freebsd-nq/sys/ufs/lfs/lfs_segment.c
Bruce Evans 09a8dfa260 Don't depend in the kernel on the gcc feature of doing arithmetic on
pointers of type `void *'.  Warn about this in future.
1996-08-31 14:48:13 +00:00

1198 lines
31 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.5 (Berkeley) 1/4/94
* $Id: lfs_segment.c,v 1.17 1996/06/12 05:11:41 gpalmer Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
extern int count_lock_queue __P((void));
static caddr_t lfs_alloc_buffer __P((int size));
static void lfs_reclaim_buffers __P((void));
#define MAX_ACTIVE 10
#define MAX_IO_BUFS 256
#define MAX_IO_SIZE (1024*512)
static int lfs_total_io_size;
static int lfs_total_io_count;
static volatile int lfs_total_free_count;
static int lfs_free_needed;
static int lfs_in_buffer_reclaim;
static struct lfs_freebuf {
int size;
caddr_t address;
} lfs_freebufs[MAX_IO_BUFS];
void
lfs_free_buffer( caddr_t address, int size) {
lfs_freebufs[lfs_total_free_count].address = address;
lfs_freebufs[lfs_total_free_count].size = size;
++lfs_total_free_count;
if( lfs_free_needed) {
wakeup((caddr_t) &lfs_free_needed);
lfs_free_needed = 0;
}
}
static void
lfs_reclaim_buffers() {
int i,s;
int reclaimed = 0;
if( lfs_in_buffer_reclaim)
return;
lfs_in_buffer_reclaim = 1;
s = splhigh();
for(i=0;i<lfs_total_free_count;i++) {
reclaimed = 1;
if( lfs_freebufs[i].address ){
splx(s);
free(lfs_freebufs[i].address, M_SEGMENT);
s = splhigh();
}
lfs_total_io_size -= lfs_freebufs[i].size;
lfs_total_io_count -= 1;
}
lfs_in_buffer_reclaim = 0;
lfs_total_free_count = 0;
splx(s);
if( reclaimed) {
wakeup((caddr_t) &lfs_free_needed);
}
}
static caddr_t
lfs_alloc_buffer(int size) {
int s;
caddr_t rtval;
if( lfs_total_free_count)
lfs_reclaim_buffers();
s = splhigh(); /* XXX can't this just be splbio?? */
while( ((lfs_total_io_count+1) >= MAX_IO_BUFS) ||
(lfs_total_io_size >= MAX_IO_SIZE)) {
lfs_free_needed = 1;
tsleep(&lfs_free_needed, PRIBIO, "lfsalc", 0);
splx(s);
lfs_reclaim_buffers();
s = splhigh();
}
splx(s);
lfs_total_io_size += size;
lfs_total_io_count += 1;
rtval = malloc(size, M_SEGMENT, M_WAITOK);
return rtval;
}
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
1 << (fs)->lfs_fsbtodb)
static void lfs_callback __P((struct buf *));
static void lfs_gather __P((struct lfs *, struct segment *,
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
void lfs_iset __P((struct inode *, daddr_t, time_t));
static int lfs_match_data __P((struct lfs *, struct buf *));
static int lfs_match_dindir __P((struct lfs *, struct buf *));
static int lfs_match_indir __P((struct lfs *, struct buf *));
#ifdef TRIPLE
static int lfs_match_tindir __P((struct lfs *, struct buf *));
#endif
static void lfs_newseg __P((struct lfs *));
static void lfs_shellsort __P((struct buf **, daddr_t *, register int));
static void lfs_supercallback __P((struct buf *));
static void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
static void lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops));
/* Statistics Counters */
#define DOSTATS
struct lfs_stats lfs_stats;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
int
lfs_vflush(vp)
struct vnode *vp;
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
int error;
fs = VFSTOUFS(vp->v_mount)->um_lfs;
/* XXX
* lfs_segwrite uses lfs_writevnodes to flush dirty vnodes.
* lfs_writevnodes (by way of a check with lfs_vref) passes over
* locked vnodes. Since we usually come here with vp locked, anytime
* we just happen to call lfs_vflush and we are past the "MAX_ACTIVE"
* threshold, we used to call lfs_seqwrite and assume it would take
* care of the problem... but of course it didn't. Now the question
* remains, is this the right thing to do, or should lfs_seqwrite or
* lfs_writevnodes be fixed to handle locked vnodes??
*/
if (fs->lfs_nactive > MAX_ACTIVE){
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
if(error)
return(error);
}
lfs_seglock(fs, SEGM_SYNC);
sp = fs->lfs_sp;
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first == NULL)
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
do {
do {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
if (vp->v_dirtyblkhd.lh_first != NULL)
panic("lfs_vflush: dirty bufs!!!");
#ifdef DOSTATS
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
#endif
lfs_segunlock(fs);
return (0);
}
static void
lfs_writevnodes(fs, mp, sp, op)
struct lfs *fs;
struct mount *mp;
struct segment *sp;
int op;
{
struct inode *ip;
struct vnode *vp;
loop:
for (vp = mp->mnt_vnodelist.lh_first;
vp != NULL;
vp = vp->v_mntvnodes.le_next) {
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
/* XXX ignore dirops for now
if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
op != VN_DIROP && (vp->v_flag & VDIROP))
continue;
*/
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
continue;
if (vp->v_type == VNON)
continue;
if (lfs_vref(vp))
continue;
/*
* Write the inode/file if dirty and it's not the
* the IFILE.
*/
ip = VTOI(vp);
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
vp->v_dirtyblkhd.lh_first != NULL) &&
ip->i_number != LFS_IFILE_INUM) {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void) lfs_writeinode(fs, sp, ip);
}
vp->v_flag &= ~VDIROP;
lfs_vunref(vp);
}
}
int
lfs_segwrite(mp, flags)
struct mount *mp;
int flags; /* Do a checkpoint. */
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
daddr_t ibno;
CLEANERINFO *cip;
int clean, do_ckp, error, i;
fs = VFSTOUFS(mp)->um_lfs;
/*
* If we have fewer than 2 clean segments, wait until cleaner
* writes.
*/
do {
LFS_CLEANERINFO(cip, fs, bp);
clean = cip->clean;
brelse(bp);
if (clean <= 2) {
printf("lfs_segwrite: ran out of clean segments, waiting for cleaner\n");
wakeup(&lfs_allclean_wakeup);
if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
"lfs writer", 0))
return (error);
}
} while (clean <= 2 );
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
lfs_writevnodes(fs, mp, sp, VN_REG);
/* XXX ignore ordering of dirops for now */
/* XXX
fs->lfs_writer = 1;
if (fs->lfs_dirops && (error =
tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
fs->lfs_writer = 0;
return (error);
}
lfs_writevnodes(fs, mp, sp, VN_DIROP);
*/
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp)
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
--ibno >= fs->lfs_cleansz; ) {
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
NOCRED, &bp))
panic("lfs: ifile read");
segusep = (SEGUSE *)bp->b_data;
for (i = fs->lfs_sepb; i--; segusep++)
segusep->su_flags &= ~SEGUSE_ACTIVE;
error = VOP_BWRITE(bp);
}
if (do_ckp || fs->lfs_doifile) {
redo:
vp = fs->lfs_ivnode;
while (vget(vp, 1));
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void)lfs_writeinode(fs, sp, ip);
vput(vp);
if (lfs_writeseg(fs, sp) && do_ckp)
goto redo;
} else
(void) lfs_writeseg(fs, sp);
/*
* If the I/O count is non-zero, sleep until it reaches zero. At the
* moment, the user's process hangs around so we can sleep.
*/
/* XXX ignore dirops for now
fs->lfs_writer = 0;
fs->lfs_doifile = 0;
wakeup(&fs->lfs_dirops);
*/
#ifdef DOSTATS
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
#endif
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
static void
lfs_writefile(fs, sp, vp)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
{
struct buf *bp;
struct finfo *fip;
IFILE *ifp;
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = VTOI(vp)->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*/
lfs_gather(fs, sp, vp, lfs_match_data);
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
#ifdef TRIPLE
lfs_gather(fs, sp, vp, lfs_match_tindir);
#endif
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip =
(struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
sizeof(daddr_t) * (fip->fi_nblocks - 1));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(fs, sp, ip)
struct lfs *fs;
struct segment *sp;
struct inode *ip;
{
struct buf *bp, *ibp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
ino_t ino;
int error, i, ndx;
int redo_ifile = 0;
if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
return(0);
/* Allocate a new inode block if necessary. */
if (sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(daddr_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += fsbtodb(fs, 1);
sp->ibp = *sp->cbpp++ =
lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
fs->lfs_bsize);
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= fsbtodb(fs, 1);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_bsize;
sp->sum_bytes_left -= sizeof(daddr_t);
ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((daddr_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
if (ip->i_flag & IN_MODIFIED)
--fs->lfs_uinodes;
ITIMES(ip, &time, &time);
ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
bp = sp->ibp;
((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = bp->b_blkno;
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = bp->b_blkno;
error = VOP_BWRITE(ibp);
}
/*
* No need to update segment usage if there was no former inode address
* or if the last inode address is in the current partial segment.
*/
if (daddr != LFS_UNUSED_DADDR &&
!(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < sizeof(struct dinode)) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %ld)\n",
datosn(fs, daddr));
panic("negative bytes");
}
#endif
sup->su_nbytes -= sizeof(struct dinode);
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
error = VOP_BWRITE(bp);
}
return (redo_ifile);
}
int
lfs_gatherblock(sp, bp, sptr)
struct segment *sp;
struct buf *bp;
int *sptr;
{
struct lfs *fs;
int version;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
if (sp->sum_bytes_left < sizeof(daddr_t) ||
sp->seg_bytes_left < fs->lfs_bsize) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -=
sizeof(struct finfo) - sizeof(daddr_t);
if (sptr)
*sptr = splbio();
return(1);
}
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(daddr_t);
sp->seg_bytes_left -= fs->lfs_bsize;
return(0);
}
static void
lfs_gather(fs, sp, vp, match)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int (*match) __P((struct lfs *, struct buf *));
{
struct buf *bp;
int s;
sp->vp = vp;
s = splbio();
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
if (bp->b_flags & B_BUSY || !match(fs, bp) ||
bp->b_flags & B_GATHERED)
continue;
#ifdef DIAGNOSTIC
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED))
panic("lfs_gather: bp not B_LOCKED");
#endif
if (lfs_gatherblock(sp, bp, &s))
goto loop;
}
splx(s);
lfs_updatemeta(sp);
sp->vp = NULL;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(sp)
struct segment *sp;
{
SEGUSE *sup;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
daddr_t daddr, lbn, off;
int db_per_fsb, error, i, nblocks, num;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (vp == NULL || nblocks == 0)
return;
/* Sort the blocks. */
if (!(sp->seg_flags & SEGM_CLEAN))
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
fs = sp->fs;
db_per_fsb = fsbtodb(fs, 1);
for (i = nblocks; i--; ++sp->start_bpp) {
lbn = *sp->start_lbp++;
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
fs->lfs_offset += db_per_fsb;
if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL))
panic("lfs_updatemeta: ufs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ip->i_db[lbn] = off;
break;
case 1:
ip->i_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %d",
ap->in_lbn);
/*
* Bread may create a new indirect block which needs
* to get counted for the inode.
*/
if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
printf ("Updatemeta allocating indirect block: shouldn't happen\n");
ip->i_blocks += btodb(fs->lfs_bsize);
fs->lfs_bfree -= btodb(fs->lfs_bsize);
}
((daddr_t *)bp->b_data)[ap->in_off] = off;
VOP_BWRITE(bp);
}
/* Update segment usage information. */
if (daddr != UNASSIGNED &&
!(daddr >= fs->lfs_lastpseg && daddr <= off)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < fs->lfs_bsize) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %ld)\n",
datosn(fs, daddr));
panic ("Negative Bytes");
}
#endif
sup->su_nbytes -= fs->lfs_bsize;
error = VOP_BWRITE(bp);
}
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(fs)
struct lfs *fs;
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
} else {
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = (fs->lfs_dbpseg -
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->ninodes = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
LFS_SUMMARY_SIZE);
sp->segsum = (*sp->cbpp)->b_data;
bzero(sp->segsum, LFS_SUMMARY_SIZE);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)((char *)sp->segsum + sizeof(SEGSUM));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
return(repeat);
}
/*
* Return the next segment to write.
*/
static void
lfs_newseg(fs)
struct lfs *fs;
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
(void) VOP_BWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
(void) VOP_BWRITE(bp);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntoda(fs, sn);
#ifdef DOSTATS
++lfs_stats.segsused;
#endif
}
int
lfs_writeseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
struct buf **bpp, *bp, *cbp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
size_t size;
u_long *datap, *dp;
int ch_per_blk, do_again, i, nblocks, num, s;
int (*strategy)__P((struct vop_strategy_args *));
struct vop_strategy_args vop_strategy_a;
u_short ninos;
char *p;
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
ssp = (SEGSUM *)sp->segsum;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
sup->su_nbytes += LFS_SUMMARY_SIZE;
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
do_again = !(bp->b_flags & B_GATHERED);
(void)VOP_BWRITE(bp);
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
if ((*++bpp)->b_flags & B_INVAL) {
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
panic("lfs_writeseg: copyin failed");
} else
*dp++ = ((u_long *)(*bpp)->b_data)[0];
}
ssp->ss_create = time.tv_sec;
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
#ifdef DIAGNOSTIC
if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
panic("lfs_writeseg: No diskspace for summary");
#endif
fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we allocate memory in chunks, copy
* the buffers into the chunk and write the chunk. MAXPHYS is the
* largest size I/O devices can handle.
* When the data is copied to the chunk, turn off the the B_LOCKED bit
* and brelse the buffer (which will move them to the LRU list). Add
* the B_CALL flag to the buffer header so we can count I/O's for the
* checkpoints and so we can release the allocated memory.
*
* XXX
* This should be removed if the new virtual memory system allows us to
* easily make the buffers contiguous in kernel memory and if that's
* fast enough.
*/
ch_per_blk = MAXPHYS / fs->lfs_bsize;
for (bpp = sp->bpp, i = nblocks; i;) {
num = ch_per_blk;
if (num > i)
num = i;
i -= num;
size = num * fs->lfs_bsize;
cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
(*bpp)->b_blkno, size);
cbp->b_dev = i_dev;
cbp->b_flags |= B_ASYNC | B_BUSY;
s = splbio();
++fs->lfs_iocount;
for (p = cbp->b_data; num--;) {
bp = *bpp++;
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if (bp->b_flags & B_INVAL) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: copyin failed");
} else
bcopy(bp->b_data, p, bp->b_bcount);
p += bp->b_bcount;
if (bp->b_flags & B_LOCKED)
--locked_queue_count;
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
if (!(bp->b_flags & B_INVAL))
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
} else {
bremfree(bp);
bp->b_flags |= B_DONE;
reassignbuf(bp, bp->b_vp);
brelse(bp);
}
}
cbp->b_bcount = p - (char *)cbp->b_data;
++cbp->b_vp->v_numoutput;
splx(s);
/*
* XXXX This is a gross and disgusting hack. Since these
* buffers are physically addressed, they hang off the
* device vnode (devvp). As a result, they have no way
* of getting to the LFS superblock or lfs structure to
* keep track of the number of I/O's pending. So, I am
* going to stuff the fs into the saveaddr field of
* the buffer (yuk).
*/
cbp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
/*
* XXX
* Vinvalbuf can move locked buffers off the locked queue
* and we have no way of knowing about this. So, after
* doing a big write, we recalculate how many bufers are
* really still left on the locked queue.
*/
locked_queue_count = count_lock_queue();
wakeup(&locked_queue_count);
#ifdef DOSTATS
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
#endif
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(fs)
struct lfs *fs;
{
struct buf *bp;
dev_t i_dev;
int (*strategy) __P((struct vop_strategy_args *));
int s;
struct vop_strategy_args vop_strategy_a;
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
LFS_SBPAD);
*(struct lfs *)bp->b_data = *fs;
/* XXX Toggle between first two superblocks; for now just write first */
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
s = splbio();
++bp->b_vp->v_numoutput;
splx(s);
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
static int
lfs_match_data(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_lblkno >= 0);
}
static int
lfs_match_indir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
static int
lfs_match_dindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
#ifdef TRIPLE
static int
lfs_match_tindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
#endif
/*
* Allocate a new buffer header.
*/
struct buf *
lfs_newbuf(vp, daddr, size)
struct vnode *vp;
daddr_t daddr;
size_t size;
{
struct buf *bp;
size_t nbytes;
nbytes = roundup(size, DEV_BSIZE);
bp = getpbuf();
if (nbytes)
bp->b_data = lfs_alloc_buffer( nbytes);
bp->b_bufsize = size;
bp->b_bcount = size;
bp->b_lblkno = daddr;
bp->b_blkno = daddr;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_iodone = lfs_callback;
bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
return (bp);
}
static void
lfs_callback(bp)
struct buf *bp;
{
struct lfs *fs;
fs = (struct lfs *)bp->b_saveaddr;
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_callback: zero iocount");
#endif
if (--fs->lfs_iocount == 0)
wakeup(&fs->lfs_iocount);
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
}
static void
lfs_supercallback(bp)
struct buf *bp;
{
if( bp->b_data)
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
static void
lfs_shellsort(bp_array, lb_array, nmemb)
struct buf **bp_array;
daddr_t *lb_array;
register int nmemb;
{
static int __rsshell_increments[] = { 4, 1, 0 };
register int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; incr = *incrp++;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(vp)
register struct vnode *vp;
{
if ((vp->v_flag & VXLOCK) ||
(vp->v_usecount == 0 &&
vp->v_freelist.tqe_prev == (struct vnode **)0xdeadb))
return(1);
return (vget(vp, 0));
}
void
lfs_vunref(vp)
register struct vnode *vp;
{
/*
* This is vrele except that we do not want to VOP_INACTIVE
* this vnode. Rather than inline vrele here, we flag the vnode
* to tell lfs_inactive not to run on this vnode. Not as gross as
* a global.
*/
vp->v_flag |= VNINACT;
vrele(vp);
vp->v_flag &= ~VNINACT;
}