freebsd-nq/sys/arm/nvidia/tegra_pcie.c
2020-12-26 19:13:10 +01:00

1631 lines
43 KiB
C

/*-
* Copyright (c) 2016 Michal Meloun <mmel@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Nvidia Integrated PCI/PCI-Express controller driver.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/devmap.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <machine/intr.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/phy/phy.h>
#include <dev/extres/regulator/regulator.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofwpci.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcib_private.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <arm/nvidia/tegra_pmc.h>
#include "ofw_bus_if.h"
#include "msi_if.h"
#include "pcib_if.h"
#include "pic_if.h"
#define AFI_AXI_BAR0_SZ 0x000
#define AFI_AXI_BAR1_SZ 0x004
#define AFI_AXI_BAR2_SZ 0x008
#define AFI_AXI_BAR3_SZ 0x00c
#define AFI_AXI_BAR4_SZ 0x010
#define AFI_AXI_BAR5_SZ 0x014
#define AFI_AXI_BAR0_START 0x018
#define AFI_AXI_BAR1_START 0x01c
#define AFI_AXI_BAR2_START 0x020
#define AFI_AXI_BAR3_START 0x024
#define AFI_AXI_BAR4_START 0x028
#define AFI_AXI_BAR5_START 0x02c
#define AFI_FPCI_BAR0 0x030
#define AFI_FPCI_BAR1 0x034
#define AFI_FPCI_BAR2 0x038
#define AFI_FPCI_BAR3 0x03c
#define AFI_FPCI_BAR4 0x040
#define AFI_FPCI_BAR5 0x044
#define AFI_MSI_BAR_SZ 0x060
#define AFI_MSI_FPCI_BAR_ST 0x064
#define AFI_MSI_AXI_BAR_ST 0x068
#define AFI_MSI_VEC(x) (0x06c + 4 * (x))
#define AFI_MSI_EN_VEC(x) (0x08c + 4 * (x))
#define AFI_MSI_INTR_IN_REG 32
#define AFI_MSI_REGS 8
#define AFI_CONFIGURATION 0x0ac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0x0b0
#define AFI_INTR_MASK 0x0b4
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_CODE 0x0b8
#define AFI_INTR_CODE_MASK 0xf
#define AFI_INTR_CODE_INT_CODE_INI_SLVERR 1
#define AFI_INTR_CODE_INT_CODE_INI_DECERR 2
#define AFI_INTR_CODE_INT_CODE_TGT_SLVERR 3
#define AFI_INTR_CODE_INT_CODE_TGT_DECERR 4
#define AFI_INTR_CODE_INT_CODE_TGT_WRERR 5
#define AFI_INTR_CODE_INT_CODE_SM_MSG 6
#define AFI_INTR_CODE_INT_CODE_DFPCI_DECERR 7
#define AFI_INTR_CODE_INT_CODE_AXI_DECERR 8
#define AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT 9
#define AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE 10
#define AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE 11
#define AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE 12
#define AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE 13
#define AFI_INTR_CODE_INT_CODE_P2P_ERROR 14
#define AFI_INTR_SIGNATURE 0x0bc
#define AFI_UPPER_FPCI_ADDRESS 0x0c0
#define AFI_SM_INTR_ENABLE 0x0c4
#define AFI_SM_INTR_RP_DEASSERT (1 << 14)
#define AFI_SM_INTR_RP_ASSERT (1 << 13)
#define AFI_SM_INTR_HOTPLUG (1 << 12)
#define AFI_SM_INTR_PME (1 << 11)
#define AFI_SM_INTR_FATAL_ERROR (1 << 10)
#define AFI_SM_INTR_UNCORR_ERROR (1 << 9)
#define AFI_SM_INTR_CORR_ERROR (1 << 8)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_AFI_INTR_ENABLE 0x0c8
#define AFI_AFI_INTR_ENABLE_CODE(code) (1 << (code))
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0x6
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1 (0x1 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_RST_L (1 << 0)
#define AFI_AXI_BAR6_SZ 0x134
#define AFI_AXI_BAR7_SZ 0x138
#define AFI_AXI_BAR8_SZ 0x13c
#define AFI_AXI_BAR6_START 0x140
#define AFI_AXI_BAR7_START 0x144
#define AFI_AXI_BAR8_START 0x148
#define AFI_FPCI_BAR6 0x14c
#define AFI_FPCI_BAR7 0x150
#define AFI_FPCI_BAR8 0x154
#define AFI_PLLE_CONTROL 0x160
#define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
#define AFI_PLLE_CONTROL_BYPASS_PCIE2PLLE_CONTROL (1 << 8)
#define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
#define AFI_PLLE_CONTROL_PCIE2PLLE_CONTROL_EN (1 << 0)
#define AFI_PEXBIAS_CTRL 0x168
/* Configuration space */
#define RP_VEND_XP 0x0F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_VEND_CTL2 0x0fa8
#define RP_VEND_CTL2_PCA_ENABLE (1 << 7)
#define RP_PRIV_MISC 0x0FE0
#define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
#define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
#define RP_LINK_CONTROL_STATUS 0x0090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
/* PADS space */
#define PADS_REFCLK_CFG0 0x000c8
#define PADS_REFCLK_CFG1 0x000cc
/* Wait 50 ms (per port) for link. */
#define TEGRA_PCIE_LINKUP_TIMEOUT 50000
/* FPCI Address space */
#define FPCI_MAP_IO 0xFDFC000000ULL
#define FPCI_MAP_TYPE0_CONFIG 0xFDFC000000ULL
#define FPCI_MAP_TYPE1_CONFIG 0xFDFF000000ULL
#define FPCI_MAP_EXT_TYPE0_CONFIG 0xFE00000000ULL
#define FPCI_MAP_EXT_TYPE1_CONFIG 0xFE10000000ULL
#define TEGRA_PCIB_MSI_ENABLE
#define DEBUG
#ifdef DEBUG
#define debugf(fmt, args...) do { printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
/*
* Configuration space format:
* [27:24] extended register
* [23:16] bus
* [15:11] slot (device)
* [10: 8] function
* [ 7: 0] register
*/
#define PCI_CFG_EXT_REG(reg) ((((reg) >> 8) & 0x0f) << 24)
#define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16)
#define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11)
#define PCI_CFG_FUN(fun) (((fun) & 0x07) << 8)
#define PCI_CFG_BASE_REG(reg) ((reg) & 0xff)
#define PADS_WR4(_sc, _r, _v) bus_write_4((_sc)->pads_mem_res, (_r), (_v))
#define PADS_RD4(_sc, _r) bus_read_4((_sc)->pads_mem_res, (_r))
#define AFI_WR4(_sc, _r, _v) bus_write_4((_sc)->afi_mem_res, (_r), (_v))
#define AFI_RD4(_sc, _r) bus_read_4((_sc)->afi_mem_res, (_r))
static struct {
bus_size_t axi_start;
bus_size_t fpci_start;
bus_size_t size;
} bars[] = {
{AFI_AXI_BAR0_START, AFI_FPCI_BAR0, AFI_AXI_BAR0_SZ}, /* BAR 0 */
{AFI_AXI_BAR1_START, AFI_FPCI_BAR1, AFI_AXI_BAR1_SZ}, /* BAR 1 */
{AFI_AXI_BAR2_START, AFI_FPCI_BAR2, AFI_AXI_BAR2_SZ}, /* BAR 2 */
{AFI_AXI_BAR3_START, AFI_FPCI_BAR3, AFI_AXI_BAR3_SZ}, /* BAR 3 */
{AFI_AXI_BAR4_START, AFI_FPCI_BAR4, AFI_AXI_BAR4_SZ}, /* BAR 4 */
{AFI_AXI_BAR5_START, AFI_FPCI_BAR5, AFI_AXI_BAR5_SZ}, /* BAR 5 */
{AFI_AXI_BAR6_START, AFI_FPCI_BAR6, AFI_AXI_BAR6_SZ}, /* BAR 6 */
{AFI_AXI_BAR7_START, AFI_FPCI_BAR7, AFI_AXI_BAR7_SZ}, /* BAR 7 */
{AFI_AXI_BAR8_START, AFI_FPCI_BAR8, AFI_AXI_BAR8_SZ}, /* BAR 8 */
{AFI_MSI_AXI_BAR_ST, AFI_MSI_FPCI_BAR_ST, AFI_MSI_BAR_SZ}, /* MSI 9 */
};
struct pcie_soc {
char **regulator_names;
bool cml_clk;
bool pca_enable;
uint32_t pads_refclk_cfg0;
uint32_t pads_refclk_cfg1;
};
/* Tegra 124 config. */
static char *tegra124_reg_names[] = {
"avddio-pex-supply",
"dvddio-pex-supply",
"avdd-pex-pll-supply",
"hvdd-pex-supply",
"hvdd-pex-pll-e-supply",
"vddio-pex-ctl-supply",
"avdd-pll-erefe-supply",
NULL
};
static struct pcie_soc tegra124_soc = {
.regulator_names = tegra124_reg_names,
.cml_clk = true,
.pca_enable = false,
.pads_refclk_cfg0 = 0x44ac44ac,
};
/* Tegra 210 config. */
static char *tegra210_reg_names[] = {
"avdd-pll-uerefe-supply",
"hvddio-pex-supply",
"dvddio-pex-supply",
"dvdd-pex-pll-supply",
"hvdd-pex-pll-e-supply",
"vddio-pex-ctl-supply",
NULL
};
static struct pcie_soc tegra210_soc = {
.regulator_names = tegra210_reg_names,
.cml_clk = true,
.pca_enable = true,
.pads_refclk_cfg0 = 0x90b890b8,
};
/* Compatible devices. */
static struct ofw_compat_data compat_data[] = {
{"nvidia,tegra124-pcie", (uintptr_t)&tegra124_soc},
{"nvidia,tegra210-pcie", (uintptr_t)&tegra210_soc},
{NULL, 0},
};
#define TEGRA_FLAG_MSI_USED 0x0001
struct tegra_pcib_irqsrc {
struct intr_irqsrc isrc;
u_int irq;
u_int flags;
};
struct tegra_pcib_port {
int enabled;
int port_idx; /* chip port index */
int num_lanes; /* number of lanes */
bus_size_t afi_pex_ctrl; /* offset of afi_pex_ctrl */
phy_t phy; /* port phy */
/* Config space properties. */
bus_addr_t rp_base_addr; /* PA of config window */
bus_size_t rp_size; /* size of config window */
bus_space_handle_t cfg_handle; /* handle of config window */
};
#define TEGRA_PCIB_MAX_PORTS 3
#define TEGRA_PCIB_MAX_MSI AFI_MSI_INTR_IN_REG * AFI_MSI_REGS
struct tegra_pcib_softc {
struct ofw_pci_softc ofw_pci;
device_t dev;
struct pcie_soc *soc;
struct mtx mtx;
struct resource *pads_mem_res;
struct resource *afi_mem_res;
struct resource *cfg_mem_res;
struct resource *irq_res;
struct resource *msi_irq_res;
void *intr_cookie;
void *msi_intr_cookie;
struct ofw_pci_range mem_range;
struct ofw_pci_range pref_mem_range;
struct ofw_pci_range io_range;
clk_t clk_pex;
clk_t clk_afi;
clk_t clk_pll_e;
clk_t clk_cml;
hwreset_t hwreset_pex;
hwreset_t hwreset_afi;
hwreset_t hwreset_pcie_x;
regulator_t regulators[16]; /* Safe maximum */
vm_offset_t msi_page; /* VA of MSI page */
bus_addr_t cfg_base_addr; /* base address of config */
bus_size_t cfg_cur_offs; /* currently mapped window */
bus_space_handle_t cfg_handle; /* handle of config window */
bus_space_tag_t bus_tag; /* tag of config window */
int lanes_cfg;
int num_ports;
struct tegra_pcib_port *ports[TEGRA_PCIB_MAX_PORTS];
struct tegra_pcib_irqsrc *isrcs;
};
static int
tegra_pcib_maxslots(device_t dev)
{
return (16);
}
static int
tegra_pcib_route_interrupt(device_t bus, device_t dev, int pin)
{
struct tegra_pcib_softc *sc;
u_int irq;
sc = device_get_softc(bus);
irq = intr_map_clone_irq(rman_get_start(sc->irq_res));
device_printf(bus, "route pin %d for device %d.%d to %u\n",
pin, pci_get_slot(dev), pci_get_function(dev),
irq);
return (irq);
}
static int
tegra_pcbib_map_cfg(struct tegra_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg)
{
bus_size_t offs;
int rv;
offs = sc->cfg_base_addr;
offs |= PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) | PCI_CFG_FUN(func) |
PCI_CFG_EXT_REG(reg);
if ((sc->cfg_handle != 0) && (sc->cfg_cur_offs == offs))
return (0);
if (sc->cfg_handle != 0)
bus_space_unmap(sc->bus_tag, sc->cfg_handle, 0x800);
rv = bus_space_map(sc->bus_tag, offs, 0x800, 0, &sc->cfg_handle);
if (rv != 0)
device_printf(sc->dev, "Cannot map config space\n");
else
sc->cfg_cur_offs = offs;
return (rv);
}
static uint32_t
tegra_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, int bytes)
{
struct tegra_pcib_softc *sc;
bus_space_handle_t hndl;
uint32_t off;
uint32_t val;
int rv, i;
sc = device_get_softc(dev);
if (bus == 0) {
if (func != 0)
return (0xFFFFFFFF);
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL) &&
(sc->ports[i]->port_idx == slot)) {
hndl = sc->ports[i]->cfg_handle;
off = reg & 0xFFF;
break;
}
}
if (i >= TEGRA_PCIB_MAX_PORTS)
return (0xFFFFFFFF);
} else {
rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg);
if (rv != 0)
return (0xFFFFFFFF);
hndl = sc->cfg_handle;
off = PCI_CFG_BASE_REG(reg);
}
val = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
switch (bytes) {
case 4:
break;
case 2:
if (off & 3)
val >>= 16;
val &= 0xffff;
break;
case 1:
val >>= ((off & 3) << 3);
val &= 0xff;
break;
}
return val;
}
static void
tegra_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, uint32_t val, int bytes)
{
struct tegra_pcib_softc *sc;
bus_space_handle_t hndl;
uint32_t off;
uint32_t val2;
int rv, i;
sc = device_get_softc(dev);
if (bus == 0) {
if (func != 0)
return;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL) &&
(sc->ports[i]->port_idx == slot)) {
hndl = sc->ports[i]->cfg_handle;
off = reg & 0xFFF;
break;
}
}
if (i >= TEGRA_PCIB_MAX_PORTS)
return;
} else {
rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg);
if (rv != 0)
return;
hndl = sc->cfg_handle;
off = PCI_CFG_BASE_REG(reg);
}
switch (bytes) {
case 4:
bus_space_write_4(sc->bus_tag, hndl, off, val);
break;
case 2:
val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
val2 &= ~(0xffff << ((off & 3) << 3));
val2 |= ((val & 0xffff) << ((off & 3) << 3));
bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2);
break;
case 1:
val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
val2 &= ~(0xff << ((off & 3) << 3));
val2 |= ((val & 0xff) << ((off & 3) << 3));
bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2);
break;
}
}
static int tegra_pci_intr(void *arg)
{
struct tegra_pcib_softc *sc = arg;
uint32_t code, signature;
code = bus_read_4(sc->afi_mem_res, AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
signature = bus_read_4(sc->afi_mem_res, AFI_INTR_SIGNATURE);
bus_write_4(sc->afi_mem_res, AFI_INTR_CODE, 0);
if (code == AFI_INTR_CODE_INT_CODE_SM_MSG)
return(FILTER_STRAY);
printf("tegra_pci_intr: code %x sig %x\n", code, signature);
return (FILTER_HANDLED);
}
/* -----------------------------------------------------------------------
*
* PCI MSI interface
*/
static int
tegra_pcib_alloc_msi(device_t pci, device_t child, int count, int maxcount,
int *irqs)
{
phandle_t msi_parent;
/* XXXX ofw_bus_msimap() don't works for Tegra DT.
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
*/
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_alloc_msi(pci, child, msi_parent, count, maxcount,
irqs));
}
static int
tegra_pcib_release_msi(device_t pci, device_t child, int count, int *irqs)
{
phandle_t msi_parent;
/* XXXX ofw_bus_msimap() don't works for Tegra DT.
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
*/
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_release_msi(pci, child, msi_parent, count, irqs));
}
static int
tegra_pcib_map_msi(device_t pci, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
phandle_t msi_parent;
/* XXXX ofw_bus_msimap() don't works for Tegra DT.
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
*/
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_map_msi(pci, child, msi_parent, irq, addr, data));
}
#ifdef TEGRA_PCIB_MSI_ENABLE
/* --------------------------------------------------------------------------
*
* Interrupts
*
*/
static inline void
tegra_pcib_isrc_mask(struct tegra_pcib_softc *sc,
struct tegra_pcib_irqsrc *tgi, uint32_t val)
{
uint32_t reg;
int offs, bit;
offs = tgi->irq / AFI_MSI_INTR_IN_REG;
bit = 1 << (tgi->irq % AFI_MSI_INTR_IN_REG);
if (val != 0)
AFI_WR4(sc, AFI_MSI_VEC(offs), bit);
reg = AFI_RD4(sc, AFI_MSI_EN_VEC(offs));
if (val != 0)
reg |= bit;
else
reg &= ~bit;
AFI_WR4(sc, AFI_MSI_EN_VEC(offs), reg);
}
static int
tegra_pcib_msi_intr(void *arg)
{
u_int irq, i, bit, reg;
struct tegra_pcib_softc *sc;
struct trapframe *tf;
struct tegra_pcib_irqsrc *tgi;
sc = (struct tegra_pcib_softc *)arg;
tf = curthread->td_intr_frame;
for (i = 0; i < AFI_MSI_REGS; i++) {
reg = AFI_RD4(sc, AFI_MSI_VEC(i));
/* Handle one vector. */
while (reg != 0) {
bit = ffs(reg) - 1;
/* Send EOI */
AFI_WR4(sc, AFI_MSI_VEC(i), 1 << bit);
irq = i * AFI_MSI_INTR_IN_REG + bit;
tgi = &sc->isrcs[irq];
if (intr_isrc_dispatch(&tgi->isrc, tf) != 0) {
/* Disable stray. */
tegra_pcib_isrc_mask(sc, tgi, 0);
device_printf(sc->dev,
"Stray irq %u disabled\n", irq);
}
reg = AFI_RD4(sc, AFI_MSI_VEC(i));
}
}
return (FILTER_HANDLED);
}
static int
tegra_pcib_msi_attach(struct tegra_pcib_softc *sc)
{
int error;
uint32_t irq;
const char *name;
sc->isrcs = malloc(sizeof(*sc->isrcs) * TEGRA_PCIB_MAX_MSI, M_DEVBUF,
M_WAITOK | M_ZERO);
name = device_get_nameunit(sc->dev);
for (irq = 0; irq < TEGRA_PCIB_MAX_MSI; irq++) {
sc->isrcs[irq].irq = irq;
error = intr_isrc_register(&sc->isrcs[irq].isrc,
sc->dev, 0, "%s,%u", name, irq);
if (error != 0)
return (error); /* XXX deregister ISRCs */
}
if (intr_msi_register(sc->dev,
OF_xref_from_node(ofw_bus_get_node(sc->dev))) != 0)
return (ENXIO);
return (0);
}
static int
tegra_pcib_msi_detach(struct tegra_pcib_softc *sc)
{
/*
* There has not been established any procedure yet
* how to detach PIC from living system correctly.
*/
device_printf(sc->dev, "%s: not implemented yet\n", __func__);
return (EBUSY);
}
static void
tegra_pcib_msi_disable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct tegra_pcib_softc *sc;
struct tegra_pcib_irqsrc *tgi;
sc = device_get_softc(dev);
tgi = (struct tegra_pcib_irqsrc *)isrc;
tegra_pcib_isrc_mask(sc, tgi, 0);
}
static void
tegra_pcib_msi_enable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct tegra_pcib_softc *sc;
struct tegra_pcib_irqsrc *tgi;
sc = device_get_softc(dev);
tgi = (struct tegra_pcib_irqsrc *)isrc;
tegra_pcib_isrc_mask(sc, tgi, 1);
}
/* MSI interrupts are edge trigered -> do nothing */
static void
tegra_pcib_msi_post_filter(device_t dev, struct intr_irqsrc *isrc)
{
}
static void
tegra_pcib_msi_post_ithread(device_t dev, struct intr_irqsrc *isrc)
{
}
static void
tegra_pcib_msi_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
{
}
static int
tegra_pcib_msi_setup_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct tegra_pcib_softc *sc;
struct tegra_pcib_irqsrc *tgi;
sc = device_get_softc(dev);
tgi = (struct tegra_pcib_irqsrc *)isrc;
if (data == NULL || data->type != INTR_MAP_DATA_MSI)
return (ENOTSUP);
if (isrc->isrc_handlers == 0)
tegra_pcib_msi_enable_intr(dev, isrc);
return (0);
}
static int
tegra_pcib_msi_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct tegra_pcib_softc *sc;
struct tegra_pcib_irqsrc *tgi;
sc = device_get_softc(dev);
tgi = (struct tegra_pcib_irqsrc *)isrc;
if (isrc->isrc_handlers == 0)
tegra_pcib_isrc_mask(sc, tgi, 0);
return (0);
}
static int
tegra_pcib_msi_alloc_msi(device_t dev, device_t child, int count, int maxcount,
device_t *pic, struct intr_irqsrc **srcs)
{
struct tegra_pcib_softc *sc;
int i, irq, end_irq;
bool found;
KASSERT(powerof2(count), ("%s: bad count", __func__));
KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__));
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
found = false;
for (irq = 0; (irq + count - 1) < TEGRA_PCIB_MAX_MSI; irq++) {
/* Start on an aligned interrupt */
if ((irq & (maxcount - 1)) != 0)
continue;
/* Assume we found a valid range until shown otherwise */
found = true;
/* Check this range is valid */
for (end_irq = irq; end_irq < irq + count; end_irq++) {
/* This is already used */
if ((sc->isrcs[end_irq].flags & TEGRA_FLAG_MSI_USED) ==
TEGRA_FLAG_MSI_USED) {
found = false;
break;
}
}
if (found)
break;
}
/* Not enough interrupts were found */
if (!found || irq == (TEGRA_PCIB_MAX_MSI - 1)) {
mtx_unlock(&sc->mtx);
return (ENXIO);
}
for (i = 0; i < count; i++) {
/* Mark the interrupt as used */
sc->isrcs[irq + i].flags |= TEGRA_FLAG_MSI_USED;
}
mtx_unlock(&sc->mtx);
for (i = 0; i < count; i++)
srcs[i] = (struct intr_irqsrc *)&sc->isrcs[irq + i];
*pic = device_get_parent(dev);
return (0);
}
static int
tegra_pcib_msi_release_msi(device_t dev, device_t child, int count,
struct intr_irqsrc **isrc)
{
struct tegra_pcib_softc *sc;
struct tegra_pcib_irqsrc *ti;
int i;
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
for (i = 0; i < count; i++) {
ti = (struct tegra_pcib_irqsrc *)isrc[i];
KASSERT((ti->flags & TEGRA_FLAG_MSI_USED) == TEGRA_FLAG_MSI_USED,
("%s: Trying to release an unused MSI-X interrupt",
__func__));
ti->flags &= ~TEGRA_FLAG_MSI_USED;
}
mtx_unlock(&sc->mtx);
return (0);
}
static int
tegra_pcib_msi_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc,
uint64_t *addr, uint32_t *data)
{
struct tegra_pcib_softc *sc = device_get_softc(dev);
struct tegra_pcib_irqsrc *ti = (struct tegra_pcib_irqsrc *)isrc;
*addr = vtophys(sc->msi_page);
*data = ti->irq;
return (0);
}
#endif
/* ------------------------------------------------------------------- */
static bus_size_t
tegra_pcib_pex_ctrl(struct tegra_pcib_softc *sc, int port)
{
if (port >= TEGRA_PCIB_MAX_PORTS)
panic("invalid port number: %d\n", port);
if (port == 0)
return (AFI_PEX0_CTRL);
else if (port == 1)
return (AFI_PEX1_CTRL);
else if (port == 2)
return (AFI_PEX2_CTRL);
else
panic("invalid port number: %d\n", port);
}
static int
tegra_pcib_enable_fdt_resources(struct tegra_pcib_softc *sc)
{
int i, rv;
rv = hwreset_assert(sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'pcie_x' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'afi' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'pex' reset\n");
return (rv);
}
tegra_powergate_power_off(TEGRA_POWERGATE_PCX);
/* Regulators. */
for (i = 0; i < nitems(sc->regulators); i++) {
if (sc->regulators[i] == NULL)
continue;
rv = regulator_enable(sc->regulators[i]);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable '%s' regulator\n",
sc->soc->regulator_names[i]);
return (rv);
}
}
rv = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCX,
sc->clk_pex, sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'PCX' powergate\n");
return (rv);
}
rv = hwreset_deassert(sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'afi' reset\n");
return (rv);
}
rv = clk_enable(sc->clk_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'afi' clock\n");
return (rv);
}
if (sc->soc->cml_clk) {
rv = clk_enable(sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'cml' clock\n");
return (rv);
}
}
rv = clk_enable(sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'pll_e' clock\n");
return (rv);
}
return (0);
}
static struct tegra_pcib_port *
tegra_pcib_parse_port(struct tegra_pcib_softc *sc, phandle_t node)
{
struct tegra_pcib_port *port;
uint32_t tmp[5];
char tmpstr[6];
int rv;
port = malloc(sizeof(struct tegra_pcib_port), M_DEVBUF, M_WAITOK);
rv = OF_getprop(node, "status", tmpstr, sizeof(tmpstr));
if (rv <= 0 || strcmp(tmpstr, "okay") == 0 ||
strcmp(tmpstr, "ok") == 0)
port->enabled = 1;
else
port->enabled = 0;
rv = OF_getencprop(node, "assigned-addresses", tmp, sizeof(tmp));
if (rv != sizeof(tmp)) {
device_printf(sc->dev, "Cannot parse assigned-address: %d\n",
rv);
goto fail;
}
port->rp_base_addr = tmp[2];
port->rp_size = tmp[4];
port->port_idx = OFW_PCI_PHYS_HI_DEVICE(tmp[0]) - 1;
if (port->port_idx >= TEGRA_PCIB_MAX_PORTS) {
device_printf(sc->dev, "Invalid port index: %d\n",
port->port_idx);
goto fail;
}
/* XXX - TODO:
* Implement proper function for parsing pci "reg" property:
* - it have PCI bus format
* - its relative to matching "assigned-addresses"
*/
rv = OF_getencprop(node, "reg", tmp, sizeof(tmp));
if (rv != sizeof(tmp)) {
device_printf(sc->dev, "Cannot parse reg: %d\n", rv);
goto fail;
}
port->rp_base_addr += tmp[2];
rv = OF_getencprop(node, "nvidia,num-lanes", &port->num_lanes,
sizeof(port->num_lanes));
if (rv != sizeof(port->num_lanes)) {
device_printf(sc->dev, "Cannot parse nvidia,num-lanes: %d\n",
rv);
goto fail;
}
if (port->num_lanes > 4) {
device_printf(sc->dev, "Invalid nvidia,num-lanes: %d\n",
port->num_lanes);
goto fail;
}
port->afi_pex_ctrl = tegra_pcib_pex_ctrl(sc, port->port_idx);
sc->lanes_cfg |= port->num_lanes << (4 * port->port_idx);
/* Phy. */
rv = phy_get_by_ofw_name(sc->dev, node, "pcie-0", &port->phy);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'pcie-0' phy for port %d\n",
port->port_idx);
goto fail;
}
return (port);
fail:
free(port, M_DEVBUF);
return (NULL);
}
static int
tegra_pcib_parse_fdt_resources(struct tegra_pcib_softc *sc, phandle_t node)
{
phandle_t child;
struct tegra_pcib_port *port;
int i, rv;
/* Regulators. */
for (i = 0; sc->soc->regulator_names[i] != NULL; i++) {
if (i >= nitems(sc->regulators)) {
device_printf(sc->dev,
"Too many regulators present in DT.\n");
return (EOVERFLOW);
}
rv = regulator_get_by_ofw_property(sc->dev, 0,
sc->soc->regulator_names[i], sc->regulators + i);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get '%s' regulator\n",
sc->soc->regulator_names[i]);
return (ENXIO);
}
}
/* Resets. */
rv = hwreset_get_by_ofw_name(sc->dev, 0, "pex", &sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pex' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, 0, "afi", &sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'afi' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, 0, "pcie_x", &sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pcie_x' reset\n");
return (ENXIO);
}
/* Clocks. */
rv = clk_get_by_ofw_name(sc->dev, 0, "pex", &sc->clk_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pex' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "afi", &sc->clk_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'afi' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "pll_e", &sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pll_e' clock\n");
return (ENXIO);
}
if (sc->soc->cml_clk) {
rv = clk_get_by_ofw_name(sc->dev, 0, "cml", &sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'cml' clock\n");
return (ENXIO);
}
}
/* Ports */
sc->num_ports = 0;
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
port = tegra_pcib_parse_port(sc, child);
if (port == NULL) {
device_printf(sc->dev, "Cannot parse PCIe port node\n");
return (ENXIO);
}
sc->ports[sc->num_ports++] = port;
}
return (0);
}
static int
tegra_pcib_decode_ranges(struct tegra_pcib_softc *sc,
struct ofw_pci_range *ranges, int nranges)
{
int i;
for (i = 2; i < nranges; i++) {
if ((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) ==
OFW_PCI_PHYS_HI_SPACE_IO) {
if (sc->io_range.size != 0) {
device_printf(sc->dev,
"Duplicated IO range found in DT\n");
return (ENXIO);
}
sc->io_range = ranges[i];
}
if (((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) ==
OFW_PCI_PHYS_HI_SPACE_MEM32)) {
if (ranges[i].pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) {
if (sc->pref_mem_range.size != 0) {
device_printf(sc->dev,
"Duplicated memory range found "
"in DT\n");
return (ENXIO);
}
sc->pref_mem_range = ranges[i];
} else {
if (sc->mem_range.size != 0) {
device_printf(sc->dev,
"Duplicated memory range found "
"in DT\n");
return (ENXIO);
}
sc->mem_range = ranges[i];
}
}
}
if ((sc->io_range.size == 0) || (sc->mem_range.size == 0)
|| (sc->pref_mem_range.size == 0)) {
device_printf(sc->dev,
" Not all required ranges are found in DT\n");
return (ENXIO);
}
return (0);
}
/*
* Hardware config.
*/
static int
tegra_pcib_wait_for_link(struct tegra_pcib_softc *sc,
struct tegra_pcib_port *port)
{
uint32_t reg;
int i;
/* Setup link detection. */
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_PRIV_MISC, 4);
reg &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
reg |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
tegra_pcib_write_config(sc->dev, 0, port->port_idx, 0,
RP_PRIV_MISC, reg, 4);
for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) {
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_VEND_XP, 4);
if (reg & RP_VEND_XP_DL_UP)
break;
DELAY(1);
}
if (i <= 0)
return (ETIMEDOUT);
for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) {
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_LINK_CONTROL_STATUS, 4);
if (reg & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
break;
DELAY(1);
}
if (i <= 0)
return (ETIMEDOUT);
return (0);
}
static void
tegra_pcib_port_enable(struct tegra_pcib_softc *sc, int port_num)
{
struct tegra_pcib_port *port;
uint32_t reg;
int rv;
port = sc->ports[port_num];
/* Put port to reset. */
reg = AFI_RD4(sc, port->afi_pex_ctrl);
reg &= ~AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(10);
/* Enable clocks. */
reg |= AFI_PEX_CTRL_REFCLK_EN;
reg |= AFI_PEX_CTRL_CLKREQ_EN;
reg |= AFI_PEX_CTRL_OVERRIDE_EN;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(100);
/* Release reset. */
reg |= AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
if (sc->soc->pca_enable) {
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_VEND_CTL2, 4);
reg |= RP_VEND_CTL2_PCA_ENABLE;
tegra_pcib_write_config(sc->dev, 0, port->port_idx, 0,
RP_VEND_CTL2, reg, 4);
}
rv = tegra_pcib_wait_for_link(sc, port);
if (bootverbose)
device_printf(sc->dev, " port %d (%d lane%s): Link is %s\n",
port->port_idx, port->num_lanes,
port->num_lanes > 1 ? "s": "",
rv == 0 ? "up": "down");
}
static void
tegra_pcib_port_disable(struct tegra_pcib_softc *sc, uint32_t port_num)
{
struct tegra_pcib_port *port;
uint32_t reg;
port = sc->ports[port_num];
/* Put port to reset. */
reg = AFI_RD4(sc, port->afi_pex_ctrl);
reg &= ~AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(10);
/* Disable clocks. */
reg &= ~AFI_PEX_CTRL_CLKREQ_EN;
reg &= ~AFI_PEX_CTRL_REFCLK_EN;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
if (bootverbose)
device_printf(sc->dev, " port %d (%d lane%s): Disabled\n",
port->port_idx, port->num_lanes,
port->num_lanes > 1 ? "s": "");
}
static void
tegra_pcib_set_bar(struct tegra_pcib_softc *sc, int bar, uint32_t axi,
uint64_t fpci, uint32_t size, int is_memory)
{
uint32_t fpci_reg;
uint32_t axi_reg;
uint32_t size_reg;
axi_reg = axi & ~0xFFF;
size_reg = size >> 12;
fpci_reg = (uint32_t)(fpci >> 8) & ~0xF;
fpci_reg |= is_memory ? 0x1 : 0x0;
AFI_WR4(sc, bars[bar].axi_start, axi_reg);
AFI_WR4(sc, bars[bar].size, size_reg);
AFI_WR4(sc, bars[bar].fpci_start, fpci_reg);
}
static int
tegra_pcib_enable(struct tegra_pcib_softc *sc)
{
int rv;
int i;
uint32_t reg;
rv = tegra_pcib_enable_fdt_resources(sc);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable FDT resources\n");
return (rv);
}
/* Enable PLLE control. */
reg = AFI_RD4(sc, AFI_PLLE_CONTROL);
reg &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
reg |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
AFI_WR4(sc, AFI_PLLE_CONTROL, reg);
/* Set bias pad. */
AFI_WR4(sc, AFI_PEXBIAS_CTRL, 0);
/* Configure mode and ports. */
reg = AFI_RD4(sc, AFI_PCIE_CONFIG);
reg &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
if (sc->lanes_cfg == 0x14) {
if (bootverbose)
device_printf(sc->dev,
"Using x1,x4 configuration\n");
reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1;
} else if (sc->lanes_cfg == 0x12) {
if (bootverbose)
device_printf(sc->dev,
"Using x1,x2 configuration\n");
reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1;
} else {
device_printf(sc->dev,
"Unsupported lanes configuration: 0x%X\n", sc->lanes_cfg);
}
reg |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL))
reg &=
~AFI_PCIE_CONFIG_PCIE_DISABLE(sc->ports[i]->port_idx);
}
AFI_WR4(sc, AFI_PCIE_CONFIG, reg);
/* Enable Gen2 support. */
reg = AFI_RD4(sc, AFI_FUSE);
reg &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
AFI_WR4(sc, AFI_FUSE, reg);
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if (sc->ports[i] != NULL) {
rv = phy_enable(sc->ports[i]->phy);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable phy for port %d\n",
sc->ports[i]->port_idx);
return (rv);
}
}
}
/* Configure PCIe reference clock */
PADS_WR4(sc, PADS_REFCLK_CFG0, sc->soc->pads_refclk_cfg0);
if (sc->num_ports > 2)
PADS_WR4(sc, PADS_REFCLK_CFG1, sc->soc->pads_refclk_cfg1);
rv = hwreset_deassert(sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'pci_x' reset\n");
return (rv);
}
/* Enable config space. */
reg = AFI_RD4(sc, AFI_CONFIGURATION);
reg |= AFI_CONFIGURATION_EN_FPCI;
AFI_WR4(sc, AFI_CONFIGURATION, reg);
/* Enable AFI errors. */
reg = 0;
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_SLVERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_SLVERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_WRERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_SM_MSG);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_DFPCI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_AXI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_P2P_ERROR);
AFI_WR4(sc, AFI_AFI_INTR_ENABLE, reg);
AFI_WR4(sc, AFI_SM_INTR_ENABLE, 0xffffffff);
/* Enable INT, disable MSI. */
AFI_WR4(sc, AFI_INTR_MASK, AFI_INTR_MASK_INT_MASK);
/* Mask all FPCI errors. */
AFI_WR4(sc, AFI_FPCI_ERROR_MASKS, 0);
/* Setup AFI translation windows. */
/* BAR 0 - type 1 extended configuration. */
tegra_pcib_set_bar(sc, 0, rman_get_start(sc->cfg_mem_res),
FPCI_MAP_EXT_TYPE1_CONFIG, rman_get_size(sc->cfg_mem_res), 0);
/* BAR 1 - downstream I/O. */
tegra_pcib_set_bar(sc, 1, sc->io_range.host, FPCI_MAP_IO,
sc->io_range.size, 0);
/* BAR 2 - downstream prefetchable memory 1:1. */
tegra_pcib_set_bar(sc, 2, sc->pref_mem_range.host,
sc->pref_mem_range.host, sc->pref_mem_range.size, 1);
/* BAR 3 - downstream not prefetchable memory 1:1 .*/
tegra_pcib_set_bar(sc, 3, sc->mem_range.host,
sc->mem_range.host, sc->mem_range.size, 1);
/* BAR 3-8 clear. */
tegra_pcib_set_bar(sc, 4, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 5, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 6, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 7, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 8, 0, 0, 0, 0);
/* MSI BAR - clear. */
tegra_pcib_set_bar(sc, 9, 0, 0, 0, 0);
return(0);
}
#ifdef TEGRA_PCIB_MSI_ENABLE
static int
tegra_pcib_attach_msi(device_t dev)
{
struct tegra_pcib_softc *sc;
uint32_t reg;
int i, rv;
sc = device_get_softc(dev);
sc->msi_page = kmem_alloc_contig(PAGE_SIZE, M_WAITOK, 0,
BUS_SPACE_MAXADDR, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
/* MSI BAR */
tegra_pcib_set_bar(sc, 9, vtophys(sc->msi_page), vtophys(sc->msi_page),
PAGE_SIZE, 0);
/* Disble and clear all interrupts. */
for (i = 0; i < AFI_MSI_REGS; i++) {
AFI_WR4(sc, AFI_MSI_EN_VEC(i), 0);
AFI_WR4(sc, AFI_MSI_VEC(i), 0xFFFFFFFF);
}
rv = bus_setup_intr(dev, sc->msi_irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
tegra_pcib_msi_intr, NULL, sc, &sc->msi_intr_cookie);
if (rv != 0) {
device_printf(dev, "cannot setup MSI interrupt handler\n");
rv = ENXIO;
goto out;
}
if (tegra_pcib_msi_attach(sc) != 0) {
device_printf(dev, "WARNING: unable to attach PIC\n");
tegra_pcib_msi_detach(sc);
goto out;
}
/* Unmask MSI interrupt. */
reg = AFI_RD4(sc, AFI_INTR_MASK);
reg |= AFI_INTR_MASK_MSI_MASK;
AFI_WR4(sc, AFI_INTR_MASK, reg);
out:
return (rv);
}
#endif
static int
tegra_pcib_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
device_set_desc(dev, "Nvidia Integrated PCI/PCI-E Controller");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
tegra_pcib_attach(device_t dev)
{
struct tegra_pcib_softc *sc;
phandle_t node;
int rv;
int rid;
struct tegra_pcib_port *port;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->mtx, "msi_mtx", NULL, MTX_DEF);
node = ofw_bus_get_node(dev);
sc->soc = (struct pcie_soc *)ofw_bus_search_compatible(dev,
compat_data)->ocd_data;
rv = tegra_pcib_parse_fdt_resources(sc, node);
if (rv != 0) {
device_printf(dev, "Cannot get FDT resources\n");
return (rv);
}
/* Allocate bus_space resources. */
rid = 0;
sc->pads_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->pads_mem_res == NULL) {
device_printf(dev, "Cannot allocate PADS register\n");
rv = ENXIO;
goto out;
}
/*
* XXX - FIXME
* tag for config space is not filled when RF_ALLOCATED flag is used.
*/
sc->bus_tag = rman_get_bustag(sc->pads_mem_res);
rid = 1;
sc->afi_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->afi_mem_res == NULL) {
device_printf(dev, "Cannot allocate AFI register\n");
rv = ENXIO;
goto out;
}
rid = 2;
sc->cfg_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ALLOCATED);
if (sc->cfg_mem_res == NULL) {
device_printf(dev, "Cannot allocate config space memory\n");
rv = ENXIO;
goto out;
}
sc->cfg_base_addr = rman_get_start(sc->cfg_mem_res);
/* Map RP slots */
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if (sc->ports[i] == NULL)
continue;
port = sc->ports[i];
rv = bus_space_map(sc->bus_tag, port->rp_base_addr,
port->rp_size, 0, &port->cfg_handle);
if (rv != 0) {
device_printf(sc->dev, "Cannot allocate memory for "
"port: %d\n", i);
rv = ENXIO;
goto out;
}
}
/*
* Get PCI interrupt
*/
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq_res == NULL) {
device_printf(dev, "Cannot allocate IRQ resources\n");
rv = ENXIO;
goto out;
}
rid = 1;
sc->msi_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "Cannot allocate MSI IRQ resources\n");
rv = ENXIO;
goto out;
}
sc->ofw_pci.sc_range_mask = 0x3;
rv = ofw_pci_init(dev);
if (rv != 0)
goto out;
rv = tegra_pcib_decode_ranges(sc, sc->ofw_pci.sc_range,
sc->ofw_pci.sc_nrange);
if (rv != 0)
goto out;
if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
tegra_pci_intr, NULL, sc, &sc->intr_cookie)) {
device_printf(dev, "cannot setup interrupt handler\n");
rv = ENXIO;
goto out;
}
/*
* Enable PCIE device.
*/
rv = tegra_pcib_enable(sc);
if (rv != 0)
goto out;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if (sc->ports[i] == NULL)
continue;
if (sc->ports[i]->enabled)
tegra_pcib_port_enable(sc, i);
else
tegra_pcib_port_disable(sc, i);
}
#ifdef TEGRA_PCIB_MSI_ENABLE
rv = tegra_pcib_attach_msi(dev);
if (rv != 0)
goto out;
#endif
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
out:
return (rv);
}
static device_method_t tegra_pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, tegra_pcib_probe),
DEVMETHOD(device_attach, tegra_pcib_attach),
/* Bus interface */
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, tegra_pcib_maxslots),
DEVMETHOD(pcib_read_config, tegra_pcib_read_config),
DEVMETHOD(pcib_write_config, tegra_pcib_write_config),
DEVMETHOD(pcib_route_interrupt, tegra_pcib_route_interrupt),
DEVMETHOD(pcib_alloc_msi, tegra_pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, tegra_pcib_release_msi),
DEVMETHOD(pcib_map_msi, tegra_pcib_map_msi),
DEVMETHOD(pcib_request_feature, pcib_request_feature_allow),
#ifdef TEGRA_PCIB_MSI_ENABLE
/* MSI/MSI-X */
DEVMETHOD(msi_alloc_msi, tegra_pcib_msi_alloc_msi),
DEVMETHOD(msi_release_msi, tegra_pcib_msi_release_msi),
DEVMETHOD(msi_map_msi, tegra_pcib_msi_map_msi),
/* Interrupt controller interface */
DEVMETHOD(pic_disable_intr, tegra_pcib_msi_disable_intr),
DEVMETHOD(pic_enable_intr, tegra_pcib_msi_enable_intr),
DEVMETHOD(pic_setup_intr, tegra_pcib_msi_setup_intr),
DEVMETHOD(pic_teardown_intr, tegra_pcib_msi_teardown_intr),
DEVMETHOD(pic_post_filter, tegra_pcib_msi_post_filter),
DEVMETHOD(pic_post_ithread, tegra_pcib_msi_post_ithread),
DEVMETHOD(pic_pre_ithread, tegra_pcib_msi_pre_ithread),
#endif
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
DEVMETHOD_END
};
static devclass_t pcib_devclass;
DEFINE_CLASS_1(pcib, tegra_pcib_driver, tegra_pcib_methods,
sizeof(struct tegra_pcib_softc), ofw_pci_driver);
DRIVER_MODULE(tegra_pcib, simplebus, tegra_pcib_driver, pcib_devclass,
NULL, NULL);