freebsd-nq/stand/zfs/zfs.c
2018-03-12 21:39:59 +00:00

1003 lines
22 KiB
C

/*-
* Copyright (c) 2007 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Stand-alone file reading package.
*/
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/queue.h>
#include <part.h>
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include <stand.h>
#include <bootstrap.h>
#include "libzfs.h"
#include "zfsimpl.c"
/* Define the range of indexes to be populated with ZFS Boot Environments */
#define ZFS_BE_FIRST 4
#define ZFS_BE_LAST 8
static int zfs_open(const char *path, struct open_file *f);
static int zfs_close(struct open_file *f);
static int zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid);
static off_t zfs_seek(struct open_file *f, off_t offset, int where);
static int zfs_stat(struct open_file *f, struct stat *sb);
static int zfs_readdir(struct open_file *f, struct dirent *d);
static void zfs_bootenv_initial(const char *);
struct devsw zfs_dev;
struct fs_ops zfs_fsops = {
"zfs",
zfs_open,
zfs_close,
zfs_read,
null_write,
zfs_seek,
zfs_stat,
zfs_readdir
};
/*
* In-core open file.
*/
struct file {
off_t f_seekp; /* seek pointer */
dnode_phys_t f_dnode;
uint64_t f_zap_type; /* zap type for readdir */
uint64_t f_num_leafs; /* number of fzap leaf blocks */
zap_leaf_phys_t *f_zap_leaf; /* zap leaf buffer */
};
static int zfs_env_index;
static int zfs_env_count;
SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head);
struct zfs_be_list *zfs_be_headp;
struct zfs_be_entry {
const char *name;
SLIST_ENTRY(zfs_be_entry) entries;
} *zfs_be, *zfs_be_tmp;
/*
* Open a file.
*/
static int
zfs_open(const char *upath, struct open_file *f)
{
struct zfsmount *mount = (struct zfsmount *)f->f_devdata;
struct file *fp;
int rc;
if (f->f_dev != &zfs_dev)
return (EINVAL);
/* allocate file system specific data structure */
fp = malloc(sizeof(struct file));
bzero(fp, sizeof(struct file));
f->f_fsdata = (void *)fp;
rc = zfs_lookup(mount, upath, &fp->f_dnode);
fp->f_seekp = 0;
if (rc) {
f->f_fsdata = NULL;
free(fp);
}
return (rc);
}
static int
zfs_close(struct open_file *f)
{
struct file *fp = (struct file *)f->f_fsdata;
dnode_cache_obj = NULL;
f->f_fsdata = (void *)0;
if (fp == (struct file *)0)
return (0);
free(fp);
return (0);
}
/*
* Copy a portion of a file into kernel memory.
* Cross block boundaries when necessary.
*/
static int
zfs_read(struct open_file *f, void *start, size_t size, size_t *resid /* out */)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
struct stat sb;
size_t n;
int rc;
rc = zfs_stat(f, &sb);
if (rc)
return (rc);
n = size;
if (fp->f_seekp + n > sb.st_size)
n = sb.st_size - fp->f_seekp;
rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n);
if (rc)
return (rc);
if (0) {
int i;
for (i = 0; i < n; i++)
putchar(((char*) start)[i]);
}
fp->f_seekp += n;
if (resid)
*resid = size - n;
return (0);
}
static off_t
zfs_seek(struct open_file *f, off_t offset, int where)
{
struct file *fp = (struct file *)f->f_fsdata;
switch (where) {
case SEEK_SET:
fp->f_seekp = offset;
break;
case SEEK_CUR:
fp->f_seekp += offset;
break;
case SEEK_END:
{
struct stat sb;
int error;
error = zfs_stat(f, &sb);
if (error != 0) {
errno = error;
return (-1);
}
fp->f_seekp = sb.st_size - offset;
break;
}
default:
errno = EINVAL;
return (-1);
}
return (fp->f_seekp);
}
static int
zfs_stat(struct open_file *f, struct stat *sb)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
return (zfs_dnode_stat(spa, &fp->f_dnode, sb));
}
static int
zfs_readdir(struct open_file *f, struct dirent *d)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
mzap_ent_phys_t mze;
struct stat sb;
size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT;
int rc;
rc = zfs_stat(f, &sb);
if (rc)
return (rc);
if (!S_ISDIR(sb.st_mode))
return (ENOTDIR);
/*
* If this is the first read, get the zap type.
*/
if (fp->f_seekp == 0) {
rc = dnode_read(spa, &fp->f_dnode,
0, &fp->f_zap_type, sizeof(fp->f_zap_type));
if (rc)
return (rc);
if (fp->f_zap_type == ZBT_MICRO) {
fp->f_seekp = offsetof(mzap_phys_t, mz_chunk);
} else {
rc = dnode_read(spa, &fp->f_dnode,
offsetof(zap_phys_t, zap_num_leafs),
&fp->f_num_leafs,
sizeof(fp->f_num_leafs));
if (rc)
return (rc);
fp->f_seekp = bsize;
fp->f_zap_leaf = (zap_leaf_phys_t *)malloc(bsize);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
}
if (fp->f_zap_type == ZBT_MICRO) {
mzap_next:
if (fp->f_seekp >= bsize)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp, &mze, sizeof(mze));
if (rc)
return (rc);
fp->f_seekp += sizeof(mze);
if (!mze.mze_name[0])
goto mzap_next;
d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value);
d->d_type = ZFS_DIRENT_TYPE(mze.mze_value);
strcpy(d->d_name, mze.mze_name);
d->d_namlen = strlen(d->d_name);
return (0);
} else {
zap_leaf_t zl;
zap_leaf_chunk_t *zc, *nc;
int chunk;
size_t namelen;
char *p;
uint64_t value;
/*
* Initialise this so we can use the ZAP size
* calculating macros.
*/
zl.l_bs = ilog2(bsize);
zl.l_phys = fp->f_zap_leaf;
/*
* Figure out which chunk we are currently looking at
* and consider seeking to the next leaf. We use the
* low bits of f_seekp as a simple chunk index.
*/
fzap_next:
chunk = fp->f_seekp & (bsize - 1);
if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) {
fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize;
chunk = 0;
/*
* Check for EOF and read the new leaf.
*/
if (fp->f_seekp >= bsize * fp->f_num_leafs)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
zc = &ZAP_LEAF_CHUNK(&zl, chunk);
fp->f_seekp++;
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
goto fzap_next;
namelen = zc->l_entry.le_name_numints;
if (namelen > sizeof(d->d_name))
namelen = sizeof(d->d_name);
/*
* Paste the name back together.
*/
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
p = d->d_name;
while (namelen > 0) {
int len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
}
d->d_name[sizeof(d->d_name) - 1] = 0;
/*
* Assume the first eight bytes of the value are
* a uint64_t.
*/
value = fzap_leaf_value(&zl, zc);
d->d_fileno = ZFS_DIRENT_OBJ(value);
d->d_type = ZFS_DIRENT_TYPE(value);
d->d_namlen = strlen(d->d_name);
return (0);
}
}
static int
vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t bytes)
{
int fd, ret;
size_t res, size, remainder, rb_size, blksz;
unsigned secsz;
off_t off;
char *bouncebuf, *rb_buf;
fd = (uintptr_t) priv;
bouncebuf = NULL;
ret = ioctl(fd, DIOCGSECTORSIZE, &secsz);
if (ret != 0)
return (ret);
off = offset / secsz;
remainder = offset % secsz;
if (lseek(fd, off * secsz, SEEK_SET) == -1)
return (errno);
rb_buf = buf;
rb_size = bytes;
size = roundup2(bytes + remainder, secsz);
blksz = size;
if (remainder != 0 || size != bytes) {
bouncebuf = zfs_alloc(secsz);
if (bouncebuf == NULL) {
printf("vdev_read: out of memory\n");
return (ENOMEM);
}
rb_buf = bouncebuf;
blksz = rb_size - remainder;
}
while (bytes > 0) {
res = read(fd, rb_buf, rb_size);
if (res != rb_size) {
ret = EIO;
goto error;
}
if (bytes < blksz)
blksz = bytes;
if (bouncebuf != NULL)
memcpy(buf, rb_buf + remainder, blksz);
buf = (void *)((uintptr_t)buf + blksz);
bytes -= blksz;
remainder = 0;
blksz = rb_size;
}
ret = 0;
error:
if (bouncebuf != NULL)
zfs_free(bouncebuf, secsz);
return (ret);
}
static int
zfs_dev_init(void)
{
spa_t *spa;
spa_t *next;
spa_t *prev;
zfs_init();
if (archsw.arch_zfs_probe == NULL)
return (ENXIO);
archsw.arch_zfs_probe();
prev = NULL;
spa = STAILQ_FIRST(&zfs_pools);
while (spa != NULL) {
next = STAILQ_NEXT(spa, spa_link);
if (zfs_spa_init(spa)) {
if (prev == NULL)
STAILQ_REMOVE_HEAD(&zfs_pools, spa_link);
else
STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link);
} else
prev = spa;
spa = next;
}
return (0);
}
struct zfs_probe_args {
int fd;
const char *devname;
uint64_t *pool_guid;
u_int secsz;
};
static int
zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset)
{
struct zfs_probe_args *ppa;
ppa = (struct zfs_probe_args *)arg;
return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd,
offset * ppa->secsz, buf, blocks * ppa->secsz));
}
static int
zfs_probe(int fd, uint64_t *pool_guid)
{
spa_t *spa;
int ret;
ret = vdev_probe(vdev_read, (void *)(uintptr_t)fd, &spa);
if (ret == 0 && pool_guid != NULL)
*pool_guid = spa->spa_guid;
return (ret);
}
static int
zfs_probe_partition(void *arg, const char *partname,
const struct ptable_entry *part)
{
struct zfs_probe_args *ppa, pa;
struct ptable *table;
char devname[32];
int ret;
/* Probe only freebsd-zfs and freebsd partitions */
if (part->type != PART_FREEBSD &&
part->type != PART_FREEBSD_ZFS)
return (0);
ppa = (struct zfs_probe_args *)arg;
strncpy(devname, ppa->devname, strlen(ppa->devname) - 1);
devname[strlen(ppa->devname) - 1] = '\0';
sprintf(devname, "%s%s:", devname, partname);
pa.fd = open(devname, O_RDONLY);
if (pa.fd == -1)
return (0);
ret = zfs_probe(pa.fd, ppa->pool_guid);
if (ret == 0)
return (0);
/* Do we have BSD label here? */
if (part->type == PART_FREEBSD) {
pa.devname = devname;
pa.pool_guid = ppa->pool_guid;
pa.secsz = ppa->secsz;
table = ptable_open(&pa, part->end - part->start + 1,
ppa->secsz, zfs_diskread);
if (table != NULL) {
ptable_iterate(table, &pa, zfs_probe_partition);
ptable_close(table);
}
}
close(pa.fd);
return (0);
}
int
zfs_probe_dev(const char *devname, uint64_t *pool_guid)
{
struct ptable *table;
struct zfs_probe_args pa;
uint64_t mediasz;
int ret;
if (pool_guid)
*pool_guid = 0;
pa.fd = open(devname, O_RDONLY);
if (pa.fd == -1)
return (ENXIO);
/* Probe the whole disk */
ret = zfs_probe(pa.fd, pool_guid);
if (ret == 0)
return (0);
/* Probe each partition */
ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz);
if (ret == 0)
ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz);
if (ret == 0) {
pa.devname = devname;
pa.pool_guid = pool_guid;
table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz,
zfs_diskread);
if (table != NULL) {
ptable_iterate(table, &pa, zfs_probe_partition);
ptable_close(table);
}
}
close(pa.fd);
if (pool_guid && *pool_guid == 0)
ret = ENXIO;
return (ret);
}
/*
* Print information about ZFS pools
*/
static int
zfs_dev_print(int verbose)
{
spa_t *spa;
char line[80];
int ret = 0;
if (STAILQ_EMPTY(&zfs_pools))
return (0);
printf("%s devices:", zfs_dev.dv_name);
if ((ret = pager_output("\n")) != 0)
return (ret);
if (verbose) {
return (spa_all_status());
}
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
snprintf(line, sizeof(line), " zfs:%s\n", spa->spa_name);
ret = pager_output(line);
if (ret != 0)
break;
}
return (ret);
}
/*
* Attempt to open the pool described by (dev) for use by (f).
*/
static int
zfs_dev_open(struct open_file *f, ...)
{
va_list args;
struct zfs_devdesc *dev;
struct zfsmount *mount;
spa_t *spa;
int rv;
va_start(args, f);
dev = va_arg(args, struct zfs_devdesc *);
va_end(args);
if (dev->pool_guid == 0)
spa = STAILQ_FIRST(&zfs_pools);
else
spa = spa_find_by_guid(dev->pool_guid);
if (!spa)
return (ENXIO);
mount = malloc(sizeof(*mount));
rv = zfs_mount(spa, dev->root_guid, mount);
if (rv != 0) {
free(mount);
return (rv);
}
if (mount->objset.os_type != DMU_OST_ZFS) {
printf("Unexpected object set type %ju\n",
(uintmax_t)mount->objset.os_type);
free(mount);
return (EIO);
}
f->f_devdata = mount;
free(dev);
return (0);
}
static int
zfs_dev_close(struct open_file *f)
{
free(f->f_devdata);
f->f_devdata = NULL;
return (0);
}
static int
zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize)
{
return (ENOSYS);
}
struct devsw zfs_dev = {
.dv_name = "zfs",
.dv_type = DEVT_ZFS,
.dv_init = zfs_dev_init,
.dv_strategy = zfs_dev_strategy,
.dv_open = zfs_dev_open,
.dv_close = zfs_dev_close,
.dv_ioctl = noioctl,
.dv_print = zfs_dev_print,
.dv_cleanup = NULL
};
int
zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path)
{
static char rootname[ZFS_MAXNAMELEN];
static char poolname[ZFS_MAXNAMELEN];
spa_t *spa;
const char *end;
const char *np;
const char *sep;
int rv;
np = devspec;
if (*np != ':')
return (EINVAL);
np++;
end = strchr(np, ':');
if (end == NULL)
return (EINVAL);
sep = strchr(np, '/');
if (sep == NULL || sep >= end)
sep = end;
memcpy(poolname, np, sep - np);
poolname[sep - np] = '\0';
if (sep < end) {
sep++;
memcpy(rootname, sep, end - sep);
rootname[end - sep] = '\0';
}
else
rootname[0] = '\0';
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
dev->pool_guid = spa->spa_guid;
rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid);
if (rv != 0)
return (rv);
if (path != NULL)
*path = (*end == '\0') ? end : end + 1;
dev->dd.d_dev = &zfs_dev;
return (0);
}
char *
zfs_fmtdev(void *vdev)
{
static char rootname[ZFS_MAXNAMELEN];
static char buf[2 * ZFS_MAXNAMELEN + 8];
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
buf[0] = '\0';
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (buf);
if (dev->pool_guid == 0) {
spa = STAILQ_FIRST(&zfs_pools);
dev->pool_guid = spa->spa_guid;
} else
spa = spa_find_by_guid(dev->pool_guid);
if (spa == NULL) {
printf("ZFS: can't find pool by guid\n");
return (buf);
}
if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) {
printf("ZFS: can't find root filesystem\n");
return (buf);
}
if (zfs_rlookup(spa, dev->root_guid, rootname)) {
printf("ZFS: can't find filesystem by guid\n");
return (buf);
}
if (rootname[0] == '\0')
sprintf(buf, "%s:%s:", dev->dd.d_dev->dv_name, spa->spa_name);
else
sprintf(buf, "%s:%s/%s:", dev->dd.d_dev->dv_name, spa->spa_name,
rootname);
return (buf);
}
int
zfs_list(const char *name)
{
static char poolname[ZFS_MAXNAMELEN];
uint64_t objid;
spa_t *spa;
const char *dsname;
int len;
int rv;
len = strlen(name);
dsname = strchr(name, '/');
if (dsname != NULL) {
len = dsname - name;
dsname++;
} else
dsname = "";
memcpy(poolname, name, len);
poolname[len] = '\0';
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return (rv);
return (zfs_list_dataset(spa, objid));
}
void
init_zfs_bootenv(const char *currdev_in)
{
char *beroot, *currdev;
int currdev_len;
currdev = NULL;
currdev_len = strlen(currdev_in);
if (currdev_len == 0)
return;
if (strncmp(currdev_in, "zfs:", 4) != 0)
return;
currdev = strdup(currdev_in);
if (currdev == NULL)
return;
/* Remove the trailing : */
currdev[currdev_len - 1] = '\0';
setenv("zfs_be_active", currdev, 1);
setenv("zfs_be_currpage", "1", 1);
/* Remove the last element (current bootenv) */
beroot = strrchr(currdev, '/');
if (beroot != NULL)
beroot[0] = '\0';
beroot = strchr(currdev, ':') + 1;
setenv("zfs_be_root", beroot, 1);
zfs_bootenv_initial(beroot);
free(currdev);
}
static void
zfs_bootenv_initial(const char *name)
{
char poolname[ZFS_MAXNAMELEN], *dsname;
char envname[32], envval[256];
uint64_t objid;
spa_t *spa;
int bootenvs_idx, len, rv;
SLIST_INIT(&zfs_be_head);
zfs_env_count = 0;
len = strlen(name);
dsname = strchr(name, '/');
if (dsname != NULL) {
len = dsname - name;
dsname++;
} else
dsname = "";
strlcpy(poolname, name, len + 1);
spa = spa_find_by_name(poolname);
if (spa == NULL)
return;
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return;
rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
bootenvs_idx = 0;
/* Populate the initial environment variables */
SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
/* Enumerate all bootenvs for general usage */
snprintf(envname, sizeof(envname), "bootenvs[%d]", bootenvs_idx);
snprintf(envval, sizeof(envval), "zfs:%s/%s", name, zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0)
break;
bootenvs_idx++;
}
snprintf(envval, sizeof(envval), "%d", bootenvs_idx);
setenv("bootenvs_count", envval, 1);
/* Clean up the SLIST of ZFS BEs */
while (!SLIST_EMPTY(&zfs_be_head)) {
zfs_be = SLIST_FIRST(&zfs_be_head);
SLIST_REMOVE_HEAD(&zfs_be_head, entries);
free(zfs_be);
}
return;
}
int
zfs_bootenv(const char *name)
{
static char poolname[ZFS_MAXNAMELEN], *dsname, *root;
char becount[4];
uint64_t objid;
spa_t *spa;
int len, rv, pages, perpage, currpage;
if (name == NULL)
return (EINVAL);
if ((root = getenv("zfs_be_root")) == NULL)
return (EINVAL);
if (strcmp(name, root) != 0) {
if (setenv("zfs_be_root", name, 1) != 0)
return (ENOMEM);
}
SLIST_INIT(&zfs_be_head);
zfs_env_count = 0;
len = strlen(name);
dsname = strchr(name, '/');
if (dsname != NULL) {
len = dsname - name;
dsname++;
} else
dsname = "";
memcpy(poolname, name, len);
poolname[len] = '\0';
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return (rv);
rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
/* Calculate and store the number of pages of BEs */
perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1);
pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0);
snprintf(becount, 4, "%d", pages);
if (setenv("zfs_be_pages", becount, 1) != 0)
return (ENOMEM);
/* Roll over the page counter if it has exceeded the maximum */
currpage = strtol(getenv("zfs_be_currpage"), NULL, 10);
if (currpage > pages) {
if (setenv("zfs_be_currpage", "1", 1) != 0)
return (ENOMEM);
}
/* Populate the menu environment variables */
zfs_set_env();
/* Clean up the SLIST of ZFS BEs */
while (!SLIST_EMPTY(&zfs_be_head)) {
zfs_be = SLIST_FIRST(&zfs_be_head);
SLIST_REMOVE_HEAD(&zfs_be_head, entries);
free(zfs_be);
}
return (rv);
}
int
zfs_belist_add(const char *name, uint64_t value __unused)
{
/* Skip special datasets that start with a $ character */
if (strncmp(name, "$", 1) == 0) {
return (0);
}
/* Add the boot environment to the head of the SLIST */
zfs_be = malloc(sizeof(struct zfs_be_entry));
if (zfs_be == NULL) {
return (ENOMEM);
}
zfs_be->name = name;
SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries);
zfs_env_count++;
return (0);
}
int
zfs_set_env(void)
{
char envname[32], envval[256];
char *beroot, *pagenum;
int rv, page, ctr;
beroot = getenv("zfs_be_root");
if (beroot == NULL) {
return (1);
}
pagenum = getenv("zfs_be_currpage");
if (pagenum != NULL) {
page = strtol(pagenum, NULL, 10);
} else {
page = 1;
}
ctr = 1;
rv = 0;
zfs_env_index = ZFS_BE_FIRST;
SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
/* Skip to the requested page number */
if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) {
ctr++;
continue;
}
snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
snprintf(envval, sizeof(envval), "%s", zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0) {
break;
}
snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
rv = setenv(envname, envval, 1);
if (rv != 0){
break;
}
snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
rv = setenv(envname, "set_bootenv", 1);
if (rv != 0){
break;
}
snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0){
break;
}
zfs_env_index++;
if (zfs_env_index > ZFS_BE_LAST) {
break;
}
}
for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) {
snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
(void)unsetenv(envname);
}
return (rv);
}