2, p, false);
|
|
thread_lock(td2);
|
|
goto restart;
|
|
}
|
|
if (TD_CAN_ABORT(td2)) {
|
|
if ((td2->td_flags & TDF_SBDRY) == 0) {
|
|
thread_suspend_one(td2);
|
|
td2->td_flags |= TDF_ALLPROCSUSP;
|
|
} else {
|
|
wakeup_swapper |= sleepq_abort(td2, ERESTART);
|
|
return (wakeup_swapper);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
thread_unlock(td2);
|
|
return (wakeup_swapper);
|
|
}
|
|
|
|
/*
|
|
* Enforce single-threading.
|
|
*
|
|
* Returns 1 if the caller must abort (another thread is waiting to
|
|
* exit the process or similar). Process is locked!
|
|
* Returns 0 when you are successfully the only thread running.
|
|
* A process has successfully single threaded in the suspend mode when
|
|
* There are no threads in user mode. Threads in the kernel must be
|
|
* allowed to continue until they get to the user boundary. They may even
|
|
* copy out their return values and data before suspending. They may however be
|
|
* accelerated in reaching the user boundary as we will wake up
|
|
* any sleeping threads that are interruptable. (PCATCH).
|
|
*/
|
|
int
|
|
thread_single(struct proc *p, int mode)
|
|
{
|
|
struct thread *td;
|
|
struct thread *td2;
|
|
int remaining, wakeup_swapper;
|
|
|
|
td = curthread;
|
|
KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
|
|
mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
|
|
("invalid mode %d", mode));
|
|
/*
|
|
* If allowing non-ALLPROC singlethreading for non-curproc
|
|
* callers, calc_remaining() and remain_for_mode() should be
|
|
* adjusted to also account for td->td_proc != p. For now
|
|
* this is not implemented because it is not used.
|
|
*/
|
|
KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
|
|
(mode != SINGLE_ALLPROC && td->td_proc == p),
|
|
("mode %d proc %p curproc %p", mode, p, td->td_proc));
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
|
|
return (0);
|
|
|
|
/* Is someone already single threading? */
|
|
if (p->p_singlethread != NULL && p->p_singlethread != td)
|
|
return (1);
|
|
|
|
if (mode == SINGLE_EXIT) {
|
|
p->p_flag |= P_SINGLE_EXIT;
|
|
p->p_flag &= ~P_SINGLE_BOUNDARY;
|
|
} else {
|
|
p->p_flag &= ~P_SINGLE_EXIT;
|
|
if (mode == SINGLE_BOUNDARY)
|
|
p->p_flag |= P_SINGLE_BOUNDARY;
|
|
else
|
|
p->p_flag &= ~P_SINGLE_BOUNDARY;
|
|
}
|
|
if (mode == SINGLE_ALLPROC)
|
|
p->p_flag |= P_TOTAL_STOP;
|
|
p->p_flag |= P_STOPPED_SINGLE;
|
|
PROC_SLOCK(p);
|
|
p->p_singlethread = td;
|
|
remaining = calc_remaining(p, mode);
|
|
while (remaining != remain_for_mode(mode)) {
|
|
if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
|
|
goto stopme;
|
|
wakeup_swapper = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (td2 == td)
|
|
continue;
|
|
thread_lock(td2);
|
|
td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
|
|
if (TD_IS_INHIBITED(td2)) {
|
|
wakeup_swapper |= weed_inhib(mode, td2, p);
|
|
#ifdef SMP
|
|
} else if (TD_IS_RUNNING(td2) && td != td2) {
|
|
forward_signal(td2);
|
|
thread_unlock(td2);
|
|
#endif
|
|
} else
|
|
thread_unlock(td2);
|
|
}
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
remaining = calc_remaining(p, mode);
|
|
|
|
/*
|
|
* Maybe we suspended some threads.. was it enough?
|
|
*/
|
|
if (remaining == remain_for_mode(mode))
|
|
break;
|
|
|
|
stopme:
|
|
/*
|
|
* Wake us up when everyone else has suspended.
|
|
* In the mean time we suspend as well.
|
|
*/
|
|
thread_suspend_switch(td, p);
|
|
remaining = calc_remaining(p, mode);
|
|
}
|
|
if (mode == SINGLE_EXIT) {
|
|
/*
|
|
* Convert the process to an unthreaded process. The
|
|
* SINGLE_EXIT is called by exit1() or execve(), in
|
|
* both cases other threads must be retired.
|
|
*/
|
|
KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
|
|
p->p_singlethread = NULL;
|
|
p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
|
|
|
|
/*
|
|
* Wait for any remaining threads to exit cpu_throw().
|
|
*/
|
|
while (p->p_exitthreads != 0) {
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
sched_relinquish(td);
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
}
|
|
} else if (mode == SINGLE_BOUNDARY) {
|
|
/*
|
|
* Wait until all suspended threads are removed from
|
|
* the processors. The thread_suspend_check()
|
|
* increments p_boundary_count while it is still
|
|
* running, which makes it possible for the execve()
|
|
* to destroy vmspace while our other threads are
|
|
* still using the address space.
|
|
*
|
|
* We lock the thread, which is only allowed to
|
|
* succeed after context switch code finished using
|
|
* the address space.
|
|
*/
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (td2 == td)
|
|
continue;
|
|
thread_lock(td2);
|
|
KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
|
|
("td %p not on boundary", td2));
|
|
KASSERT(TD_IS_SUSPENDED(td2),
|
|
("td %p is not suspended", td2));
|
|
thread_unlock(td2);
|
|
}
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
bool
|
|
thread_suspend_check_needed(void)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
|
|
(td->td_dbgflags & TDB_SUSPEND) != 0));
|
|
}
|
|
|
|
/*
|
|
* Called in from locations that can safely check to see
|
|
* whether we have to suspend or at least throttle for a
|
|
* single-thread event (e.g. fork).
|
|
*
|
|
* Such locations include userret().
|
|
* If the "return_instead" argument is non zero, the thread must be able to
|
|
* accept 0 (caller may continue), or 1 (caller must abort) as a result.
|
|
*
|
|
* The 'return_instead' argument tells the function if it may do a
|
|
* thread_exit() or suspend, or whether the caller must abort and back
|
|
* out instead.
|
|
*
|
|
* If the thread that set the single_threading request has set the
|
|
* P_SINGLE_EXIT bit in the process flags then this call will never return
|
|
* if 'return_instead' is false, but will exit.
|
|
*
|
|
* P_SINGLE_EXIT | return_instead == 0| return_instead != 0
|
|
*---------------+--------------------+---------------------
|
|
* 0 | returns 0 | returns 0 or 1
|
|
* | when ST ends | immediately
|
|
*---------------+--------------------+---------------------
|
|
* 1 | thread exits | returns 1
|
|
* | | immediately
|
|
* 0 = thread_exit() or suspension ok,
|
|
* other = return error instead of stopping the thread.
|
|
*
|
|
* While a full suspension is under effect, even a single threading
|
|
* thread would be suspended if it made this call (but it shouldn't).
|
|
* This call should only be made from places where
|
|
* thread_exit() would be safe as that may be the outcome unless
|
|
* return_instead is set.
|
|
*/
|
|
int
|
|
thread_suspend_check(int return_instead)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
int wakeup_swapper;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
while (thread_suspend_check_needed()) {
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
KASSERT(p->p_singlethread != NULL,
|
|
("singlethread not set"));
|
|
/*
|
|
* The only suspension in action is a
|
|
* single-threading. Single threader need not stop.
|
|
* It is safe to access p->p_singlethread unlocked
|
|
* because it can only be set to our address by us.
|
|
*/
|
|
if (p->p_singlethread == td)
|
|
return (0); /* Exempt from stopping. */
|
|
}
|
|
if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
|
|
return (EINTR);
|
|
|
|
/* Should we goto user boundary if we didn't come from there? */
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
|
|
(p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
|
|
return (ERESTART);
|
|
|
|
/*
|
|
* Ignore suspend requests if they are deferred.
|
|
*/
|
|
if ((td->td_flags & TDF_SBDRY) != 0) {
|
|
KASSERT(return_instead,
|
|
("TDF_SBDRY set for unsafe thread_suspend_check"));
|
|
KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
|
|
(TDF_SEINTR | TDF_SERESTART),
|
|
("both TDF_SEINTR and TDF_SERESTART"));
|
|
return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
|
|
}
|
|
|
|
/*
|
|
* If the process is waiting for us to exit,
|
|
* this thread should just suicide.
|
|
* Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
|
|
*/
|
|
if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Allow Linux emulation layer to do some work
|
|
* before thread suicide.
|
|
*/
|
|
if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
|
|
(p->p_sysent->sv_thread_detach)(td);
|
|
umtx_thread_exit(td);
|
|
kern_thr_exit(td);
|
|
panic("stopped thread did not exit");
|
|
}
|
|
|
|
PROC_SLOCK(p);
|
|
thread_stopped(p);
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount + 1) {
|
|
thread_lock(p->p_singlethread);
|
|
wakeup_swapper = thread_unsuspend_one(
|
|
p->p_singlethread, p, false);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
thread_lock(td);
|
|
/*
|
|
* When a thread suspends, it just
|
|
* gets taken off all queues.
|
|
*/
|
|
thread_suspend_one(td);
|
|
if (return_instead == 0) {
|
|
p->p_boundary_count++;
|
|
td->td_flags |= TDF_BOUNDARY;
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
mi_switch(SW_INVOL | SWT_SUSPEND);
|
|
PROC_LOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check for possible stops and suspensions while executing a
|
|
* casueword or similar transiently failing operation.
|
|
*
|
|
* The sleep argument controls whether the function can handle a stop
|
|
* request itself or it should return ERESTART and the request is
|
|
* proceed at the kernel/user boundary in ast.
|
|
*
|
|
* Typically, when retrying due to casueword(9) failure (rv == 1), we
|
|
* should handle the stop requests there, with exception of cases when
|
|
* the thread owns a kernel resource, for instance busied the umtx
|
|
* key, or when functions return immediately if thread_check_susp()
|
|
* returned non-zero. On the other hand, retrying the whole lock
|
|
* operation, we better not stop there but delegate the handling to
|
|
* ast.
|
|
*
|
|
* If the request is for thread termination P_SINGLE_EXIT, we cannot
|
|
* handle it at all, and simply return EINTR.
|
|
*/
|
|
int
|
|
thread_check_susp(struct thread *td, bool sleep)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
/*
|
|
* The check for TDF_NEEDSUSPCHK is racy, but it is enough to
|
|
* eventually break the lockstep loop.
|
|
*/
|
|
if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
|
|
return (0);
|
|
error = 0;
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
if (p->p_flag & P_SINGLE_EXIT)
|
|
error = EINTR;
|
|
else if (P_SHOULDSTOP(p) ||
|
|
((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
|
|
error = sleep ? thread_suspend_check(0) : ERESTART;
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
thread_suspend_switch(struct thread *td, struct proc *p)
|
|
{
|
|
|
|
KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
/*
|
|
* We implement thread_suspend_one in stages here to avoid
|
|
* dropping the proc lock while the thread lock is owned.
|
|
*/
|
|
if (p == td->td_proc) {
|
|
thread_stopped(p);
|
|
p->p_suspcount++;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
thread_lock(td);
|
|
td->td_flags &= ~TDF_NEEDSUSPCHK;
|
|
TD_SET_SUSPENDED(td);
|
|
sched_sleep(td, 0);
|
|
PROC_SUNLOCK(p);
|
|
DROP_GIANT();
|
|
mi_switch(SW_VOL | SWT_SUSPEND);
|
|
PICKUP_GIANT();
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
}
|
|
|
|
void
|
|
thread_suspend_one(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
|
|
p->p_suspcount++;
|
|
td->td_flags &= ~TDF_NEEDSUSPCHK;
|
|
TD_SET_SUSPENDED(td);
|
|
sched_sleep(td, 0);
|
|
}
|
|
|
|
static int
|
|
thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
|
|
{
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
|
|
TD_CLR_SUSPENDED(td);
|
|
td->td_flags &= ~TDF_ALLPROCSUSP;
|
|
if (td->td_proc == p) {
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
p->p_suspcount--;
|
|
if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
|
|
td->td_flags &= ~TDF_BOUNDARY;
|
|
p->p_boundary_count--;
|
|
}
|
|
}
|
|
return (setrunnable(td, 0));
|
|
}
|
|
|
|
void
|
|
thread_run_flash(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if (TD_ON_SLEEPQ(td))
|
|
sleepq_remove_nested(td);
|
|
else
|
|
thread_lock(td);
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
|
|
|
|
TD_CLR_SUSPENDED(td);
|
|
PROC_SLOCK(p);
|
|
MPASS(p->p_suspcount > 0);
|
|
p->p_suspcount--;
|
|
PROC_SUNLOCK(p);
|
|
if (setrunnable(td, 0))
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* Allow all threads blocked by single threading to continue running.
|
|
*/
|
|
void
|
|
thread_unsuspend(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
int wakeup_swapper;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
wakeup_swapper = 0;
|
|
if (!P_SHOULDSTOP(p)) {
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
if (TD_IS_SUSPENDED(td)) {
|
|
wakeup_swapper |= thread_unsuspend_one(td, p,
|
|
true);
|
|
} else
|
|
thread_unlock(td);
|
|
}
|
|
} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
|
|
p->p_numthreads == p->p_suspcount) {
|
|
/*
|
|
* Stopping everything also did the job for the single
|
|
* threading request. Now we've downgraded to single-threaded,
|
|
* let it continue.
|
|
*/
|
|
if (p->p_singlethread->td_proc == p) {
|
|
thread_lock(p->p_singlethread);
|
|
wakeup_swapper = thread_unsuspend_one(
|
|
p->p_singlethread, p, false);
|
|
}
|
|
}
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* End the single threading mode..
|
|
*/
|
|
void
|
|
thread_single_end(struct proc *p, int mode)
|
|
{
|
|
struct thread *td;
|
|
int wakeup_swapper;
|
|
|
|
KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
|
|
mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
|
|
("invalid mode %d", mode));
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
|
|
(mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
|
|
("mode %d does not match P_TOTAL_STOP", mode));
|
|
KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
|
|
("thread_single_end from other thread %p %p",
|
|
curthread, p->p_singlethread));
|
|
KASSERT(mode != SINGLE_BOUNDARY ||
|
|
(p->p_flag & P_SINGLE_BOUNDARY) != 0,
|
|
("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
|
|
p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
|
|
P_TOTAL_STOP);
|
|
PROC_SLOCK(p);
|
|
p->p_singlethread = NULL;
|
|
wakeup_swapper = 0;
|
|
/*
|
|
* If there are other threads they may now run,
|
|
* unless of course there is a blanket 'stop order'
|
|
* on the process. The single threader must be allowed
|
|
* to continue however as this is a bad place to stop.
|
|
*/
|
|
if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
if (TD_IS_SUSPENDED(td)) {
|
|
wakeup_swapper |= thread_unsuspend_one(td, p,
|
|
mode == SINGLE_BOUNDARY);
|
|
} else
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
|
|
("inconsistent boundary count %d", p->p_boundary_count));
|
|
PROC_SUNLOCK(p);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* Locate a thread by number and return with proc lock held.
|
|
*
|
|
* thread exit establishes proc -> tidhash lock ordering, but lookup
|
|
* takes tidhash first and needs to return locked proc.
|
|
*
|
|
* The problem is worked around by relying on type-safety of both
|
|
* structures and doing the work in 2 steps:
|
|
* - tidhash-locked lookup which saves both thread and proc pointers
|
|
* - proc-locked verification that the found thread still matches
|
|
*/
|
|
static bool
|
|
tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
|
|
{
|
|
#define RUN_THRESH 16
|
|
struct proc *p;
|
|
struct thread *td;
|
|
int run;
|
|
bool locked;
|
|
|
|
run = 0;
|
|
rw_rlock(TIDHASHLOCK(tid));
|
|
locked = true;
|
|
LIST_FOREACH(td, TIDHASH(tid), td_hash) {
|
|
if (td->td_tid != tid) {
|
|
run++;
|
|
continue;
|
|
}
|
|
p = td->td_proc;
|
|
if (pid != -1 && p->p_pid != pid) {
|
|
td = NULL;
|
|
break;
|
|
}
|
|
if (run > RUN_THRESH) {
|
|
if (rw_try_upgrade(TIDHASHLOCK(tid))) {
|
|
LIST_REMOVE(td, td_hash);
|
|
LIST_INSERT_HEAD(TIDHASH(td->td_tid),
|
|
td, td_hash);
|
|
rw_wunlock(TIDHASHLOCK(tid));
|
|
locked = false;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (locked)
|
|
rw_runlock(TIDHASHLOCK(tid));
|
|
if (td == NULL)
|
|
return (false);
|
|
*pp = p;
|
|
*tdp = td;
|
|
return (true);
|
|
}
|
|
|
|
struct thread *
|
|
tdfind(lwpid_t tid, pid_t pid)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
if (td->td_tid == tid) {
|
|
if (pid != -1 && td->td_proc->p_pid != pid)
|
|
return (NULL);
|
|
PROC_LOCK(td->td_proc);
|
|
return (td);
|
|
}
|
|
|
|
for (;;) {
|
|
if (!tdfind_hash(tid, pid, &p, &td))
|
|
return (NULL);
|
|
PROC_LOCK(p);
|
|
if (td->td_tid != tid) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
if (td->td_proc != p) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
if (p->p_state == PRS_NEW) {
|
|
PROC_UNLOCK(p);
|
|
return (NULL);
|
|
}
|
|
return (td);
|
|
}
|
|
}
|
|
|
|
void
|
|
tidhash_add(struct thread *td)
|
|
{
|
|
rw_wlock(TIDHASHLOCK(td->td_tid));
|
|
LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
|
|
rw_wunlock(TIDHASHLOCK(td->td_tid));
|
|
}
|
|
|
|
void
|
|
tidhash_remove(struct thread *td)
|
|
{
|
|
|
|
rw_wlock(TIDHASHLOCK(td->td_tid));
|
|
LIST_REMOVE(td, td_hash);
|
|
rw_wunlock(TIDHASHLOCK(td->td_tid));
|
|
}
|