freebsd-nq/sys/dev/fatm/if_fatm.c

3081 lines
72 KiB
C

/*
* Copyright (c) 2001-2003
* Fraunhofer Institute for Open Communication Systems (FhG Fokus).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Author: Hartmut Brandt <harti@freebsd.org>
*
* Fore PCA200E driver for NATM
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_natm.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/errno.h>
#include <sys/conf.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/endian.h>
#include <sys/sysctl.h>
#include <sys/condvar.h>
#include <vm/uma.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_atm.h>
#include <net/route.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_atm.h>
#endif
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/utopia/utopia.h>
#include <dev/fatm/if_fatmreg.h>
#include <dev/fatm/if_fatmvar.h>
#include <dev/fatm/firmware.h>
devclass_t fatm_devclass;
static const struct {
uint16_t vid;
uint16_t did;
const char *name;
} fatm_devs[] = {
{ 0x1127, 0x300,
"FORE PCA200E" },
{ 0, 0, NULL }
};
static const struct rate {
uint32_t ratio;
uint32_t cell_rate;
} rate_table[] = {
#include <dev/fatm/if_fatm_rate.h>
};
#define RATE_TABLE_SIZE (sizeof(rate_table) / sizeof(rate_table[0]))
SYSCTL_DECL(_hw_atm);
MODULE_DEPEND(fatm, utopia, 1, 1, 1);
static int fatm_utopia_readregs(struct ifatm *, u_int, uint8_t *, u_int *);
static int fatm_utopia_writereg(struct ifatm *, u_int, u_int, u_int);
static const struct utopia_methods fatm_utopia_methods = {
fatm_utopia_readregs,
fatm_utopia_writereg
};
#define VC_OK(SC, VPI, VCI) \
(((VPI) & ~((1 << (SC)->ifatm.mib.vpi_bits) - 1)) == 0 && \
(VCI) != 0 && ((VCI) & ~((1 << (SC)->ifatm.mib.vci_bits) - 1)) == 0)
static int fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc);
/*
* Probing is easy: step trough the list of known vendor and device
* ids and compare. If one is found - it's our.
*/
static int
fatm_probe(device_t dev)
{
int i;
for (i = 0; fatm_devs[i].name; i++)
if (pci_get_vendor(dev) == fatm_devs[i].vid &&
pci_get_device(dev) == fatm_devs[i].did) {
device_set_desc(dev, fatm_devs[i].name);
return (0);
}
return (ENXIO);
}
/*
* Function called at completion of a SUNI writeregs/readregs command.
* This is called from the interrupt handler while holding the softc lock.
* We use the queue entry as the randevouze point.
*/
static void
fatm_utopia_writeregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if(H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.suni_reg_errors++;
q->error = EIO;
}
wakeup(q);
}
/*
* Write a SUNI register. The bits that are 1 in mask are written from val
* into register reg. We wait for the command to complete by sleeping on
* the register memory.
*
* We assume, that we already hold the softc mutex.
*/
static int
fatm_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
{
int error;
struct cmdqueue *q;
struct fatm_softc *sc;
sc = ifatm->ifnet.if_softc;
FATM_CHECKLOCK(sc);
if (!(ifatm->ifnet.if_flags & IFF_RUNNING))
return (EIO);
/* get queue element and fill it */
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
sc->istats.cmd_queue_full++;
return (EIO);
}
NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
q->error = 0;
q->cb = fatm_utopia_writeregs_complete;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, 0);
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_OP,
FATM_MAKE_SETOC3(reg, val, mask) | FATM_OP_INTERRUPT_SEL);
BARRIER_W(sc);
/*
* Wait for the command to complete
*/
error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_setreg", hz);
switch(error) {
case EWOULDBLOCK:
error = EIO;
break;
case ERESTART:
error = EINTR;
break;
case 0:
error = q->error;
break;
}
return (error);
}
/*
* Function called at completion of a SUNI readregs command.
* This is called from the interrupt handler while holding the softc lock.
* We use reg_mem as the randevouze point.
*/
static void
fatm_utopia_readregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.suni_reg_errors++;
q->error = EIO;
}
wakeup(&sc->reg_mem);
}
/*
* Read SUNI registers
*
* We use a preallocated buffer to read the registers. Therefor we need
* to protect against multiple threads trying to read registers. We do this
* with a condition variable and a flag. We wait for the command to complete by sleeping on
* the register memory.
*
* We assume, that we already hold the softc mutex.
*/
static int
fatm_utopia_readregs_internal(struct fatm_softc *sc)
{
int error, i;
uint32_t *ptr;
struct cmdqueue *q;
/* get the buffer */
for (;;) {
if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING))
return (EIO);
if (!(sc->flags & FATM_REGS_INUSE))
break;
cv_wait(&sc->cv_regs, &sc->mtx);
}
sc->flags |= FATM_REGS_INUSE;
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
sc->istats.cmd_queue_full++;
return (EIO);
}
NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
q->error = 0;
q->cb = fatm_utopia_readregs_complete;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map, BUS_DMASYNC_PREREAD);
WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, sc->reg_mem.paddr);
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_OP,
FATM_OP_OC3_GET_REG | FATM_OP_INTERRUPT_SEL);
BARRIER_W(sc);
/*
* Wait for the command to complete
*/
error = msleep(&sc->reg_mem, &sc->mtx, PZERO | PCATCH,
"fatm_getreg", hz);
switch(error) {
case EWOULDBLOCK:
error = EIO;
break;
case ERESTART:
error = EINTR;
break;
case 0:
bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map,
BUS_DMASYNC_POSTREAD);
error = q->error;
break;
}
if (error != 0) {
/* declare buffer to be free */
sc->flags &= ~FATM_REGS_INUSE;
cv_signal(&sc->cv_regs);
return (error);
}
/* swap if needed */
ptr = (uint32_t *)sc->reg_mem.mem;
for (i = 0; i < FATM_NREGS; i++)
ptr[i] = le32toh(ptr[i]) & 0xff;
return (0);
}
/*
* Read SUNI registers for the SUNI module.
*
* We assume, that we already hold the mutex.
*/
static int
fatm_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *valp, u_int *np)
{
int err;
int i;
struct fatm_softc *sc;
if (reg >= FATM_NREGS)
return (EINVAL);
if (reg + *np > FATM_NREGS)
*np = FATM_NREGS - reg;
sc = ifatm->ifnet.if_softc;
FATM_CHECKLOCK(sc);
err = fatm_utopia_readregs_internal(sc);
if (err != 0)
return (err);
for (i = 0; i < *np; i++)
valp[i] = ((uint32_t *)sc->reg_mem.mem)[reg + i];
/* declare buffer to be free */
sc->flags &= ~FATM_REGS_INUSE;
cv_signal(&sc->cv_regs);
return (0);
}
/*
* Check whether the hard is beating. We remember the last heart beat and
* compare it to the current one. If it appears stuck for 10 times, we have
* a problem.
*
* Assume we hold the lock.
*/
static void
fatm_check_heartbeat(struct fatm_softc *sc)
{
uint32_t h;
FATM_CHECKLOCK(sc);
h = READ4(sc, FATMO_HEARTBEAT);
DBG(sc, BEAT, ("heartbeat %08x", h));
if (sc->stop_cnt == 10)
return;
if (h == sc->heartbeat) {
if (++sc->stop_cnt == 10) {
log(LOG_ERR, "i960 stopped???\n");
WRITE4(sc, FATMO_HIMR, 1);
}
return;
}
sc->stop_cnt = 0;
sc->heartbeat = h;
}
/*
* Ensure that the heart is still beating.
*/
static void
fatm_watchdog(struct ifnet *ifp)
{
struct fatm_softc *sc = ifp->if_softc;
FATM_LOCK(sc);
if (ifp->if_flags & IFF_RUNNING) {
fatm_check_heartbeat(sc);
ifp->if_timer = 5;
}
FATM_UNLOCK(sc);
}
/*
* Hard reset the i960 on the board. This is done by initializing registers,
* clearing interrupts and waiting for the selftest to finish. Not sure,
* whether all these barriers are actually needed.
*
* Assumes that we hold the lock.
*/
static int
fatm_reset(struct fatm_softc *sc)
{
int w;
uint32_t val;
FATM_CHECKLOCK(sc);
WRITE4(sc, FATMO_APP_BASE, FATMO_COMMON_ORIGIN);
BARRIER_W(sc);
WRITE4(sc, FATMO_UART_TO_960, XMIT_READY);
BARRIER_W(sc);
WRITE4(sc, FATMO_UART_TO_HOST, XMIT_READY);
BARRIER_W(sc);
WRITE4(sc, FATMO_BOOT_STATUS, COLD_START);
BARRIER_W(sc);
WRITE1(sc, FATMO_HCR, FATM_HCR_RESET);
BARRIER_W(sc);
DELAY(1000);
WRITE1(sc, FATMO_HCR, 0);
BARRIER_RW(sc);
DELAY(1000);
for (w = 100; w; w--) {
BARRIER_R(sc);
val = READ4(sc, FATMO_BOOT_STATUS);
switch (val) {
case SELF_TEST_OK:
return (0);
case SELF_TEST_FAIL:
return (EIO);
}
DELAY(1000);
}
return (EIO);
}
/*
* Stop the card. Must be called WITH the lock held
* Reset, free transmit and receive buffers. Wakeup everybody who may sleep.
*/
static void
fatm_stop(struct fatm_softc *sc)
{
int i;
struct cmdqueue *q;
struct rbuf *rb;
struct txqueue *tx;
uint32_t stat;
FATM_CHECKLOCK(sc);
/* Stop the board */
utopia_stop(&sc->utopia);
(void)fatm_reset(sc);
/* stop watchdog */
sc->ifatm.ifnet.if_timer = 0;
if (sc->ifatm.ifnet.if_flags & IFF_RUNNING) {
sc->ifatm.ifnet.if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ATMEV_SEND_IFSTATE_CHANGED(&sc->ifatm,
sc->utopia.carrier == UTP_CARR_OK);
/*
* Collect transmit mbufs, partial receive mbufs and
* supplied mbufs
*/
for (i = 0; i < FATM_TX_QLEN; i++) {
tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
if (tx->m) {
bus_dmamap_unload(sc->tx_tag, tx->map);
m_freem(tx->m);
tx->m = NULL;
}
}
/* Collect supplied mbufs */
while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
LIST_REMOVE(rb, link);
bus_dmamap_unload(sc->rbuf_tag, rb->map);
m_free(rb->m);
rb->m = NULL;
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
}
/* Unwait any waiters */
wakeup(&sc->sadi_mem);
/* wakeup all threads waiting for STAT or REG buffers */
cv_broadcast(&sc->cv_stat);
cv_broadcast(&sc->cv_regs);
sc->flags &= ~(FATM_STAT_INUSE | FATM_REGS_INUSE);
/* wakeup all threads waiting on commands */
for (i = 0; i < FATM_CMD_QLEN; i++) {
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, i);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if ((stat = H_GETSTAT(q->q.statp)) != FATM_STAT_FREE) {
H_SETSTAT(q->q.statp, stat | FATM_STAT_ERROR);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
wakeup(q);
}
}
utopia_reset_media(&sc->utopia);
}
sc->small_cnt = sc->large_cnt = 0;
/* Reset vcc info */
if (sc->vccs != NULL) {
sc->open_vccs = 0;
for (i = 0; i < FORE_MAX_VCC + 1; i++) {
if (sc->vccs[i] != NULL) {
if ((sc->vccs[i]->vflags & (FATM_VCC_OPEN |
FATM_VCC_TRY_OPEN)) == 0) {
uma_zfree(sc->vcc_zone, sc->vccs[i]);
sc->vccs[i] = NULL;
} else {
sc->vccs[i]->vflags = 0;
sc->open_vccs++;
}
}
}
}
}
/*
* Load the firmware into the board and save the entry point.
*/
static uint32_t
firmware_load(struct fatm_softc *sc)
{
struct firmware *fw = (struct firmware *)firmware;
DBG(sc, INIT, ("loading - entry=%x", fw->entry));
bus_space_write_region_4(sc->memt, sc->memh, fw->offset, firmware,
sizeof(firmware) / sizeof(firmware[0]));
BARRIER_RW(sc);
return (fw->entry);
}
/*
* Read a character from the virtual UART. The availability of a character
* is signaled by a non-null value of the 32 bit register. The eating of
* the character by us is signalled to the card by setting that register
* to zero.
*/
static int
rx_getc(struct fatm_softc *sc)
{
int w = 50;
int c;
while (w--) {
c = READ4(sc, FATMO_UART_TO_HOST);
BARRIER_RW(sc);
if (c != 0) {
WRITE4(sc, FATMO_UART_TO_HOST, 0);
DBGC(sc, UART, ("%c", c & 0xff));
return (c & 0xff);
}
DELAY(1000);
}
return (-1);
}
/*
* Eat up characters from the board and stuff them in the bit-bucket.
*/
static void
rx_flush(struct fatm_softc *sc)
{
int w = 10000;
while (w-- && rx_getc(sc) >= 0)
;
}
/*
* Write a character to the card. The UART is available if the register
* is zero.
*/
static int
tx_putc(struct fatm_softc *sc, u_char c)
{
int w = 10;
int c1;
while (w--) {
c1 = READ4(sc, FATMO_UART_TO_960);
BARRIER_RW(sc);
if (c1 == 0) {
WRITE4(sc, FATMO_UART_TO_960, c | CHAR_AVAIL);
DBGC(sc, UART, ("%c", c & 0xff));
return (0);
}
DELAY(1000);
}
return (-1);
}
/*
* Start the firmware. This is doing by issuing a 'go' command with
* the hex entry address of the firmware. Then we wait for the self-test to
* succeed.
*/
static int
fatm_start_firmware(struct fatm_softc *sc, uint32_t start)
{
static char hex[] = "0123456789abcdef";
u_int w, val;
DBG(sc, INIT, ("starting"));
rx_flush(sc);
tx_putc(sc, '\r');
DELAY(1000);
rx_flush(sc);
tx_putc(sc, 'g');
(void)rx_getc(sc);
tx_putc(sc, 'o');
(void)rx_getc(sc);
tx_putc(sc, ' ');
(void)rx_getc(sc);
tx_putc(sc, hex[(start >> 12) & 0xf]);
(void)rx_getc(sc);
tx_putc(sc, hex[(start >> 8) & 0xf]);
(void)rx_getc(sc);
tx_putc(sc, hex[(start >> 4) & 0xf]);
(void)rx_getc(sc);
tx_putc(sc, hex[(start >> 0) & 0xf]);
(void)rx_getc(sc);
tx_putc(sc, '\r');
rx_flush(sc);
for (w = 100; w; w--) {
BARRIER_R(sc);
val = READ4(sc, FATMO_BOOT_STATUS);
switch (val) {
case CP_RUNNING:
return (0);
case SELF_TEST_FAIL:
return (EIO);
}
DELAY(1000);
}
return (EIO);
}
/*
* Initialize one card and host queue.
*/
static void
init_card_queue(struct fatm_softc *sc, struct fqueue *queue, int qlen,
size_t qel_size, size_t desc_size, cardoff_t off,
u_char **statpp, uint32_t *cardstat, u_char *descp, uint32_t carddesc)
{
struct fqelem *el = queue->chunk;
while (qlen--) {
el->card = off;
off += 8; /* size of card entry */
el->statp = (uint32_t *)(*statpp);
(*statpp) += sizeof(uint32_t);
H_SETSTAT(el->statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, el->statp);
WRITE4(sc, el->card + FATMOS_STATP, (*cardstat));
(*cardstat) += sizeof(uint32_t);
el->ioblk = descp;
descp += desc_size;
el->card_ioblk = carddesc;
carddesc += desc_size;
el = (struct fqelem *)((u_char *)el + qel_size);
}
queue->tail = queue->head = 0;
}
/*
* Issue the initialize operation to the card, wait for completion and
* initialize the on-board and host queue structures with offsets and
* addresses.
*/
static int
fatm_init_cmd(struct fatm_softc *sc)
{
int w, c;
u_char *statp;
uint32_t card_stat;
u_int cnt;
struct fqelem *el;
cardoff_t off;
DBG(sc, INIT, ("command"));
WRITE4(sc, FATMO_ISTAT, 0);
WRITE4(sc, FATMO_IMASK, 1);
WRITE4(sc, FATMO_HLOGGER, 0);
WRITE4(sc, FATMO_INIT + FATMOI_RECEIVE_TRESHOLD, 0);
WRITE4(sc, FATMO_INIT + FATMOI_NUM_CONNECT, FORE_MAX_VCC);
WRITE4(sc, FATMO_INIT + FATMOI_CQUEUE_LEN, FATM_CMD_QLEN);
WRITE4(sc, FATMO_INIT + FATMOI_TQUEUE_LEN, FATM_TX_QLEN);
WRITE4(sc, FATMO_INIT + FATMOI_RQUEUE_LEN, FATM_RX_QLEN);
WRITE4(sc, FATMO_INIT + FATMOI_RPD_EXTENSION, RPD_EXTENSIONS);
WRITE4(sc, FATMO_INIT + FATMOI_TPD_EXTENSION, TPD_EXTENSIONS);
/*
* initialize buffer descriptors
*/
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_QUEUE_LENGTH,
SMALL_SUPPLY_QLEN);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_BUFFER_SIZE,
SMALL_BUFFER_LEN);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_POOL_SIZE,
SMALL_POOL_SIZE);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_SUPPLY_BLKSIZE,
SMALL_SUPPLY_BLKSIZE);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_QUEUE_LENGTH,
LARGE_SUPPLY_QLEN);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_BUFFER_SIZE,
LARGE_BUFFER_LEN);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_POOL_SIZE,
LARGE_POOL_SIZE);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_SUPPLY_BLKSIZE,
LARGE_SUPPLY_BLKSIZE);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_QUEUE_LENGTH, 0);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_BUFFER_SIZE, 0);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_POOL_SIZE, 0);
WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_QUEUE_LENGTH, 0);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_BUFFER_SIZE, 0);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_POOL_SIZE, 0);
WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
/*
* Start the command
*/
BARRIER_W(sc);
WRITE4(sc, FATMO_INIT + FATMOI_STATUS, FATM_STAT_PENDING);
BARRIER_W(sc);
WRITE4(sc, FATMO_INIT + FATMOI_OP, FATM_OP_INITIALIZE);
BARRIER_W(sc);
/*
* Busy wait for completion
*/
w = 100;
while (w--) {
c = READ4(sc, FATMO_INIT + FATMOI_STATUS);
BARRIER_R(sc);
if (c & FATM_STAT_COMPLETE)
break;
DELAY(1000);
}
if (c & FATM_STAT_ERROR)
return (EIO);
/*
* Initialize the queues
*/
statp = sc->stat_mem.mem;
card_stat = sc->stat_mem.paddr;
/*
* Command queue. This is special in that it's on the card.
*/
el = sc->cmdqueue.chunk;
off = READ4(sc, FATMO_COMMAND_QUEUE);
DBG(sc, INIT, ("cmd queue=%x", off));
for (cnt = 0; cnt < FATM_CMD_QLEN; cnt++) {
el = &((struct cmdqueue *)sc->cmdqueue.chunk + cnt)->q;
el->card = off;
off += 32; /* size of card structure */
el->statp = (uint32_t *)statp;
statp += sizeof(uint32_t);
H_SETSTAT(el->statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, el->statp);
WRITE4(sc, el->card + FATMOC_STATP, card_stat);
card_stat += sizeof(uint32_t);
}
sc->cmdqueue.tail = sc->cmdqueue.head = 0;
/*
* Now the other queues. These are in memory
*/
init_card_queue(sc, &sc->txqueue, FATM_TX_QLEN,
sizeof(struct txqueue), TPD_SIZE,
READ4(sc, FATMO_TRANSMIT_QUEUE),
&statp, &card_stat, sc->txq_mem.mem, sc->txq_mem.paddr);
init_card_queue(sc, &sc->rxqueue, FATM_RX_QLEN,
sizeof(struct rxqueue), RPD_SIZE,
READ4(sc, FATMO_RECEIVE_QUEUE),
&statp, &card_stat, sc->rxq_mem.mem, sc->rxq_mem.paddr);
init_card_queue(sc, &sc->s1queue, SMALL_SUPPLY_QLEN,
sizeof(struct supqueue), BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE),
READ4(sc, FATMO_SMALL_B1_QUEUE),
&statp, &card_stat, sc->s1q_mem.mem, sc->s1q_mem.paddr);
init_card_queue(sc, &sc->l1queue, LARGE_SUPPLY_QLEN,
sizeof(struct supqueue), BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE),
READ4(sc, FATMO_LARGE_B1_QUEUE),
&statp, &card_stat, sc->l1q_mem.mem, sc->l1q_mem.paddr);
sc->txcnt = 0;
return (0);
}
/*
* Read PROM. Called only from attach code. Here we spin because the interrupt
* handler is not yet set up.
*/
static int
fatm_getprom(struct fatm_softc *sc)
{
int i;
struct prom *prom;
struct cmdqueue *q;
DBG(sc, INIT, ("reading prom"));
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
q->error = 0;
q->cb = NULL;;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
BUS_DMASYNC_PREREAD);
WRITE4(sc, q->q.card + FATMOC_GPROM_BUF, sc->prom_mem.paddr);
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_OP, FATM_OP_GET_PROM_DATA);
BARRIER_W(sc);
for (i = 0; i < 1000; i++) {
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) &
(FATM_STAT_COMPLETE | FATM_STAT_ERROR))
break;
DELAY(1000);
}
if (i == 1000) {
if_printf(&sc->ifatm.ifnet, "getprom timeout\n");
return (EIO);
}
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
if_printf(&sc->ifatm.ifnet, "getprom error\n");
return (EIO);
}
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
BUS_DMASYNC_POSTREAD);
#ifdef notdef
{
u_int i;
printf("PROM: ");
u_char *ptr = (u_char *)sc->prom_mem.mem;
for (i = 0; i < sizeof(struct prom); i++)
printf("%02x ", *ptr++);
printf("\n");
}
#endif
prom = (struct prom *)sc->prom_mem.mem;
bcopy(prom->mac + 2, sc->ifatm.mib.esi, 6);
sc->ifatm.mib.serial = le32toh(prom->serial);
sc->ifatm.mib.hw_version = le32toh(prom->version);
sc->ifatm.mib.sw_version = READ4(sc, FATMO_FIRMWARE_RELEASE);
if_printf(&sc->ifatm.ifnet, "ESI=%02x:%02x:%02x:%02x:%02x:%02x "
"serial=%u hw=0x%x sw=0x%x\n", sc->ifatm.mib.esi[0],
sc->ifatm.mib.esi[1], sc->ifatm.mib.esi[2], sc->ifatm.mib.esi[3],
sc->ifatm.mib.esi[4], sc->ifatm.mib.esi[5], sc->ifatm.mib.serial,
sc->ifatm.mib.hw_version, sc->ifatm.mib.sw_version);
return (0);
}
/*
* This is the callback function for bus_dmamap_load. We assume, that we
* have a 32-bit bus and so have always one segment.
*/
static void
dmaload_helper(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *ptr = (bus_addr_t *)arg;
if (error != 0) {
printf("%s: error=%d\n", __func__, error);
return;
}
KASSERT(nsegs == 1, ("too many DMA segments"));
KASSERT(segs[0].ds_addr <= 0xffffffff, ("DMA address too large %lx",
(u_long)segs[0].ds_addr));
*ptr = segs[0].ds_addr;
}
/*
* Allocate a chunk of DMA-able memory and map it.
*/
static int
alloc_dma_memory(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
{
int error;
mem->mem = NULL;
if (bus_dma_tag_create(sc->parent_dmat, mem->align, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, mem->size, 1, BUS_SPACE_MAXSIZE_32BIT,
BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
if_printf(&sc->ifatm.ifnet, "could not allocate %s DMA tag\n",
nm);
return (ENOMEM);
}
error = bus_dmamem_alloc(mem->dmat, &mem->mem, 0, &mem->map);
if (error) {
if_printf(&sc->ifatm.ifnet, "could not allocate %s DMA memory: "
"%d\n", nm, error);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
return (error);
}
error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
if (error) {
if_printf(&sc->ifatm.ifnet, "could not load %s DMA memory: "
"%d\n", nm, error);
bus_dmamem_free(mem->dmat, mem->mem, mem->map);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
return (error);
}
DBG(sc, DMA, ("DMA %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
(u_long)mem->paddr, mem->size, mem->align));
return (0);
}
#ifdef TEST_DMA_SYNC
static int
alloc_dma_memoryX(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
{
int error;
mem->mem = NULL;
if (bus_dma_tag_create(NULL, mem->align, 0,
BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR,
NULL, NULL, mem->size, 1, mem->size,
BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
if_printf(&sc->ifatm.ifnet, "could not allocate %s DMA tag\n",
nm);
return (ENOMEM);
}
mem->mem = contigmalloc(mem->size, M_DEVBUF, M_WAITOK,
BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR_32BIT, mem->align, 0);
error = bus_dmamap_create(mem->dmat, 0, &mem->map);
if (error) {
if_printf(&sc->ifatm.ifnet, "could not allocate %s DMA map: "
"%d\n", nm, error);
contigfree(mem->mem, mem->size, M_DEVBUF);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
return (error);
}
error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
if (error) {
if_printf(&sc->ifatm.ifnet, "could not load %s DMA memory: "
"%d\n", nm, error);
bus_dmamap_destroy(mem->dmat, mem->map);
contigfree(mem->mem, mem->size, M_DEVBUF);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
return (error);
}
DBG(sc, DMA, ("DMAX %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
(u_long)mem->paddr, mem->size, mem->align));
printf("DMAX: %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
(u_long)mem->paddr, mem->size, mem->align);
return (0);
}
#endif /* TEST_DMA_SYNC */
/*
* Destroy all resources of an dma-able memory chunk
*/
static void
destroy_dma_memory(struct fatm_mem *mem)
{
if (mem->mem != NULL) {
bus_dmamap_unload(mem->dmat, mem->map);
bus_dmamem_free(mem->dmat, mem->mem, mem->map);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
}
}
#ifdef TEST_DMA_SYNC
static void
destroy_dma_memoryX(struct fatm_mem *mem)
{
if (mem->mem != NULL) {
bus_dmamap_unload(mem->dmat, mem->map);
bus_dmamap_destroy(mem->dmat, mem->map);
contigfree(mem->mem, mem->size, M_DEVBUF);
bus_dma_tag_destroy(mem->dmat);
mem->mem = NULL;
}
}
#endif /* TEST_DMA_SYNC */
/*
* Try to supply buffers to the card if there are free entries in the queues
*/
static void
fatm_supply_small_buffers(struct fatm_softc *sc)
{
int nblocks, nbufs;
struct supqueue *q;
struct rbd *bd;
int i, j, error, cnt;
struct mbuf *m;
struct rbuf *rb;
bus_addr_t phys;
nbufs = max(4 * sc->open_vccs, 32);
nbufs = min(nbufs, SMALL_POOL_SIZE);
nbufs -= sc->small_cnt;
nblocks = (nbufs + SMALL_SUPPLY_BLKSIZE - 1) / SMALL_SUPPLY_BLKSIZE;
for (cnt = 0; cnt < nblocks; cnt++) {
q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
break;
bd = (struct rbd *)q->q.ioblk;
for (i = 0; i < SMALL_SUPPLY_BLKSIZE; i++) {
if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
if_printf(&sc->ifatm.ifnet, "out of rbufs\n");
break;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
break;
}
MH_ALIGN(m, SMALL_BUFFER_LEN);
error = bus_dmamap_load(sc->rbuf_tag, rb->map,
m->m_data, SMALL_BUFFER_LEN, dmaload_helper,
&phys, BUS_DMA_NOWAIT);
if (error) {
if_printf(&sc->ifatm.ifnet,
"dmamap_load mbuf failed %d", error);
m_freem(m);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
break;
}
bus_dmamap_sync(sc->rbuf_tag, rb->map,
BUS_DMASYNC_PREREAD);
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
rb->m = m;
bd[i].handle = rb - sc->rbufs;
H_SETDESC(bd[i].buffer, phys);
}
if (i < SMALL_SUPPLY_BLKSIZE) {
for (j = 0; j < i; j++) {
rb = sc->rbufs + bd[j].handle;
bus_dmamap_unload(sc->rbuf_tag, rb->map);
m_free(rb->m);
rb->m = NULL;
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
}
break;
}
H_SYNCQ_PREWRITE(&sc->s1q_mem, bd,
sizeof(struct rbd) * SMALL_SUPPLY_BLKSIZE);
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
WRITE4(sc, q->q.card, q->q.card_ioblk);
BARRIER_W(sc);
sc->small_cnt += SMALL_SUPPLY_BLKSIZE;
NEXT_QUEUE_ENTRY(sc->s1queue.head, SMALL_SUPPLY_QLEN);
}
}
/*
* Try to supply buffers to the card if there are free entries in the queues
* We assume that all buffers are within the address space accessible by the
* card (32-bit), so we don't need bounce buffers.
*/
static void
fatm_supply_large_buffers(struct fatm_softc *sc)
{
int nbufs, nblocks, cnt;
struct supqueue *q;
struct rbd *bd;
int i, j, error;
struct mbuf *m;
struct rbuf *rb;
bus_addr_t phys;
nbufs = max(4 * sc->open_vccs, 32);
nbufs = min(nbufs, LARGE_POOL_SIZE);
nbufs -= sc->large_cnt;
nblocks = (nbufs + LARGE_SUPPLY_BLKSIZE - 1) / LARGE_SUPPLY_BLKSIZE;
for (cnt = 0; cnt < nblocks; cnt++) {
q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
break;
bd = (struct rbd *)q->q.ioblk;
for (i = 0; i < LARGE_SUPPLY_BLKSIZE; i++) {
if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
if_printf(&sc->ifatm.ifnet, "out of rbufs\n");
break;
}
if ((m = m_getcl(M_DONTWAIT, MT_DATA,
M_PKTHDR)) == NULL) {
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
break;
}
/* No MEXT_ALIGN */
m->m_data += MCLBYTES - LARGE_BUFFER_LEN;
error = bus_dmamap_load(sc->rbuf_tag, rb->map,
m->m_data, LARGE_BUFFER_LEN, dmaload_helper,
&phys, BUS_DMA_NOWAIT);
if (error) {
if_printf(&sc->ifatm.ifnet,
"dmamap_load mbuf failed %d", error);
m_freem(m);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
break;
}
bus_dmamap_sync(sc->rbuf_tag, rb->map,
BUS_DMASYNC_PREREAD);
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
rb->m = m;
bd[i].handle = rb - sc->rbufs;
H_SETDESC(bd[i].buffer, phys);
}
if (i < LARGE_SUPPLY_BLKSIZE) {
for (j = 0; j < i; j++) {
rb = sc->rbufs + bd[j].handle;
bus_dmamap_unload(sc->rbuf_tag, rb->map);
m_free(rb->m);
rb->m = NULL;
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
}
break;
}
H_SYNCQ_PREWRITE(&sc->l1q_mem, bd,
sizeof(struct rbd) * LARGE_SUPPLY_BLKSIZE);
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
WRITE4(sc, q->q.card, q->q.card_ioblk);
BARRIER_W(sc);
sc->large_cnt += LARGE_SUPPLY_BLKSIZE;
NEXT_QUEUE_ENTRY(sc->l1queue.head, LARGE_SUPPLY_QLEN);
}
}
/*
* Actually start the card. The lock must be held here.
* Reset, load the firmware, start it, initializes queues, read the PROM
* and supply receive buffers to the card.
*/
static void
fatm_init_locked(struct fatm_softc *sc)
{
struct rxqueue *q;
int i, c, error;
uint32_t start;
DBG(sc, INIT, ("initialize"));
if (sc->ifatm.ifnet.if_flags & IFF_RUNNING)
fatm_stop(sc);
/*
* Hard reset the board
*/
if (fatm_reset(sc))
return;
start = firmware_load(sc);
if (fatm_start_firmware(sc, start) || fatm_init_cmd(sc) ||
fatm_getprom(sc)) {
fatm_reset(sc);
return;
}
/*
* Handle media
*/
c = READ4(sc, FATMO_MEDIA_TYPE);
switch (c) {
case FORE_MT_TAXI_100:
sc->ifatm.mib.media = IFM_ATM_TAXI_100;
sc->ifatm.mib.pcr = 227273;
break;
case FORE_MT_TAXI_140:
sc->ifatm.mib.media = IFM_ATM_TAXI_140;
sc->ifatm.mib.pcr = 318181;
break;
case FORE_MT_UTP_SONET:
sc->ifatm.mib.media = IFM_ATM_UTP_155;
sc->ifatm.mib.pcr = 353207;
break;
case FORE_MT_MM_OC3_ST:
case FORE_MT_MM_OC3_SC:
sc->ifatm.mib.media = IFM_ATM_MM_155;
sc->ifatm.mib.pcr = 353207;
break;
case FORE_MT_SM_OC3_ST:
case FORE_MT_SM_OC3_SC:
sc->ifatm.mib.media = IFM_ATM_SM_155;
sc->ifatm.mib.pcr = 353207;
break;
default:
log(LOG_ERR, "fatm: unknown media type %d\n", c);
sc->ifatm.mib.media = IFM_ATM_UNKNOWN;
sc->ifatm.mib.pcr = 353207;
break;
}
sc->ifatm.ifnet.if_baudrate = 53 * 8 * sc->ifatm.mib.pcr;
utopia_init_media(&sc->utopia);
/*
* Initialize the RBDs
*/
for (i = 0; i < FATM_RX_QLEN; i++) {
q = GET_QUEUE(sc->rxqueue, struct rxqueue, i);
WRITE4(sc, q->q.card + 0, q->q.card_ioblk);
}
BARRIER_W(sc);
/*
* Supply buffers to the card
*/
fatm_supply_small_buffers(sc);
fatm_supply_large_buffers(sc);
/*
* Now set flags, that we are ready
*/
sc->ifatm.ifnet.if_flags |= IFF_RUNNING;
/*
* Start the watchdog timer
*/
sc->ifatm.ifnet.if_timer = 5;
/* start SUNI */
utopia_start(&sc->utopia);
ATMEV_SEND_IFSTATE_CHANGED(&sc->ifatm,
sc->utopia.carrier == UTP_CARR_OK);
/* start all channels */
for (i = 0; i < FORE_MAX_VCC + 1; i++)
if (sc->vccs[i] != NULL) {
sc->vccs[i]->vflags |= FATM_VCC_REOPEN;
error = fatm_load_vc(sc, sc->vccs[i]);
if (error != 0) {
if_printf(&sc->ifatm.ifnet, "reopening %u "
"failed: %d\n", i, error);
sc->vccs[i]->vflags &= ~FATM_VCC_REOPEN;
}
}
DBG(sc, INIT, ("done"));
}
/*
* This is the exported as initialisation function.
*/
static void
fatm_init(void *p)
{
struct fatm_softc *sc = p;
FATM_LOCK(sc);
fatm_init_locked(sc);
FATM_UNLOCK(sc);
}
/************************************************************/
/*
* The INTERRUPT handling
*/
/*
* Check the command queue. If a command was completed, call the completion
* function for that command.
*/
static void
fatm_intr_drain_cmd(struct fatm_softc *sc)
{
struct cmdqueue *q;
int stat;
/*
* Drain command queue
*/
for (;;) {
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.tail);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
stat = H_GETSTAT(q->q.statp);
if (stat != FATM_STAT_COMPLETE &&
stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
stat != FATM_STAT_ERROR)
break;
(*q->cb)(sc, q);
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
}
}
/*
* Drain the small buffer supply queue.
*/
static void
fatm_intr_drain_small_buffers(struct fatm_softc *sc)
{
struct supqueue *q;
int stat;
for (;;) {
q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.tail);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
stat = H_GETSTAT(q->q.statp);
if ((stat & FATM_STAT_COMPLETE) == 0)
break;
if (stat & FATM_STAT_ERROR)
log(LOG_ERR, "%s: status %x\n", __func__, stat);
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
NEXT_QUEUE_ENTRY(sc->s1queue.tail, SMALL_SUPPLY_QLEN);
}
}
/*
* Drain the large buffer supply queue.
*/
static void
fatm_intr_drain_large_buffers(struct fatm_softc *sc)
{
struct supqueue *q;
int stat;
for (;;) {
q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.tail);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
stat = H_GETSTAT(q->q.statp);
if ((stat & FATM_STAT_COMPLETE) == 0)
break;
if (stat & FATM_STAT_ERROR)
log(LOG_ERR, "%s status %x\n", __func__, stat);
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
NEXT_QUEUE_ENTRY(sc->l1queue.tail, LARGE_SUPPLY_QLEN);
}
}
/*
* Check the receive queue. Send any received PDU up the protocol stack
* (except when there was an error or the VCI appears to be closed. In this
* case discard the PDU).
*/
static void
fatm_intr_drain_rx(struct fatm_softc *sc)
{
struct rxqueue *q;
int stat, mlen;
u_int i;
uint32_t h;
struct mbuf *last, *m0;
struct rpd *rpd;
struct rbuf *rb;
u_int vci, vpi, pt;
struct atm_pseudohdr aph;
struct ifnet *ifp;
struct card_vcc *vc;
for (;;) {
q = GET_QUEUE(sc->rxqueue, struct rxqueue, sc->rxqueue.tail);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
stat = H_GETSTAT(q->q.statp);
if ((stat & FATM_STAT_COMPLETE) == 0)
break;
rpd = (struct rpd *)q->q.ioblk;
H_SYNCQ_POSTREAD(&sc->rxq_mem, rpd, RPD_SIZE);
rpd->nseg = le32toh(rpd->nseg);
mlen = 0;
m0 = last = 0;
for (i = 0; i < rpd->nseg; i++) {
rb = sc->rbufs + rpd->segment[i].handle;
if (m0 == NULL) {
m0 = last = rb->m;
} else {
last->m_next = rb->m;
last = rb->m;
}
last->m_next = NULL;
if (last->m_flags & M_EXT)
sc->large_cnt--;
else
sc->small_cnt--;
bus_dmamap_sync(sc->rbuf_tag, rb->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rbuf_tag, rb->map);
rb->m = NULL;
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
last->m_len = le32toh(rpd->segment[i].length);
mlen += last->m_len;
}
m0->m_pkthdr.len = mlen;
m0->m_pkthdr.rcvif = &sc->ifatm.ifnet;
h = le32toh(rpd->atm_header);
vpi = (h >> 20) & 0xff;
vci = (h >> 4 ) & 0xffff;
pt = (h >> 1 ) & 0x7;
/*
* Locate the VCC this packet belongs to
*/
if (!VC_OK(sc, vpi, vci))
vc = NULL;
else if ((vc = sc->vccs[vci]) == NULL ||
!(sc->vccs[vci]->vflags & FATM_VCC_OPEN)) {
sc->istats.rx_closed++;
vc = NULL;
}
DBG(sc, RCV, ("RCV: vc=%u.%u pt=%u mlen=%d %s", vpi, vci,
pt, mlen, vc == NULL ? "dropped" : ""));
if (vc == NULL) {
m_freem(m0);
} else {
ATM_PH_FLAGS(&aph) = vc->param.flags;
ATM_PH_VPI(&aph) = vpi;
ATM_PH_SETVCI(&aph, vci);
ifp = &sc->ifatm.ifnet;
ifp->if_ipackets++;
vc->ipackets++;
vc->ibytes += m0->m_pkthdr.len;
atm_input(ifp, &aph, m0, vc->rxhand);
}
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
WRITE4(sc, q->q.card, q->q.card_ioblk);
BARRIER_W(sc);
NEXT_QUEUE_ENTRY(sc->rxqueue.tail, FATM_RX_QLEN);
}
}
/*
* Check the transmit queue. Free the mbuf chains that we were transmitting.
*/
static void
fatm_intr_drain_tx(struct fatm_softc *sc)
{
struct txqueue *q;
int stat;
/*
* Drain tx queue
*/
for (;;) {
q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.tail);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
stat = H_GETSTAT(q->q.statp);
if (stat != FATM_STAT_COMPLETE &&
stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
stat != FATM_STAT_ERROR)
break;
H_SETSTAT(q->q.statp, FATM_STAT_FREE);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->tx_tag, q->map);
m_freem(q->m);
q->m = NULL;
sc->txcnt--;
NEXT_QUEUE_ENTRY(sc->txqueue.tail, FATM_TX_QLEN);
}
}
/*
* Interrupt handler
*/
static void
fatm_intr(void *p)
{
struct fatm_softc *sc = (struct fatm_softc *)p;
FATM_LOCK(sc);
if (!READ4(sc, FATMO_PSR)) {
FATM_UNLOCK(sc);
return;
}
WRITE4(sc, FATMO_HCR, FATM_HCR_CLRIRQ);
if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING)) {
FATM_UNLOCK(sc);
return;
}
fatm_intr_drain_cmd(sc);
fatm_intr_drain_rx(sc);
fatm_intr_drain_tx(sc);
fatm_intr_drain_small_buffers(sc);
fatm_intr_drain_large_buffers(sc);
fatm_supply_small_buffers(sc);
fatm_supply_large_buffers(sc);
FATM_UNLOCK(sc);
if (sc->retry_tx && _IF_QLEN(&sc->ifatm.ifnet.if_snd))
(*sc->ifatm.ifnet.if_start)(&sc->ifatm.ifnet);
}
/*
* Get device statistics. This must be called with the softc locked.
* We use a preallocated buffer, so we need to protect this buffer.
* We do this by using a condition variable and a flag. If the flag is set
* the buffer is in use by one thread (one thread is executing a GETSTAT
* card command). In this case all other threads that are trying to get
* statistics block on that condition variable. When the thread finishes
* using the buffer it resets the flag and signals the condition variable. This
* will wakeup the next thread that is waiting for the buffer. If the interface
* is stopped the stopping function will broadcast the cv. All threads will
* find that the interface has been stopped and return.
*
* Aquiring of the buffer is done by the fatm_getstat() function. The freeing
* must be done by the caller when he has finished using the buffer.
*/
static void
fatm_getstat_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.get_stat_errors++;
q->error = EIO;
}
wakeup(&sc->sadi_mem);
}
static int
fatm_getstat(struct fatm_softc *sc)
{
int error;
struct cmdqueue *q;
/*
* Wait until either the interface is stopped or we can get the
* statistics buffer
*/
for (;;) {
if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING))
return (EIO);
if (!(sc->flags & FATM_STAT_INUSE))
break;
cv_wait(&sc->cv_stat, &sc->mtx);
}
sc->flags |= FATM_STAT_INUSE;
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
sc->istats.cmd_queue_full++;
return (EIO);
}
NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
q->error = 0;
q->cb = fatm_getstat_complete;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
BUS_DMASYNC_PREREAD);
WRITE4(sc, q->q.card + FATMOC_GSTAT_BUF,
sc->sadi_mem.paddr);
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_OP,
FATM_OP_REQUEST_STATS | FATM_OP_INTERRUPT_SEL);
BARRIER_W(sc);
/*
* Wait for the command to complete
*/
error = msleep(&sc->sadi_mem, &sc->mtx, PZERO | PCATCH,
"fatm_stat", hz);
switch (error) {
case EWOULDBLOCK:
error = EIO;
break;
case ERESTART:
error = EINTR;
break;
case 0:
bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
BUS_DMASYNC_POSTREAD);
error = q->error;
break;
}
/*
* Swap statistics
*/
if (q->error == 0) {
u_int i;
uint32_t *p = (uint32_t *)sc->sadi_mem.mem;
for (i = 0; i < sizeof(struct fatm_stats) / sizeof(uint32_t);
i++, p++)
*p = be32toh(*p);
}
return (error);
}
/*
* Create a copy of a single mbuf. It can have either internal or
* external data, it may have a packet header. External data is really
* copied, so the new buffer is writeable.
*/
static struct mbuf *
copy_mbuf(struct mbuf *m)
{
struct mbuf *new;
MGET(new, M_DONTWAIT, MT_DATA);
if (new == NULL)
return (NULL);
if (m->m_flags & M_PKTHDR) {
M_MOVE_PKTHDR(new, m);
if (m->m_len > MHLEN) {
MCLGET(new, M_TRYWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(new);
return (NULL);
}
}
} else {
if (m->m_len > MLEN) {
MCLGET(new, M_TRYWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(new);
return (NULL);
}
}
}
bcopy(m->m_data, new->m_data, m->m_len);
new->m_len = m->m_len;
new->m_flags &= ~M_RDONLY;
return (new);
}
/*
* All segments must have a four byte aligned buffer address and a four
* byte aligned length. Step through an mbuf chain and check these conditions.
* If the buffer address is not aligned and this is a normal mbuf, move
* the data down. Else make a copy of the mbuf with aligned data.
* If the buffer length is not aligned steel data from the next mbuf.
* We don't need to check whether this has more than one external reference,
* because steeling data doesn't change the external cluster.
* If the last mbuf is not aligned, fill with zeroes.
*
* Return packet length (well we should have this in the packet header),
* but be careful not to count the zero fill at the end.
*
* If fixing fails free the chain and zero the pointer.
*
* We assume, that aligning the virtual address also aligns the mapped bus
* address.
*/
static u_int
fatm_fix_chain(struct fatm_softc *sc, struct mbuf **mp)
{
struct mbuf *m = *mp, *prev = NULL, *next, *new;
u_int mlen = 0, fill = 0;
int first, off;
u_char *d, *cp;
do {
next = m->m_next;
if ((uintptr_t)mtod(m, void *) % 4 != 0 ||
(m->m_len % 4 != 0 && next)) {
/*
* Needs fixing
*/
first = (m == *mp);
d = mtod(m, u_char *);
if ((off = (uintptr_t)(void *)d % 4) != 0) {
if (!(m->m_flags & M_EXT) || !MEXT_IS_REF(m)) {
sc->istats.fix_addr_copy++;
bcopy(d, d - off, m->m_len);
m->m_data = (caddr_t)(d - off);
} else {
if ((new = copy_mbuf(m)) == NULL) {
sc->istats.fix_addr_noext++;
goto fail;
}
sc->istats.fix_addr_ext++;
if (prev)
prev->m_next = new;
new->m_next = next;
m_free(m);
m = new;
}
}
if ((off = m->m_len % 4) != 0) {
if ((m->m_flags & M_EXT) && MEXT_IS_REF(m)) {
if ((new = copy_mbuf(m)) == NULL) {
sc->istats.fix_len_noext++;
goto fail;
}
sc->istats.fix_len_copy++;
if (prev)
prev->m_next = new;
new->m_next = next;
m_free(m);
m = new;
} else
sc->istats.fix_len++;
d = mtod(m, u_char *) + m->m_len;
off = 4 - off;
while (off) {
if (next == NULL) {
*d++ = 0;
fill++;
} else if (next->m_len == 0) {
sc->istats.fix_empty++;
next = m_free(next);
continue;
} else {
cp = mtod(next, u_char *);
*d++ = *cp++;
next->m_len--;
next->m_data = (caddr_t)cp;
}
off--;
m->m_len++;
}
}
if (first)
*mp = m;
}
mlen += m->m_len;
prev = m;
} while ((m = next) != NULL);
return (mlen - fill);
fail:
m_freem(*mp);
*mp = NULL;
return (0);
}
/*
* The helper function is used to load the computed physical addresses
* into the transmit descriptor.
*/
static void
fatm_tpd_load(void *varg, bus_dma_segment_t *segs, int nsegs,
bus_size_t mapsize, int error)
{
struct tpd *tpd = varg;
if (error)
return;
KASSERT(nsegs <= TPD_EXTENSIONS + TXD_FIXED, ("too many segments"));
tpd->spec = 0;
while (nsegs--) {
H_SETDESC(tpd->segment[tpd->spec].buffer, segs->ds_addr);
H_SETDESC(tpd->segment[tpd->spec].length, segs->ds_len);
tpd->spec++;
segs++;
}
}
/*
* Start output.
*
* Note, that we update the internal statistics without the lock here.
*/
static int
fatm_tx(struct fatm_softc *sc, struct mbuf *m, struct card_vcc *vc, u_int mlen)
{
struct txqueue *q;
u_int nblks;
int error, aal, nsegs;
struct tpd *tpd;
/*
* Get a queue element.
* If there isn't one - try to drain the transmit queue
* We used to sleep here if that doesn't help, but we
* should not sleep here, because we are called with locks.
*/
q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
fatm_intr_drain_tx(sc);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
if (sc->retry_tx) {
sc->istats.tx_retry++;
IF_PREPEND(&sc->ifatm.ifnet.if_snd, m);
return (1);
}
sc->istats.tx_queue_full++;
m_freem(m);
return (0);
}
sc->istats.tx_queue_almost_full++;
}
tpd = q->q.ioblk;
m->m_data += sizeof(struct atm_pseudohdr);
m->m_len -= sizeof(struct atm_pseudohdr);
/* map the mbuf */
error = bus_dmamap_load_mbuf(sc->tx_tag, q->map, m,
fatm_tpd_load, tpd, BUS_DMA_NOWAIT);
if(error) {
sc->ifatm.ifnet.if_oerrors++;
if_printf(&sc->ifatm.ifnet, "mbuf loaded error=%d\n", error);
m_freem(m);
return (0);
}
nsegs = tpd->spec;
bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_PREWRITE);
/*
* OK. Now go and do it.
*/
aal = (vc->param.aal == ATMIO_AAL_5) ? 5 : 0;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
q->m = m;
/*
* If the transmit queue is almost full, schedule a
* transmit interrupt so that transmit descriptors can
* be recycled.
*/
H_SETDESC(tpd->spec, TDX_MKSPEC((sc->txcnt >=
(4 * FATM_TX_QLEN) / 5), aal, nsegs, mlen));
H_SETDESC(tpd->atm_header, TDX_MKHDR(vc->param.vpi,
vc->param.vci, 0, 0));
if (vc->param.traffic == ATMIO_TRAFFIC_UBR)
H_SETDESC(tpd->stream, 0);
else {
u_int i;
for (i = 0; i < RATE_TABLE_SIZE; i++)
if (rate_table[i].cell_rate < vc->param.tparam.pcr)
break;
if (i > 0)
i--;
H_SETDESC(tpd->stream, rate_table[i].ratio);
}
H_SYNCQ_PREWRITE(&sc->txq_mem, tpd, TPD_SIZE);
nblks = TDX_SEGS2BLKS(nsegs);
DBG(sc, XMIT, ("XMIT: mlen=%d spec=0x%x nsegs=%d blocks=%d",
mlen, le32toh(tpd->spec), nsegs, nblks));
WRITE4(sc, q->q.card + 0, q->q.card_ioblk | nblks);
BARRIER_W(sc);
sc->txcnt++;
sc->ifatm.ifnet.if_opackets++;
vc->obytes += m->m_pkthdr.len;
vc->opackets++;
NEXT_QUEUE_ENTRY(sc->txqueue.head, FATM_TX_QLEN);
return (0);
}
static void
fatm_start(struct ifnet *ifp)
{
struct atm_pseudohdr aph;
struct fatm_softc *sc;
struct mbuf *m;
u_int mlen, vpi, vci;
struct card_vcc *vc;
sc = (struct fatm_softc *)ifp->if_softc;
while (1) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
/*
* Loop through the mbuf chain and compute the total length
* of the packet. Check that all data pointer are
* 4 byte aligned. If they are not, call fatm_mfix to
* fix that problem. This comes more or less from the
* en driver.
*/
mlen = fatm_fix_chain(sc, &m);
if (m == NULL)
continue;
if (m->m_len < sizeof(struct atm_pseudohdr) &&
(m = m_pullup(m, sizeof(struct atm_pseudohdr))) == NULL)
continue;
aph = *mtod(m, struct atm_pseudohdr *);
mlen -= sizeof(struct atm_pseudohdr);
if (mlen == 0) {
m_freem(m);
continue;
}
if (mlen > FATM_MAXPDU) {
sc->istats.tx_pdu2big++;
m_freem(m);
continue;
}
vci = ATM_PH_VCI(&aph);
vpi = ATM_PH_VPI(&aph);
/*
* From here on we need the softc
*/
FATM_LOCK(sc);
if (!(ifp->if_flags & IFF_RUNNING)) {
FATM_UNLOCK(sc);
m_freem(m);
break;
}
if (!VC_OK(sc, vpi, vci) || (vc = sc->vccs[vci]) == NULL ||
!(vc->vflags & FATM_VCC_OPEN)) {
FATM_UNLOCK(sc);
m_freem(m);
continue;
}
if (fatm_tx(sc, m, vc, mlen)) {
FATM_UNLOCK(sc);
break;
}
FATM_UNLOCK(sc);
}
}
/*
* VCC managment
*
* This may seem complicated. The reason for this is, that we need an
* asynchronuous open/close for the NATM VCCs because our ioctl handler
* is called with the radix node head of the routing table locked. Therefor
* we cannot sleep there and wait for the open/close to succeed. For this
* reason we just initiate the operation from the ioctl.
*/
/*
* Command the card to open/close a VC.
* Return the queue entry for waiting if we are succesful.
*/
static struct cmdqueue *
fatm_start_vcc(struct fatm_softc *sc, u_int vpi, u_int vci, uint32_t cmd,
u_int mtu, void (*func)(struct fatm_softc *, struct cmdqueue *))
{
struct cmdqueue *q;
q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
sc->istats.cmd_queue_full++;
return (NULL);
}
NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
q->error = 0;
q->cb = func;
H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
H_SYNCSTAT_PREWRITE(sc, q->q.statp);
WRITE4(sc, q->q.card + FATMOC_ACTIN_VPVC, MKVPVC(vpi, vci));
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_ACTIN_MTU, mtu);
BARRIER_W(sc);
WRITE4(sc, q->q.card + FATMOC_OP, cmd);
BARRIER_W(sc);
return (q);
}
/*
* The VC has been opened/closed and somebody has been waiting for this.
* Wake him up.
*/
static void
fatm_cmd_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.get_stat_errors++;
q->error = EIO;
}
wakeup(q);
}
/*
* Open complete
*/
static void
fatm_open_finish(struct fatm_softc *sc, struct card_vcc *vc)
{
vc->vflags &= ~FATM_VCC_TRY_OPEN;
vc->vflags |= FATM_VCC_OPEN;
if (vc->vflags & FATM_VCC_REOPEN) {
vc->vflags &= ~FATM_VCC_REOPEN;
return;
}
/* inform management if this is not an NG
* VCC or it's an NG PVC. */
if (!(vc->param.flags & ATMIO_FLAG_NG) ||
(vc->param.flags & ATMIO_FLAG_PVC))
ATMEV_SEND_VCC_CHANGED(&sc->ifatm, 0, vc->param.vci, 1);
}
/*
* The VC that we have tried to open asynchronuosly has been opened.
*/
static void
fatm_open_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
u_int vci;
struct card_vcc *vc;
vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
vc = sc->vccs[vci];
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.get_stat_errors++;
sc->vccs[vci] = NULL;
uma_zfree(sc->vcc_zone, vc);
if_printf(&sc->ifatm.ifnet, "opening VCI %u failed\n", vci);
return;
}
fatm_open_finish(sc, vc);
}
/*
* Wait on the queue entry until the VCC is opened/closed.
*/
static int
fatm_waitvcc(struct fatm_softc *sc, struct cmdqueue *q)
{
int error;
/*
* Wait for the command to complete
*/
error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_vci", hz);
if (error != 0)
return (error);
return (q->error);
}
/*
* Start to open a VCC. This just initiates the operation.
*/
static int
fatm_open_vcc(struct fatm_softc *sc, struct atmio_openvcc *op)
{
int error;
struct card_vcc *vc;
/*
* Check parameters
*/
if ((op->param.flags & ATMIO_FLAG_NOTX) &&
(op->param.flags & ATMIO_FLAG_NORX))
return (EINVAL);
if (!VC_OK(sc, op->param.vpi, op->param.vci))
return (EINVAL);
if (op->param.aal != ATMIO_AAL_0 && op->param.aal != ATMIO_AAL_5)
return (EINVAL);
vc = uma_zalloc(sc->vcc_zone, M_NOWAIT | M_ZERO);
if (vc == NULL)
return (ENOMEM);
error = 0;
FATM_LOCK(sc);
if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING)) {
error = EIO;
goto done;
}
if (sc->vccs[op->param.vci] != NULL) {
error = EBUSY;
goto done;
}
vc->param = op->param;
vc->rxhand = op->rxhand;
switch (op->param.traffic) {
case ATMIO_TRAFFIC_UBR:
break;
case ATMIO_TRAFFIC_CBR:
if (op->param.tparam.pcr == 0 ||
op->param.tparam.pcr > sc->ifatm.mib.pcr) {
error = EINVAL;
goto done;
}
break;
default:
error = EINVAL;
goto done;
}
vc->ibytes = vc->obytes = 0;
vc->ipackets = vc->opackets = 0;
vc->vflags = FATM_VCC_TRY_OPEN;
sc->vccs[op->param.vci] = vc;
sc->open_vccs++;
error = fatm_load_vc(sc, vc);
if (error != 0) {
sc->vccs[op->param.vci] = NULL;
sc->open_vccs--;
goto done;
}
/* don't free below */
vc = NULL;
done:
FATM_UNLOCK(sc);
if (vc != NULL)
uma_zfree(sc->vcc_zone, vc);
return (error);
}
/*
* Try to initialize the given VC
*/
static int
fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc)
{
uint32_t cmd;
struct cmdqueue *q;
int error;
/* Command and buffer strategy */
cmd = FATM_OP_ACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL | (0 << 16);
if (vc->param.aal == ATMIO_AAL_0)
cmd |= (0 << 8);
else
cmd |= (5 << 8);
q = fatm_start_vcc(sc, vc->param.vpi, vc->param.vci, cmd, 1,
(vc->param.flags & ATMIO_FLAG_ASYNC) ?
fatm_open_complete : fatm_cmd_complete);
if (q == NULL)
return (EIO);
if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
error = fatm_waitvcc(sc, q);
if (error != 0)
return (error);
fatm_open_finish(sc, vc);
}
return (0);
}
/*
* Finish close
*/
static void
fatm_close_finish(struct fatm_softc *sc, struct card_vcc *vc)
{
/* inform management of this is not an NG
* VCC or it's an NG PVC. */
if (!(vc->param.flags & ATMIO_FLAG_NG) ||
(vc->param.flags & ATMIO_FLAG_PVC))
ATMEV_SEND_VCC_CHANGED(&sc->ifatm, 0, vc->param.vci, 0);
sc->vccs[vc->param.vci] = NULL;
sc->open_vccs--;
uma_zfree(sc->vcc_zone, vc);
}
/*
* The VC has been closed.
*/
static void
fatm_close_complete(struct fatm_softc *sc, struct cmdqueue *q)
{
u_int vci;
struct card_vcc *vc;
vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
vc = sc->vccs[vci];
H_SYNCSTAT_POSTREAD(sc, q->q.statp);
if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
sc->istats.get_stat_errors++;
/* keep the VCC in that state */
if_printf(&sc->ifatm.ifnet, "closing VCI %u failed\n", vci);
return;
}
fatm_close_finish(sc, vc);
}
/*
* Initiate closing a VCC
*/
static int
fatm_close_vcc(struct fatm_softc *sc, struct atmio_closevcc *cl)
{
int error;
struct cmdqueue *q;
struct card_vcc *vc;
if (!VC_OK(sc, cl->vpi, cl->vci))
return (EINVAL);
error = 0;
FATM_LOCK(sc);
if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING)) {
error = EIO;
goto done;
}
vc = sc->vccs[cl->vci];
if (vc == NULL || !(vc->vflags & (FATM_VCC_OPEN | FATM_VCC_TRY_OPEN))) {
error = ENOENT;
goto done;
}
q = fatm_start_vcc(sc, cl->vpi, cl->vci,
FATM_OP_DEACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL, 1,
(vc->param.flags & ATMIO_FLAG_ASYNC) ?
fatm_close_complete : fatm_cmd_complete);
if (q == NULL) {
error = EIO;
goto done;
}
vc->vflags &= ~(FATM_VCC_OPEN | FATM_VCC_TRY_OPEN);
vc->vflags |= FATM_VCC_TRY_CLOSE;
if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
error = fatm_waitvcc(sc, q);
if (error != 0)
goto done;
fatm_close_finish(sc, vc);
}
done:
FATM_UNLOCK(sc);
return (error);
}
/*
* IOCTL handler
*/
static int
fatm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t arg)
{
int error;
struct fatm_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)arg;
struct ifreq *ifr = (struct ifreq *)arg;
struct atmio_closevcc *cl = (struct atmio_closevcc *)arg;
struct atmio_openvcc *op = (struct atmio_openvcc *)arg;
struct atmio_vcctable *vtab;
error = 0;
switch (cmd) {
case SIOCATMOPENVCC: /* kernel internal use */
error = fatm_open_vcc(sc, op);
break;
case SIOCATMCLOSEVCC: /* kernel internal use */
error = fatm_close_vcc(sc, cl);
break;
case SIOCSIFADDR:
FATM_LOCK(sc);
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
fatm_init_locked(sc);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
case AF_INET6:
ifa->ifa_rtrequest = atm_rtrequest;
break;
#endif
default:
break;
}
FATM_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
FATM_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING)) {
fatm_init_locked(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING) {
fatm_stop(sc);
}
}
FATM_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (ifp->if_flags & IFF_RUNNING)
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
else
error = EINVAL;
break;
case SIOCATMGVCCS:
/* return vcc table */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 1);
error = copyout(vtab, ifr->ifr_data, sizeof(*vtab) +
vtab->count * sizeof(vtab->vccs[0]));
free(vtab, M_DEVBUF);
break;
case SIOCATMGETVCCS: /* internal netgraph use */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 0);
if (vtab == NULL) {
error = ENOMEM;
break;
}
*(void **)arg = vtab;
break;
default:
DBG(sc, IOCTL, ("+++ cmd=%08lx arg=%p", cmd, arg));
error = EINVAL;
break;
}
return (error);
}
/*
* Detach from the interface and free all resources allocated during
* initialisation and later.
*/
static int
fatm_detach(device_t dev)
{
u_int i;
struct rbuf *rb;
struct fatm_softc *sc;
struct txqueue *tx;
sc = (struct fatm_softc *)device_get_softc(dev);
if (device_is_alive(dev)) {
FATM_LOCK(sc);
fatm_stop(sc);
utopia_detach(&sc->utopia);
FATM_UNLOCK(sc);
atm_ifdetach(&sc->ifatm.ifnet); /* XXX race */
}
if (sc->ih != NULL)
bus_teardown_intr(dev, sc->irqres, sc->ih);
while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
if_printf(&sc->ifatm.ifnet, "rbuf %p still in use!\n", rb);
bus_dmamap_unload(sc->rbuf_tag, rb->map);
m_freem(rb->m);
LIST_REMOVE(rb, link);
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
}
if (sc->txqueue.chunk != NULL) {
for (i = 0; i < FATM_TX_QLEN; i++) {
tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
bus_dmamap_destroy(sc->tx_tag, tx->map);
}
}
while ((rb = LIST_FIRST(&sc->rbuf_free)) != NULL) {
bus_dmamap_destroy(sc->rbuf_tag, rb->map);
LIST_REMOVE(rb, link);
}
if (sc->rbufs != NULL)
free(sc->rbufs, M_DEVBUF);
if (sc->vccs != NULL) {
for (i = 0; i < FORE_MAX_VCC + 1; i++)
if (sc->vccs[i] != NULL) {
uma_zfree(sc->vcc_zone, sc->vccs[i]);
sc->vccs[i] = NULL;
}
free(sc->vccs, M_DEVBUF);
}
if (sc->vcc_zone != NULL)
uma_zdestroy(sc->vcc_zone);
if (sc->l1queue.chunk != NULL)
free(sc->l1queue.chunk, M_DEVBUF);
if (sc->s1queue.chunk != NULL)
free(sc->s1queue.chunk, M_DEVBUF);
if (sc->rxqueue.chunk != NULL)
free(sc->rxqueue.chunk, M_DEVBUF);
if (sc->txqueue.chunk != NULL)
free(sc->txqueue.chunk, M_DEVBUF);
if (sc->cmdqueue.chunk != NULL)
free(sc->cmdqueue.chunk, M_DEVBUF);
destroy_dma_memory(&sc->reg_mem);
destroy_dma_memory(&sc->sadi_mem);
destroy_dma_memory(&sc->prom_mem);
#ifdef TEST_DMA_SYNC
destroy_dma_memoryX(&sc->s1q_mem);
destroy_dma_memoryX(&sc->l1q_mem);
destroy_dma_memoryX(&sc->rxq_mem);
destroy_dma_memoryX(&sc->txq_mem);
destroy_dma_memoryX(&sc->stat_mem);
#endif
if (sc->tx_tag != NULL)
if (bus_dma_tag_destroy(sc->tx_tag))
printf("tx DMA tag busy!\n");
if (sc->rbuf_tag != NULL)
if (bus_dma_tag_destroy(sc->rbuf_tag))
printf("rbuf DMA tag busy!\n");
if (sc->parent_dmat != NULL)
if (bus_dma_tag_destroy(sc->parent_dmat))
printf("parent DMA tag busy!\n");
if (sc->irqres != NULL)
bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irqres);
if (sc->memres != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
sc->memid, sc->memres);
(void)sysctl_ctx_free(&sc->sysctl_ctx);
cv_destroy(&sc->cv_stat);
cv_destroy(&sc->cv_regs);
mtx_destroy(&sc->mtx);
return (0);
}
/*
* Sysctl handler
*/
static int
fatm_sysctl_istats(SYSCTL_HANDLER_ARGS)
{
struct fatm_softc *sc = arg1;
u_long *ret;
int error;
ret = malloc(sizeof(sc->istats), M_TEMP, M_WAITOK);
FATM_LOCK(sc);
bcopy(&sc->istats, ret, sizeof(sc->istats));
FATM_UNLOCK(sc);
error = SYSCTL_OUT(req, ret, sizeof(sc->istats));
free(ret, M_TEMP);
return (error);
}
/*
* Sysctl handler for card statistics
* This is disable because it destroys the PHY statistics.
*/
static int
fatm_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct fatm_softc *sc = arg1;
int error;
const struct fatm_stats *s;
u_long *ret;
u_int i;
ret = malloc(sizeof(u_long) * FATM_NSTATS, M_TEMP, M_WAITOK);
FATM_LOCK(sc);
if ((error = fatm_getstat(sc)) == 0) {
s = sc->sadi_mem.mem;
i = 0;
ret[i++] = s->phy_4b5b.crc_header_errors;
ret[i++] = s->phy_4b5b.framing_errors;
ret[i++] = s->phy_oc3.section_bip8_errors;
ret[i++] = s->phy_oc3.path_bip8_errors;
ret[i++] = s->phy_oc3.line_bip24_errors;
ret[i++] = s->phy_oc3.line_febe_errors;
ret[i++] = s->phy_oc3.path_febe_errors;
ret[i++] = s->phy_oc3.corr_hcs_errors;
ret[i++] = s->phy_oc3.ucorr_hcs_errors;
ret[i++] = s->atm.cells_transmitted;
ret[i++] = s->atm.cells_received;
ret[i++] = s->atm.vpi_bad_range;
ret[i++] = s->atm.vpi_no_conn;
ret[i++] = s->atm.vci_bad_range;
ret[i++] = s->atm.vci_no_conn;
ret[i++] = s->aal0.cells_transmitted;
ret[i++] = s->aal0.cells_received;
ret[i++] = s->aal0.cells_dropped;
ret[i++] = s->aal4.cells_transmitted;
ret[i++] = s->aal4.cells_received;
ret[i++] = s->aal4.cells_crc_errors;
ret[i++] = s->aal4.cels_protocol_errors;
ret[i++] = s->aal4.cells_dropped;
ret[i++] = s->aal4.cspdus_transmitted;
ret[i++] = s->aal4.cspdus_received;
ret[i++] = s->aal4.cspdus_protocol_errors;
ret[i++] = s->aal4.cspdus_dropped;
ret[i++] = s->aal5.cells_transmitted;
ret[i++] = s->aal5.cells_received;
ret[i++] = s->aal5.congestion_experienced;
ret[i++] = s->aal5.cells_dropped;
ret[i++] = s->aal5.cspdus_transmitted;
ret[i++] = s->aal5.cspdus_received;
ret[i++] = s->aal5.cspdus_crc_errors;
ret[i++] = s->aal5.cspdus_protocol_errors;
ret[i++] = s->aal5.cspdus_dropped;
ret[i++] = s->aux.small_b1_failed;
ret[i++] = s->aux.large_b1_failed;
ret[i++] = s->aux.small_b2_failed;
ret[i++] = s->aux.large_b2_failed;
ret[i++] = s->aux.rpd_alloc_failed;
ret[i++] = s->aux.receive_carrier;
}
/* declare the buffer free */
sc->flags &= ~FATM_STAT_INUSE;
cv_signal(&sc->cv_stat);
FATM_UNLOCK(sc);
if (error == 0)
error = SYSCTL_OUT(req, ret, sizeof(u_long) * FATM_NSTATS);
free(ret, M_TEMP);
return (error);
}
#define MAXDMASEGS 32 /* maximum number of receive descriptors */
/*
* Attach to the device.
*
* We assume, that there is a global lock (Giant in this case) that protects
* multiple threads from entering this function. This makes sense, doesn't it?
*/
static int
fatm_attach(device_t dev)
{
struct ifnet *ifp;
struct fatm_softc *sc;
int unit;
uint16_t cfg;
int error = 0;
struct rbuf *rb;
u_int i;
struct txqueue *tx;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->ifatm.mib.device = ATM_DEVICE_PCA200E;
sc->ifatm.mib.serial = 0;
sc->ifatm.mib.hw_version = 0;
sc->ifatm.mib.sw_version = 0;
sc->ifatm.mib.vpi_bits = 0;
sc->ifatm.mib.vci_bits = FORE_VCIBITS;
sc->ifatm.mib.max_vpcs = 0;
sc->ifatm.mib.max_vccs = FORE_MAX_VCC;
sc->ifatm.mib.media = IFM_ATM_UNKNOWN;
sc->ifatm.phy = &sc->utopia;
LIST_INIT(&sc->rbuf_free);
LIST_INIT(&sc->rbuf_used);
/*
* Initialize mutex and condition variables.
*/
mtx_init(&sc->mtx, device_get_nameunit(dev),
MTX_NETWORK_LOCK, MTX_DEF);
cv_init(&sc->cv_stat, "fatm_stat");
cv_init(&sc->cv_regs, "fatm_regs");
sysctl_ctx_init(&sc->sysctl_ctx);
/*
* Make the sysctl tree
*/
if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
device_get_nameunit(dev), CTLFLAG_RD, 0, "")) == NULL)
goto fail;
if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "istats", CTLFLAG_RD, sc, 0, fatm_sysctl_istats,
"LU", "internal statistics") == NULL)
goto fail;
if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "stats", CTLFLAG_RD, sc, 0, fatm_sysctl_stats,
"LU", "card statistics") == NULL)
goto fail;
if (SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "retry_tx", CTLFLAG_RW, &sc->retry_tx, 0,
"retry flag") == NULL)
goto fail;
#ifdef FATM_DEBUG
if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "debug", CTLFLAG_RW, &sc->debug, 0, "debug flags")
== NULL)
goto fail;
sc->debug = FATM_DEBUG;
#endif
/*
* Network subsystem stuff
*/
ifp = &sc->ifatm.ifnet;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_SIMPLEX;
ifp->if_ioctl = fatm_ioctl;
ifp->if_start = fatm_start;
ifp->if_watchdog = fatm_watchdog;
ifp->if_init = fatm_init;
ifp->if_linkmib = &sc->ifatm.mib;
ifp->if_linkmiblen = sizeof(sc->ifatm.mib);
/*
* Enable memory and bustmaster
*/
cfg = pci_read_config(dev, PCIR_COMMAND, 2);
cfg |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, cfg, 2);
/*
* Map memory
*/
cfg = pci_read_config(dev, PCIR_COMMAND, 2);
if (!(cfg & PCIM_CMD_MEMEN)) {
if_printf(ifp, "failed to enable memory mapping\n");
error = ENXIO;
goto fail;
}
sc->memid = 0x10;
sc->memres = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->memid,
0, ~0, 1, RF_ACTIVE);
if (sc->memres == NULL) {
if_printf(ifp, "could not map memory\n");
error = ENXIO;
goto fail;
}
sc->memh = rman_get_bushandle(sc->memres);
sc->memt = rman_get_bustag(sc->memres);
/*
* Convert endianess of slave access
*/
cfg = pci_read_config(dev, FATM_PCIR_MCTL, 1);
cfg |= FATM_PCIM_SWAB;
pci_write_config(dev, FATM_PCIR_MCTL, cfg, 1);
/*
* Allocate interrupt (activate at the end)
*/
sc->irqid = 0;
sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irqid,
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->irqres == NULL) {
if_printf(ifp, "could not allocate irq\n");
error = ENXIO;
goto fail;
}
/*
* Allocate the parent DMA tag. This is used simply to hold overall
* restrictions for the controller (and PCI bus) and is never used
* to do anything.
*/
if (bus_dma_tag_create(NULL, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, MAXDMASEGS,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->parent_dmat)) {
if_printf(ifp, "could not allocate parent DMA tag\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate the receive buffer DMA tag. This tag must map a maximum of
* a mbuf cluster.
*/
if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
NULL, NULL, &sc->rbuf_tag)) {
if_printf(ifp, "could not allocate rbuf DMA tag\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate the transmission DMA tag. Must add 1, because
* rounded up PDU will be 65536 bytes long.
*/
if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL,
FATM_MAXPDU + 1, TPD_EXTENSIONS + TXD_FIXED, MCLBYTES, 0,
NULL, NULL, &sc->tx_tag)) {
if_printf(ifp, "could not allocate tx DMA tag\n");
error = ENOMEM;
goto fail;
}
/*
* Allocate DMAable memory.
*/
sc->stat_mem.size = sizeof(uint32_t) * (FATM_CMD_QLEN + FATM_TX_QLEN
+ FATM_RX_QLEN + SMALL_SUPPLY_QLEN + LARGE_SUPPLY_QLEN);
sc->stat_mem.align = 4;
sc->txq_mem.size = FATM_TX_QLEN * TPD_SIZE;
sc->txq_mem.align = 32;
sc->rxq_mem.size = FATM_RX_QLEN * RPD_SIZE;
sc->rxq_mem.align = 32;
sc->s1q_mem.size = SMALL_SUPPLY_QLEN *
BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE);
sc->s1q_mem.align = 32;
sc->l1q_mem.size = LARGE_SUPPLY_QLEN *
BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE);
sc->l1q_mem.align = 32;
#ifdef TEST_DMA_SYNC
if ((error = alloc_dma_memoryX(sc, "STATUS", &sc->stat_mem)) != 0 ||
(error = alloc_dma_memoryX(sc, "TXQ", &sc->txq_mem)) != 0 ||
(error = alloc_dma_memoryX(sc, "RXQ", &sc->rxq_mem)) != 0 ||
(error = alloc_dma_memoryX(sc, "S1Q", &sc->s1q_mem)) != 0 ||
(error = alloc_dma_memoryX(sc, "L1Q", &sc->l1q_mem)) != 0)
goto fail;
#else
if ((error = alloc_dma_memory(sc, "STATUS", &sc->stat_mem)) != 0 ||
(error = alloc_dma_memory(sc, "TXQ", &sc->txq_mem)) != 0 ||
(error = alloc_dma_memory(sc, "RXQ", &sc->rxq_mem)) != 0 ||
(error = alloc_dma_memory(sc, "S1Q", &sc->s1q_mem)) != 0 ||
(error = alloc_dma_memory(sc, "L1Q", &sc->l1q_mem)) != 0)
goto fail;
#endif
sc->prom_mem.size = sizeof(struct prom);
sc->prom_mem.align = 32;
if ((error = alloc_dma_memory(sc, "PROM", &sc->prom_mem)) != 0)
goto fail;
sc->sadi_mem.size = sizeof(struct fatm_stats);
sc->sadi_mem.align = 32;
if ((error = alloc_dma_memory(sc, "STATISTICS", &sc->sadi_mem)) != 0)
goto fail;
sc->reg_mem.size = sizeof(uint32_t) * FATM_NREGS;
sc->reg_mem.align = 32;
if ((error = alloc_dma_memory(sc, "REGISTERS", &sc->reg_mem)) != 0)
goto fail;
/*
* Allocate queues
*/
sc->cmdqueue.chunk = malloc(FATM_CMD_QLEN * sizeof(struct cmdqueue),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->txqueue.chunk = malloc(FATM_TX_QLEN * sizeof(struct txqueue),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->rxqueue.chunk = malloc(FATM_RX_QLEN * sizeof(struct rxqueue),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->s1queue.chunk = malloc(SMALL_SUPPLY_QLEN * sizeof(struct supqueue),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->l1queue.chunk = malloc(LARGE_SUPPLY_QLEN * sizeof(struct supqueue),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->vccs = malloc((FORE_MAX_VCC + 1) * sizeof(sc->vccs[0]),
M_DEVBUF, M_ZERO | M_WAITOK);
sc->vcc_zone = uma_zcreate("FATM vccs", sizeof(struct card_vcc),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
if (sc->vcc_zone == NULL) {
error = ENOMEM;
goto fail;
}
/*
* Allocate memory for the receive buffer headers. The total number
* of headers should probably also include the maximum number of
* buffers on the receive queue.
*/
sc->rbuf_total = SMALL_POOL_SIZE + LARGE_POOL_SIZE;
sc->rbufs = malloc(sc->rbuf_total * sizeof(struct rbuf),
M_DEVBUF, M_ZERO | M_WAITOK);
/*
* Put all rbuf headers on the free list and create DMA maps.
*/
for (rb = sc->rbufs, i = 0; i < sc->rbuf_total; i++, rb++) {
if ((error = bus_dmamap_create(sc->rbuf_tag, 0, &rb->map))) {
if_printf(&sc->ifatm.ifnet, "creating rx map: %d\n",
error);
goto fail;
}
LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
}
/*
* Create dma maps for transmission. In case of an error, free the
* allocated DMA maps, because on some architectures maps are NULL
* and we cannot distinguish between a failure and a NULL map in
* the detach routine.
*/
for (i = 0; i < FATM_TX_QLEN; i++) {
tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
if ((error = bus_dmamap_create(sc->tx_tag, 0, &tx->map))) {
if_printf(&sc->ifatm.ifnet, "creating tx map: %d\n",
error);
while (i > 0) {
tx = GET_QUEUE(sc->txqueue, struct txqueue,
i - 1);
bus_dmamap_destroy(sc->tx_tag, tx->map);
i--;
}
goto fail;
}
}
utopia_attach(&sc->utopia, &sc->ifatm, &sc->media, &sc->mtx,
&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
&fatm_utopia_methods);
sc->utopia.flags |= UTP_FL_NORESET | UTP_FL_POLL_CARRIER;
/*
* Attach the interface
*/
atm_ifattach(ifp);
ifp->if_snd.ifq_maxlen = 512;
error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_NET,
fatm_intr, sc, &sc->ih);
if (error) {
if_printf(ifp, "couldn't setup irq\n");
goto fail;
}
fail:
if (error)
fatm_detach(dev);
return (error);
}
#if defined(FATM_DEBUG) && 0
static void
dump_s1_queue(struct fatm_softc *sc)
{
int i;
struct supqueue *q;
for(i = 0; i < SMALL_SUPPLY_QLEN; i++) {
q = GET_QUEUE(sc->s1queue, struct supqueue, i);
printf("%2d: card=%x(%x,%x) stat=%x\n", i,
q->q.card,
READ4(sc, q->q.card),
READ4(sc, q->q.card + 4),
*q->q.statp);
}
}
#endif
/*
* Driver infrastructure.
*/
static device_method_t fatm_methods[] = {
DEVMETHOD(device_probe, fatm_probe),
DEVMETHOD(device_attach, fatm_attach),
DEVMETHOD(device_detach, fatm_detach),
{ 0, 0 }
};
static driver_t fatm_driver = {
"fatm",
fatm_methods,
sizeof(struct fatm_softc),
};
DRIVER_MODULE(fatm, pci, fatm_driver, fatm_devclass, 0, 0);