freebsd-nq/sys/fs/ext2fs/ext2_vfsops.c
Mateusz Guzik a92a971bbb vfs: remove the thread argument from vget
It was already asserted to be curthread.

Semantic patch:

@@

expression arg1, arg2, arg3;

@@

- vget(arg1, arg2, arg3)
+ vget(arg1, arg2)
2020-08-16 17:18:54 +00:00

1446 lines
39 KiB
C

/*-
* modified for EXT2FS support in Lites 1.1
*
* Aug 1995, Godmar Back (gback@cs.utah.edu)
* University of Utah, Department of Computer Science
*/
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.8 (Berkeley) 4/18/94
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/sdt.h>
#include <sys/stat.h>
#include <sys/mutex.h>
#include <geom/geom.h>
#include <geom/geom_vfs.h>
#include <fs/ext2fs/fs.h>
#include <fs/ext2fs/ext2_mount.h>
#include <fs/ext2fs/inode.h>
#include <fs/ext2fs/ext2fs.h>
#include <fs/ext2fs/ext2_dinode.h>
#include <fs/ext2fs/ext2_extern.h>
#include <fs/ext2fs/ext2_extents.h>
SDT_PROVIDER_DECLARE(ext2fs);
/*
* ext2fs trace probe:
* arg0: verbosity. Higher numbers give more verbose messages
* arg1: Textual message
*/
SDT_PROBE_DEFINE2(ext2fs, , vfsops, trace, "int", "char*");
SDT_PROBE_DEFINE2(ext2fs, , vfsops, ext2_cg_validate_error, "char*", "int");
SDT_PROBE_DEFINE1(ext2fs, , vfsops, ext2_compute_sb_data_error, "char*");
static int ext2_flushfiles(struct mount *mp, int flags, struct thread *td);
static int ext2_mountfs(struct vnode *, struct mount *);
static int ext2_reload(struct mount *mp, struct thread *td);
static int ext2_sbupdate(struct ext2mount *, int);
static int ext2_cgupdate(struct ext2mount *, int);
static vfs_unmount_t ext2_unmount;
static vfs_root_t ext2_root;
static vfs_statfs_t ext2_statfs;
static vfs_sync_t ext2_sync;
static vfs_vget_t ext2_vget;
static vfs_fhtovp_t ext2_fhtovp;
static vfs_mount_t ext2_mount;
MALLOC_DEFINE(M_EXT2NODE, "ext2_node", "EXT2 vnode private part");
static MALLOC_DEFINE(M_EXT2MNT, "ext2_mount", "EXT2 mount structure");
static struct vfsops ext2fs_vfsops = {
.vfs_fhtovp = ext2_fhtovp,
.vfs_mount = ext2_mount,
.vfs_root = ext2_root, /* root inode via vget */
.vfs_statfs = ext2_statfs,
.vfs_sync = ext2_sync,
.vfs_unmount = ext2_unmount,
.vfs_vget = ext2_vget,
};
VFS_SET(ext2fs_vfsops, ext2fs, 0);
static int ext2_check_sb_compat(struct ext2fs *es, struct cdev *dev,
int ronly);
static int ext2_compute_sb_data(struct vnode * devvp,
struct ext2fs * es, struct m_ext2fs * fs);
static const char *ext2_opts[] = { "acls", "async", "noatime", "noclusterr",
"noclusterw", "noexec", "export", "force", "from", "multilabel",
"suiddir", "nosymfollow", "sync", "union", NULL };
/*
* VFS Operations.
*
* mount system call
*/
static int
ext2_mount(struct mount *mp)
{
struct vfsoptlist *opts;
struct vnode *devvp;
struct thread *td;
struct ext2mount *ump = NULL;
struct m_ext2fs *fs;
struct nameidata nd, *ndp = &nd;
accmode_t accmode;
char *path, *fspec;
int error, flags, len;
td = curthread;
opts = mp->mnt_optnew;
if (vfs_filteropt(opts, ext2_opts))
return (EINVAL);
vfs_getopt(opts, "fspath", (void **)&path, NULL);
/* Double-check the length of path.. */
if (strlen(path) >= MAXMNTLEN)
return (ENAMETOOLONG);
fspec = NULL;
error = vfs_getopt(opts, "from", (void **)&fspec, &len);
if (!error && fspec[len - 1] != '\0')
return (EINVAL);
/*
* If updating, check whether changing from read-only to
* read/write; if there is no device name, that's all we do.
*/
if (mp->mnt_flag & MNT_UPDATE) {
ump = VFSTOEXT2(mp);
fs = ump->um_e2fs;
error = 0;
if (fs->e2fs_ronly == 0 &&
vfs_flagopt(opts, "ro", NULL, 0)) {
error = VFS_SYNC(mp, MNT_WAIT);
if (error)
return (error);
flags = WRITECLOSE;
if (mp->mnt_flag & MNT_FORCE)
flags |= FORCECLOSE;
error = ext2_flushfiles(mp, flags, td);
if (error == 0 && fs->e2fs_wasvalid &&
ext2_cgupdate(ump, MNT_WAIT) == 0) {
fs->e2fs->e2fs_state =
htole16((le16toh(fs->e2fs->e2fs_state) |
E2FS_ISCLEAN));
ext2_sbupdate(ump, MNT_WAIT);
}
fs->e2fs_ronly = 1;
vfs_flagopt(opts, "ro", &mp->mnt_flag, MNT_RDONLY);
g_topology_lock();
g_access(ump->um_cp, 0, -1, 0);
g_topology_unlock();
}
if (!error && (mp->mnt_flag & MNT_RELOAD))
error = ext2_reload(mp, td);
if (error)
return (error);
devvp = ump->um_devvp;
if (fs->e2fs_ronly && !vfs_flagopt(opts, "ro", NULL, 0)) {
if (ext2_check_sb_compat(fs->e2fs, devvp->v_rdev, 0))
return (EPERM);
/*
* If upgrade to read-write by non-root, then verify
* that user has necessary permissions on the device.
*/
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_ACCESS(devvp, VREAD | VWRITE,
td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
VOP_UNLOCK(devvp);
return (error);
}
VOP_UNLOCK(devvp);
g_topology_lock();
error = g_access(ump->um_cp, 0, 1, 0);
g_topology_unlock();
if (error)
return (error);
if ((le16toh(fs->e2fs->e2fs_state) & E2FS_ISCLEAN) == 0 ||
(le16toh(fs->e2fs->e2fs_state) & E2FS_ERRORS)) {
if (mp->mnt_flag & MNT_FORCE) {
printf(
"WARNING: %s was not properly dismounted\n", fs->e2fs_fsmnt);
} else {
printf(
"WARNING: R/W mount of %s denied. Filesystem is not clean - run fsck\n",
fs->e2fs_fsmnt);
return (EPERM);
}
}
fs->e2fs->e2fs_state =
htole16(le16toh(fs->e2fs->e2fs_state) & ~E2FS_ISCLEAN);
(void)ext2_cgupdate(ump, MNT_WAIT);
fs->e2fs_ronly = 0;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_RDONLY;
MNT_IUNLOCK(mp);
}
if (vfs_flagopt(opts, "export", NULL, 0)) {
/* Process export requests in vfs_mount.c. */
return (error);
}
}
/*
* Not an update, or updating the name: look up the name
* and verify that it refers to a sensible disk device.
*/
if (fspec == NULL)
return (EINVAL);
NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
if ((error = namei(ndp)) != 0)
return (error);
NDFREE(ndp, NDF_ONLY_PNBUF);
devvp = ndp->ni_vp;
if (!vn_isdisk(devvp, &error)) {
vput(devvp);
return (error);
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*
* XXXRW: VOP_ACCESS() enough?
*/
accmode = VREAD;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
accmode |= VWRITE;
error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
vput(devvp);
return (error);
}
if ((mp->mnt_flag & MNT_UPDATE) == 0) {
error = ext2_mountfs(devvp, mp);
} else {
if (devvp != ump->um_devvp) {
vput(devvp);
return (EINVAL); /* needs translation */
} else
vput(devvp);
}
if (error) {
vrele(devvp);
return (error);
}
ump = VFSTOEXT2(mp);
fs = ump->um_e2fs;
/*
* Note that this strncpy() is ok because of a check at the start
* of ext2_mount().
*/
strncpy(fs->e2fs_fsmnt, path, MAXMNTLEN);
fs->e2fs_fsmnt[MAXMNTLEN - 1] = '\0';
vfs_mountedfrom(mp, fspec);
return (0);
}
static int
ext2_check_sb_compat(struct ext2fs *es, struct cdev *dev, int ronly)
{
uint32_t i, mask;
if (le16toh(es->e2fs_magic) != E2FS_MAGIC) {
printf("ext2fs: %s: wrong magic number %#x (expected %#x)\n",
devtoname(dev), le16toh(es->e2fs_magic), E2FS_MAGIC);
return (1);
}
if (le32toh(es->e2fs_rev) > E2FS_REV0) {
mask = le32toh(es->e2fs_features_incompat) & ~(EXT2F_INCOMPAT_SUPP);
if (mask) {
printf("WARNING: mount of %s denied due to "
"unsupported optional features:\n", devtoname(dev));
for (i = 0;
i < sizeof(incompat)/sizeof(struct ext2_feature);
i++)
if (mask & incompat[i].mask)
printf("%s ", incompat[i].name);
printf("\n");
return (1);
}
mask = le32toh(es->e2fs_features_rocompat) & ~EXT2F_ROCOMPAT_SUPP;
if (!ronly && mask) {
printf("WARNING: R/W mount of %s denied due to "
"unsupported optional features:\n", devtoname(dev));
for (i = 0;
i < sizeof(ro_compat)/sizeof(struct ext2_feature);
i++)
if (mask & ro_compat[i].mask)
printf("%s ", ro_compat[i].name);
printf("\n");
return (1);
}
}
return (0);
}
static e4fs_daddr_t
ext2_cg_location(struct m_ext2fs *fs, int number)
{
int cg, descpb, logical_sb, has_super = 0;
/*
* Adjust logical superblock block number.
* Godmar thinks: if the blocksize is greater than 1024, then
* the superblock is logically part of block zero.
*/
logical_sb = fs->e2fs_bsize > SBSIZE ? 0 : 1;
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
number < le32toh(fs->e2fs->e3fs_first_meta_bg))
return (logical_sb + number + 1);
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT))
descpb = fs->e2fs_bsize / sizeof(struct ext2_gd);
else
descpb = fs->e2fs_bsize / E2FS_REV0_GD_SIZE;
cg = descpb * number;
if (ext2_cg_has_sb(fs, cg))
has_super = 1;
return (has_super + cg * (e4fs_daddr_t)EXT2_BLOCKS_PER_GROUP(fs) +
le32toh(fs->e2fs->e2fs_first_dblock));
}
static int
ext2_cg_validate(struct m_ext2fs *fs)
{
uint64_t b_bitmap;
uint64_t i_bitmap;
uint64_t i_tables;
uint64_t first_block, last_block, last_cg_block;
struct ext2_gd *gd;
unsigned int i, cg_count;
first_block = le32toh(fs->e2fs->e2fs_first_dblock);
last_cg_block = ext2_cg_number_gdb(fs, 0);
cg_count = fs->e2fs_gcount;
for (i = 0; i < fs->e2fs_gcount; i++) {
gd = &fs->e2fs_gd[i];
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
i == fs->e2fs_gcount - 1) {
last_block = fs->e2fs_bcount - 1;
} else {
last_block = first_block +
(EXT2_BLOCKS_PER_GROUP(fs) - 1);
}
if ((cg_count == fs->e2fs_gcount) &&
!(le16toh(gd->ext4bgd_flags) & EXT2_BG_INODE_ZEROED))
cg_count = i;
b_bitmap = e2fs_gd_get_b_bitmap(gd);
if (b_bitmap == 0) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"block bitmap is zero", i);
return (EINVAL);
}
if (b_bitmap <= last_cg_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"block bitmap overlaps gds", i);
return (EINVAL);
}
if (b_bitmap < first_block || b_bitmap > last_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"block bitmap not in group", i);
return (EINVAL);
}
i_bitmap = e2fs_gd_get_i_bitmap(gd);
if (i_bitmap == 0) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode bitmap is zero", i);
return (EINVAL);
}
if (i_bitmap <= last_cg_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode bitmap overlaps gds", i);
return (EINVAL);
}
if (i_bitmap < first_block || i_bitmap > last_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode bitmap not in group blk", i);
return (EINVAL);
}
i_tables = e2fs_gd_get_i_tables(gd);
if (i_tables == 0) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode table is zero", i);
return (EINVAL);
}
if (i_tables <= last_cg_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode talbes overlaps gds", i);
return (EINVAL);
}
if (i_tables < first_block ||
i_tables + fs->e2fs_itpg - 1 > last_block) {
SDT_PROBE2(ext2fs, , vfsops, ext2_cg_validate_error,
"inode tables not in group blk", i);
return (EINVAL);
}
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG))
first_block += EXT2_BLOCKS_PER_GROUP(fs);
}
return (0);
}
/*
* This computes the fields of the m_ext2fs structure from the
* data in the ext2fs structure read in.
*/
static int
ext2_compute_sb_data(struct vnode *devvp, struct ext2fs *es,
struct m_ext2fs *fs)
{
struct buf *bp;
uint32_t e2fs_descpb, e2fs_gdbcount_alloc;
int i, j;
int g_count = 0;
int error;
/* Check checksum features */
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) &&
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"incorrect checksum features combination");
return (EINVAL);
}
/* Precompute checksum seed for all metadata */
ext2_sb_csum_set_seed(fs);
/* Verify sb csum if possible */
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
error = ext2_sb_csum_verify(fs);
if (error) {
return (error);
}
}
/* Check for block size = 1K|2K|4K */
if (le32toh(es->e2fs_log_bsize) > 2) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"bad block size");
return (EINVAL);
}
fs->e2fs_bshift = EXT2_MIN_BLOCK_LOG_SIZE + le32toh(es->e2fs_log_bsize);
fs->e2fs_bsize = 1U << fs->e2fs_bshift;
fs->e2fs_fsbtodb = le32toh(es->e2fs_log_bsize) + 1;
fs->e2fs_qbmask = fs->e2fs_bsize - 1;
/* Check for fragment size */
if (le32toh(es->e2fs_log_fsize) >
(EXT2_MAX_FRAG_LOG_SIZE - EXT2_MIN_BLOCK_LOG_SIZE)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid log cluster size");
return (EINVAL);
}
fs->e2fs_fsize = EXT2_MIN_FRAG_SIZE << le32toh(es->e2fs_log_fsize);
if (fs->e2fs_fsize != fs->e2fs_bsize) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"fragment size != block size");
return (EINVAL);
}
fs->e2fs_fpb = fs->e2fs_bsize / fs->e2fs_fsize;
/* Check reserved gdt blocks for future filesystem expansion */
if (le16toh(es->e2fs_reserved_ngdb) > (fs->e2fs_bsize / 4)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"number of reserved GDT blocks too large");
return (EINVAL);
}
if (le32toh(es->e2fs_rev) == E2FS_REV0) {
fs->e2fs_isize = E2FS_REV0_INODE_SIZE;
} else {
fs->e2fs_isize = le16toh(es->e2fs_inode_size);
/*
* Check first ino.
*/
if (le32toh(es->e2fs_first_ino) < EXT2_FIRSTINO) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid first ino");
return (EINVAL);
}
/*
* Simple sanity check for superblock inode size value.
*/
if (EXT2_INODE_SIZE(fs) < E2FS_REV0_INODE_SIZE ||
EXT2_INODE_SIZE(fs) > fs->e2fs_bsize ||
(fs->e2fs_isize & (fs->e2fs_isize - 1)) != 0) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid inode size");
return (EINVAL);
}
}
/* Check group descriptors */
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT) &&
le16toh(es->e3fs_desc_size) != E2FS_64BIT_GD_SIZE) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"unsupported 64bit descriptor size");
return (EINVAL);
}
fs->e2fs_bpg = le32toh(es->e2fs_bpg);
fs->e2fs_fpg = le32toh(es->e2fs_fpg);
if (fs->e2fs_bpg == 0 || fs->e2fs_fpg == 0) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"zero blocks/fragments per group");
return (EINVAL);
} else if (fs->e2fs_bpg != fs->e2fs_fpg) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"blocks per group not equal fragments per group");
return (EINVAL);
}
if (fs->e2fs_bpg != fs->e2fs_bsize * 8) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"non-standard group size unsupported");
return (EINVAL);
}
fs->e2fs_ipb = fs->e2fs_bsize / EXT2_INODE_SIZE(fs);
if (fs->e2fs_ipb == 0 ||
fs->e2fs_ipb > fs->e2fs_bsize / E2FS_REV0_INODE_SIZE) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"bad inodes per block size");
return (EINVAL);
}
fs->e2fs_ipg = le32toh(es->e2fs_ipg);
if (fs->e2fs_ipg < fs->e2fs_ipb || fs->e2fs_ipg > fs->e2fs_bsize * 8) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid inodes per group");
return (EINVAL);
}
fs->e2fs_itpg = fs->e2fs_ipg / fs->e2fs_ipb;
fs->e2fs_bcount = le32toh(es->e2fs_bcount);
fs->e2fs_rbcount = le32toh(es->e2fs_rbcount);
fs->e2fs_fbcount = le32toh(es->e2fs_fbcount);
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) {
fs->e2fs_bcount |= (uint64_t)(le32toh(es->e4fs_bcount_hi)) << 32;
fs->e2fs_rbcount |= (uint64_t)(le32toh(es->e4fs_rbcount_hi)) << 32;
fs->e2fs_fbcount |= (uint64_t)(le32toh(es->e4fs_fbcount_hi)) << 32;
}
if (fs->e2fs_rbcount > fs->e2fs_bcount ||
fs->e2fs_fbcount > fs->e2fs_bcount) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid block count");
return (EINVAL);
}
fs->e2fs_ficount = le32toh(es->e2fs_ficount);
if (fs->e2fs_ficount > le32toh(es->e2fs_icount)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"invalid number of free inodes");
return (EINVAL);
}
if (le32toh(es->e2fs_first_dblock) >= fs->e2fs_bcount) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"first data block out of range");
return (EINVAL);
}
fs->e2fs_gcount = howmany(fs->e2fs_bcount -
le32toh(es->e2fs_first_dblock), EXT2_BLOCKS_PER_GROUP(fs));
if (fs->e2fs_gcount > ((uint64_t)1 << 32) - EXT2_DESCS_PER_BLOCK(fs)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"groups count too large");
return (EINVAL);
}
/* Check for extra isize in big inodes. */
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_EXTRA_ISIZE) &&
EXT2_INODE_SIZE(fs) < sizeof(struct ext2fs_dinode)) {
SDT_PROBE1(ext2fs, , vfsops, ext2_compute_sb_data_error,
"no space for extra inode timestamps");
return (EINVAL);
}
/* s_resuid / s_resgid ? */
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) {
e2fs_descpb = fs->e2fs_bsize / E2FS_64BIT_GD_SIZE;
e2fs_gdbcount_alloc = howmany(fs->e2fs_gcount, e2fs_descpb);
} else {
e2fs_descpb = fs->e2fs_bsize / E2FS_REV0_GD_SIZE;
e2fs_gdbcount_alloc = howmany(fs->e2fs_gcount,
fs->e2fs_bsize / sizeof(struct ext2_gd));
}
fs->e2fs_gdbcount = howmany(fs->e2fs_gcount, e2fs_descpb);
fs->e2fs_gd = malloc(e2fs_gdbcount_alloc * fs->e2fs_bsize,
M_EXT2MNT, M_WAITOK | M_ZERO);
fs->e2fs_contigdirs = malloc(fs->e2fs_gcount *
sizeof(*fs->e2fs_contigdirs), M_EXT2MNT, M_WAITOK | M_ZERO);
for (i = 0; i < fs->e2fs_gdbcount; i++) {
error = bread(devvp,
fsbtodb(fs, ext2_cg_location(fs, i)),
fs->e2fs_bsize, NOCRED, &bp);
if (error) {
/*
* fs->e2fs_gd and fs->e2fs_contigdirs
* will be freed later by the caller,
* because this function could be called from
* MNT_UPDATE path.
*/
return (error);
}
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) {
memcpy(&fs->e2fs_gd[
i * fs->e2fs_bsize / sizeof(struct ext2_gd)],
bp->b_data, fs->e2fs_bsize);
} else {
for (j = 0; j < e2fs_descpb &&
g_count < fs->e2fs_gcount; j++, g_count++)
memcpy(&fs->e2fs_gd[g_count],
bp->b_data + j * E2FS_REV0_GD_SIZE,
E2FS_REV0_GD_SIZE);
}
brelse(bp);
bp = NULL;
}
/* Validate cgs consistency */
error = ext2_cg_validate(fs);
if (error)
return (error);
/* Verfy cgs csum */
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
error = ext2_gd_csum_verify(fs, devvp->v_rdev);
if (error)
return (error);
}
/* Initialization for the ext2 Orlov allocator variant. */
fs->e2fs_total_dir = 0;
for (i = 0; i < fs->e2fs_gcount; i++)
fs->e2fs_total_dir += e2fs_gd_get_ndirs(&fs->e2fs_gd[i]);
if (le32toh(es->e2fs_rev) == E2FS_REV0 ||
!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_LARGEFILE))
fs->e2fs_maxfilesize = 0x7fffffff;
else {
fs->e2fs_maxfilesize = 0xffffffffffff;
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_HUGE_FILE))
fs->e2fs_maxfilesize = 0x7fffffffffffffff;
}
if (le32toh(es->e4fs_flags) & E2FS_UNSIGNED_HASH) {
fs->e2fs_uhash = 3;
} else if ((le32toh(es->e4fs_flags) & E2FS_SIGNED_HASH) == 0) {
#ifdef __CHAR_UNSIGNED__
es->e4fs_flags = htole32(le32toh(es->e4fs_flags) | E2FS_UNSIGNED_HASH);
fs->e2fs_uhash = 3;
#else
es->e4fs_flags = htole32(le32toh(es->e4fs_flags) | E2FS_SIGNED_HASH);
#endif
}
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM))
error = ext2_sb_csum_verify(fs);
return (error);
}
/*
* Reload all incore data for a filesystem (used after running fsck on
* the root filesystem and finding things to fix). The filesystem must
* be mounted read-only.
*
* Things to do to update the mount:
* 1) invalidate all cached meta-data.
* 2) re-read superblock from disk.
* 3) invalidate all cluster summary information.
* 4) invalidate all inactive vnodes.
* 5) invalidate all cached file data.
* 6) re-read inode data for all active vnodes.
* XXX we are missing some steps, in particular # 3, this has to be reviewed.
*/
static int
ext2_reload(struct mount *mp, struct thread *td)
{
struct vnode *vp, *mvp, *devvp;
struct inode *ip;
struct buf *bp;
struct ext2fs *es;
struct m_ext2fs *fs;
struct csum *sump;
int error, i;
int32_t *lp;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
return (EINVAL);
/*
* Step 1: invalidate all cached meta-data.
*/
devvp = VFSTOEXT2(mp)->um_devvp;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
if (vinvalbuf(devvp, 0, 0, 0) != 0)
panic("ext2_reload: dirty1");
VOP_UNLOCK(devvp);
/*
* Step 2: re-read superblock from disk.
* constants have been adjusted for ext2
*/
if ((error = bread(devvp, SBLOCK, SBSIZE, NOCRED, &bp)) != 0)
return (error);
es = (struct ext2fs *)bp->b_data;
if (ext2_check_sb_compat(es, devvp->v_rdev, 0) != 0) {
brelse(bp);
return (EIO); /* XXX needs translation */
}
fs = VFSTOEXT2(mp)->um_e2fs;
bcopy(bp->b_data, fs->e2fs, sizeof(struct ext2fs));
if ((error = ext2_compute_sb_data(devvp, es, fs)) != 0) {
brelse(bp);
return (error);
}
#ifdef UNKLAR
if (fs->fs_sbsize < SBSIZE)
bp->b_flags |= B_INVAL;
#endif
brelse(bp);
/*
* Step 3: invalidate all cluster summary information.
*/
if (fs->e2fs_contigsumsize > 0) {
lp = fs->e2fs_maxcluster;
sump = fs->e2fs_clustersum;
for (i = 0; i < fs->e2fs_gcount; i++, sump++) {
*lp++ = fs->e2fs_contigsumsize;
sump->cs_init = 0;
bzero(sump->cs_sum, fs->e2fs_contigsumsize + 1);
}
}
loop:
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
/*
* Step 4: invalidate all cached file data.
*/
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
if (vinvalbuf(vp, 0, 0, 0))
panic("ext2_reload: dirty2");
/*
* Step 5: re-read inode data for all active vnodes.
*/
ip = VTOI(vp);
error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error) {
VOP_UNLOCK(vp);
vrele(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
error = ext2_ei2i((struct ext2fs_dinode *)((char *)bp->b_data +
EXT2_INODE_SIZE(fs) * ino_to_fsbo(fs, ip->i_number)), ip);
brelse(bp);
VOP_UNLOCK(vp);
vrele(vp);
if (error) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
}
return (0);
}
/*
* Common code for mount and mountroot.
*/
static int
ext2_mountfs(struct vnode *devvp, struct mount *mp)
{
struct ext2mount *ump;
struct buf *bp;
struct m_ext2fs *fs;
struct ext2fs *es;
struct cdev *dev = devvp->v_rdev;
struct g_consumer *cp;
struct bufobj *bo;
struct csum *sump;
int error;
int ronly;
int i;
u_long size;
int32_t *lp;
int32_t e2fs_maxcontig;
ronly = vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0);
/* XXX: use VOP_ACESS to check FS perms */
g_topology_lock();
error = g_vfs_open(devvp, &cp, "ext2fs", ronly ? 0 : 1);
g_topology_unlock();
VOP_UNLOCK(devvp);
if (error)
return (error);
/* XXX: should we check for some sectorsize or 512 instead? */
if (((SBSIZE % cp->provider->sectorsize) != 0) ||
(SBSIZE < cp->provider->sectorsize)) {
g_topology_lock();
g_vfs_close(cp);
g_topology_unlock();
return (EINVAL);
}
bo = &devvp->v_bufobj;
bo->bo_private = cp;
bo->bo_ops = g_vfs_bufops;
if (devvp->v_rdev->si_iosize_max != 0)
mp->mnt_iosize_max = devvp->v_rdev->si_iosize_max;
if (mp->mnt_iosize_max > MAXPHYS)
mp->mnt_iosize_max = MAXPHYS;
bp = NULL;
ump = NULL;
if ((error = bread(devvp, SBLOCK, SBSIZE, NOCRED, &bp)) != 0)
goto out;
es = (struct ext2fs *)bp->b_data;
if (ext2_check_sb_compat(es, dev, ronly) != 0) {
error = EINVAL; /* XXX needs translation */
goto out;
}
if ((le16toh(es->e2fs_state) & E2FS_ISCLEAN) == 0 ||
(le16toh(es->e2fs_state) & E2FS_ERRORS)) {
if (ronly || (mp->mnt_flag & MNT_FORCE)) {
printf(
"WARNING: Filesystem was not properly dismounted\n");
} else {
printf(
"WARNING: R/W mount denied. Filesystem is not clean - run fsck\n");
error = EPERM;
goto out;
}
}
ump = malloc(sizeof(*ump), M_EXT2MNT, M_WAITOK | M_ZERO);
/*
* I don't know whether this is the right strategy. Note that
* we dynamically allocate both an m_ext2fs and an ext2fs
* while Linux keeps the super block in a locked buffer.
*/
ump->um_e2fs = malloc(sizeof(struct m_ext2fs),
M_EXT2MNT, M_WAITOK | M_ZERO);
ump->um_e2fs->e2fs = malloc(sizeof(struct ext2fs),
M_EXT2MNT, M_WAITOK);
mtx_init(EXT2_MTX(ump), "EXT2FS", "EXT2FS Lock", MTX_DEF);
bcopy(es, ump->um_e2fs->e2fs, (u_int)sizeof(struct ext2fs));
if ((error = ext2_compute_sb_data(devvp, ump->um_e2fs->e2fs, ump->um_e2fs)))
goto out;
/*
* Calculate the maximum contiguous blocks and size of cluster summary
* array. In FFS this is done by newfs; however, the superblock
* in ext2fs doesn't have these variables, so we can calculate
* them here.
*/
e2fs_maxcontig = MAX(1, MAXPHYS / ump->um_e2fs->e2fs_bsize);
ump->um_e2fs->e2fs_contigsumsize = MIN(e2fs_maxcontig, EXT2_MAXCONTIG);
if (ump->um_e2fs->e2fs_contigsumsize > 0) {
size = ump->um_e2fs->e2fs_gcount * sizeof(int32_t);
ump->um_e2fs->e2fs_maxcluster = malloc(size, M_EXT2MNT, M_WAITOK);
size = ump->um_e2fs->e2fs_gcount * sizeof(struct csum);
ump->um_e2fs->e2fs_clustersum = malloc(size, M_EXT2MNT, M_WAITOK);
lp = ump->um_e2fs->e2fs_maxcluster;
sump = ump->um_e2fs->e2fs_clustersum;
for (i = 0; i < ump->um_e2fs->e2fs_gcount; i++, sump++) {
*lp++ = ump->um_e2fs->e2fs_contigsumsize;
sump->cs_init = 0;
sump->cs_sum = malloc((ump->um_e2fs->e2fs_contigsumsize + 1) *
sizeof(int32_t), M_EXT2MNT, M_WAITOK | M_ZERO);
}
}
brelse(bp);
bp = NULL;
fs = ump->um_e2fs;
fs->e2fs_ronly = ronly; /* ronly is set according to mnt_flags */
/*
* If the fs is not mounted read-only, make sure the super block is
* always written back on a sync().
*/
fs->e2fs_wasvalid = le16toh(fs->e2fs->e2fs_state) & E2FS_ISCLEAN ? 1 : 0;
if (ronly == 0) {
fs->e2fs_fmod = 1; /* mark it modified and set fs invalid */
fs->e2fs->e2fs_state =
htole16(le16toh(fs->e2fs->e2fs_state) & ~E2FS_ISCLEAN);
}
mp->mnt_data = ump;
mp->mnt_stat.f_fsid.val[0] = dev2udev(dev);
mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
mp->mnt_maxsymlinklen = EXT2_MAXSYMLINKLEN;
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_LOCAL;
MNT_IUNLOCK(mp);
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_bo = &devvp->v_bufobj;
ump->um_cp = cp;
/*
* Setting those two parameters allowed us to use
* ufs_bmap w/o changse!
*/
ump->um_nindir = EXT2_ADDR_PER_BLOCK(fs);
ump->um_bptrtodb = le32toh(fs->e2fs->e2fs_log_bsize) + 1;
ump->um_seqinc = EXT2_FRAGS_PER_BLOCK(fs);
if (ronly == 0)
ext2_sbupdate(ump, MNT_WAIT);
/*
* Initialize filesystem stat information in mount struct.
*/
MNT_ILOCK(mp);
mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
MNTK_USES_BCACHE;
MNT_IUNLOCK(mp);
return (0);
out:
if (bp)
brelse(bp);
if (cp != NULL) {
g_topology_lock();
g_vfs_close(cp);
g_topology_unlock();
}
if (ump) {
mtx_destroy(EXT2_MTX(ump));
free(ump->um_e2fs->e2fs_gd, M_EXT2MNT);
free(ump->um_e2fs->e2fs_contigdirs, M_EXT2MNT);
free(ump->um_e2fs->e2fs, M_EXT2MNT);
free(ump->um_e2fs, M_EXT2MNT);
free(ump, M_EXT2MNT);
mp->mnt_data = NULL;
}
return (error);
}
/*
* Unmount system call.
*/
static int
ext2_unmount(struct mount *mp, int mntflags)
{
struct ext2mount *ump;
struct m_ext2fs *fs;
struct csum *sump;
int error, flags, i, ronly;
flags = 0;
if (mntflags & MNT_FORCE) {
if (mp->mnt_flag & MNT_ROOTFS)
return (EINVAL);
flags |= FORCECLOSE;
}
if ((error = ext2_flushfiles(mp, flags, curthread)) != 0)
return (error);
ump = VFSTOEXT2(mp);
fs = ump->um_e2fs;
ronly = fs->e2fs_ronly;
if (ronly == 0 && ext2_cgupdate(ump, MNT_WAIT) == 0) {
if (fs->e2fs_wasvalid)
fs->e2fs->e2fs_state =
htole16(le16toh(fs->e2fs->e2fs_state) | E2FS_ISCLEAN);
ext2_sbupdate(ump, MNT_WAIT);
}
g_topology_lock();
g_vfs_close(ump->um_cp);
g_topology_unlock();
vrele(ump->um_devvp);
sump = fs->e2fs_clustersum;
for (i = 0; i < fs->e2fs_gcount; i++, sump++)
free(sump->cs_sum, M_EXT2MNT);
free(fs->e2fs_clustersum, M_EXT2MNT);
free(fs->e2fs_maxcluster, M_EXT2MNT);
free(fs->e2fs_gd, M_EXT2MNT);
free(fs->e2fs_contigdirs, M_EXT2MNT);
free(fs->e2fs, M_EXT2MNT);
free(fs, M_EXT2MNT);
free(ump, M_EXT2MNT);
mp->mnt_data = NULL;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_LOCAL;
MNT_IUNLOCK(mp);
return (error);
}
/*
* Flush out all the files in a filesystem.
*/
static int
ext2_flushfiles(struct mount *mp, int flags, struct thread *td)
{
int error;
error = vflush(mp, 0, flags, td);
return (error);
}
/*
* Get filesystem statistics.
*/
int
ext2_statfs(struct mount *mp, struct statfs *sbp)
{
struct ext2mount *ump;
struct m_ext2fs *fs;
uint32_t overhead, overhead_per_group, ngdb;
int i, ngroups;
ump = VFSTOEXT2(mp);
fs = ump->um_e2fs;
if (le16toh(fs->e2fs->e2fs_magic) != E2FS_MAGIC)
panic("ext2_statfs");
/*
* Compute the overhead (FS structures)
*/
overhead_per_group =
1 /* block bitmap */ +
1 /* inode bitmap */ +
fs->e2fs_itpg;
overhead = le32toh(fs->e2fs->e2fs_first_dblock) +
fs->e2fs_gcount * overhead_per_group;
if (le32toh(fs->e2fs->e2fs_rev) > E2FS_REV0 &&
le32toh(fs->e2fs->e2fs_features_rocompat) & EXT2F_ROCOMPAT_SPARSESUPER) {
for (i = 0, ngroups = 0; i < fs->e2fs_gcount; i++) {
if (ext2_cg_has_sb(fs, i))
ngroups++;
}
} else {
ngroups = fs->e2fs_gcount;
}
ngdb = fs->e2fs_gdbcount;
if (le32toh(fs->e2fs->e2fs_rev) > E2FS_REV0 &&
le32toh(fs->e2fs->e2fs_features_compat) & EXT2F_COMPAT_RESIZE)
ngdb += le16toh(fs->e2fs->e2fs_reserved_ngdb);
overhead += ngroups * (1 /* superblock */ + ngdb);
sbp->f_bsize = EXT2_FRAG_SIZE(fs);
sbp->f_iosize = EXT2_BLOCK_SIZE(fs);
sbp->f_blocks = fs->e2fs_bcount - overhead;
sbp->f_bfree = fs->e2fs_fbcount;
sbp->f_bavail = sbp->f_bfree - fs->e2fs_rbcount;
sbp->f_files = le32toh(fs->e2fs->e2fs_icount);
sbp->f_ffree = fs->e2fs_ficount;
return (0);
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
static int
ext2_sync(struct mount *mp, int waitfor)
{
struct vnode *mvp, *vp;
struct thread *td;
struct inode *ip;
struct ext2mount *ump = VFSTOEXT2(mp);
struct m_ext2fs *fs;
int error, allerror = 0;
td = curthread;
fs = ump->um_e2fs;
if (fs->e2fs_fmod != 0 && fs->e2fs_ronly != 0) { /* XXX */
panic("ext2_sync: rofs mod fs=%s", fs->e2fs_fsmnt);
}
/*
* Write back each (modified) inode.
*/
loop:
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
ip = VTOI(vp);
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
(vp->v_bufobj.bo_dirty.bv_cnt == 0 ||
waitfor == MNT_LAZY)) {
VI_UNLOCK(vp);
continue;
}
error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
if (error) {
if (error == ENOENT) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
continue;
}
if ((error = VOP_FSYNC(vp, waitfor, td)) != 0)
allerror = error;
VOP_UNLOCK(vp);
vrele(vp);
}
/*
* Force stale filesystem control information to be flushed.
*/
if (waitfor != MNT_LAZY) {
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
if ((error = VOP_FSYNC(ump->um_devvp, waitfor, td)) != 0)
allerror = error;
VOP_UNLOCK(ump->um_devvp);
}
/*
* Write back modified superblock.
*/
if (fs->e2fs_fmod != 0) {
fs->e2fs_fmod = 0;
fs->e2fs->e2fs_wtime = htole32(time_second);
if ((error = ext2_cgupdate(ump, waitfor)) != 0)
allerror = error;
}
return (allerror);
}
/*
* Look up an EXT2FS dinode number to find its incore vnode, otherwise read it
* in from disk. If it is in core, wait for the lock bit to clear, then
* return the inode locked. Detection and handling of mount points must be
* done by the calling routine.
*/
static int
ext2_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp)
{
struct m_ext2fs *fs;
struct inode *ip;
struct ext2mount *ump;
struct buf *bp;
struct vnode *vp;
struct thread *td;
unsigned int i, used_blocks;
int error;
td = curthread;
error = vfs_hash_get(mp, ino, flags, td, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
ump = VFSTOEXT2(mp);
ip = malloc(sizeof(struct inode), M_EXT2NODE, M_WAITOK | M_ZERO);
/* Allocate a new vnode/inode. */
if ((error = getnewvnode("ext2fs", mp, &ext2_vnodeops, &vp)) != 0) {
*vpp = NULL;
free(ip, M_EXT2NODE);
return (error);
}
vp->v_data = ip;
ip->i_vnode = vp;
ip->i_e2fs = fs = ump->um_e2fs;
ip->i_ump = ump;
ip->i_number = ino;
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
error = insmntque(vp, mp);
if (error != 0) {
free(ip, M_EXT2NODE);
*vpp = NULL;
return (error);
}
error = vfs_hash_insert(vp, ino, flags, td, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
/* Read in the disk contents for the inode, copy into the inode. */
if ((error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->e2fs_bsize, NOCRED, &bp)) != 0) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
brelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
/* convert ext2 inode to dinode */
error = ext2_ei2i((struct ext2fs_dinode *)((char *)bp->b_data +
EXT2_INODE_SIZE(fs) * ino_to_fsbo(fs, ino)), ip);
if (error) {
brelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
ip->i_block_group = ino_to_cg(fs, ino);
ip->i_next_alloc_block = 0;
ip->i_next_alloc_goal = 0;
/*
* Now we want to make sure that block pointers for unused
* blocks are zeroed out - ext2_balloc depends on this
* although for regular files and directories only
*
* If IN_E4EXTENTS is enabled, unused blocks are not zeroed
* out because we could corrupt the extent tree.
*/
if (!(ip->i_flag & IN_E4EXTENTS) &&
(S_ISDIR(ip->i_mode) || S_ISREG(ip->i_mode))) {
used_blocks = howmany(ip->i_size, fs->e2fs_bsize);
for (i = used_blocks; i < EXT2_NDIR_BLOCKS; i++)
ip->i_db[i] = 0;
}
#ifdef EXT2FS_PRINT_EXTENTS
ext2_print_inode(ip);
ext4_ext_print_extent_tree_status(ip);
#endif
bqrelse(bp);
/*
* Initialize the vnode from the inode, check for aliases.
* Note that the underlying vnode may have changed.
*/
if ((error = ext2_vinit(mp, &ext2_fifoops, &vp)) != 0) {
vput(vp);
*vpp = NULL;
return (error);
}
/*
* Finish inode initialization.
*/
*vpp = vp;
return (0);
}
/*
* File handle to vnode
*
* Have to be really careful about stale file handles:
* - check that the inode number is valid
* - call ext2_vget() to get the locked inode
* - check for an unallocated inode (i_mode == 0)
* - check that the given client host has export rights and return
* those rights via. exflagsp and credanonp
*/
static int
ext2_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp)
{
struct inode *ip;
struct ufid *ufhp;
struct vnode *nvp;
struct m_ext2fs *fs;
int error;
ufhp = (struct ufid *)fhp;
fs = VFSTOEXT2(mp)->um_e2fs;
if (ufhp->ufid_ino < EXT2_ROOTINO ||
ufhp->ufid_ino > fs->e2fs_gcount * fs->e2fs_ipg)
return (ESTALE);
error = VFS_VGET(mp, ufhp->ufid_ino, LK_EXCLUSIVE, &nvp);
if (error) {
*vpp = NULLVP;
return (error);
}
ip = VTOI(nvp);
if (ip->i_mode == 0 ||
ip->i_gen != ufhp->ufid_gen || ip->i_nlink <= 0) {
vput(nvp);
*vpp = NULLVP;
return (ESTALE);
}
*vpp = nvp;
vnode_create_vobject(*vpp, 0, curthread);
return (0);
}
/*
* Write a superblock and associated information back to disk.
*/
static int
ext2_sbupdate(struct ext2mount *mp, int waitfor)
{
struct m_ext2fs *fs = mp->um_e2fs;
struct ext2fs *es = fs->e2fs;
struct buf *bp;
int error = 0;
es->e2fs_bcount = htole32(fs->e2fs_bcount & 0xffffffff);
es->e2fs_rbcount = htole32(fs->e2fs_rbcount & 0xffffffff);
es->e2fs_fbcount = htole32(fs->e2fs_fbcount & 0xffffffff);
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) {
es->e4fs_bcount_hi = htole32(fs->e2fs_bcount >> 32);
es->e4fs_rbcount_hi = htole32(fs->e2fs_rbcount >> 32);
es->e4fs_fbcount_hi = htole32(fs->e2fs_fbcount >> 32);
}
es->e2fs_ficount = htole32(fs->e2fs_ficount);
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM))
ext2_sb_csum_set(fs);
bp = getblk(mp->um_devvp, SBLOCK, SBSIZE, 0, 0, 0);
bcopy((caddr_t)es, bp->b_data, (u_int)sizeof(struct ext2fs));
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
/*
* The buffers for group descriptors, inode bitmaps and block bitmaps
* are not busy at this point and are (hopefully) written by the
* usual sync mechanism. No need to write them here.
*/
return (error);
}
int
ext2_cgupdate(struct ext2mount *mp, int waitfor)
{
struct m_ext2fs *fs = mp->um_e2fs;
struct buf *bp;
int i, j, g_count = 0, error = 0, allerror = 0;
allerror = ext2_sbupdate(mp, waitfor);
/* Update gd csums */
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM))
ext2_gd_csum_set(fs);
for (i = 0; i < fs->e2fs_gdbcount; i++) {
bp = getblk(mp->um_devvp, fsbtodb(fs,
ext2_cg_location(fs, i)),
fs->e2fs_bsize, 0, 0, 0);
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) {
memcpy(bp->b_data, &fs->e2fs_gd[
i * fs->e2fs_bsize / sizeof(struct ext2_gd)],
fs->e2fs_bsize);
} else {
for (j = 0; j < fs->e2fs_bsize / E2FS_REV0_GD_SIZE &&
g_count < fs->e2fs_gcount; j++, g_count++)
memcpy(bp->b_data + j * E2FS_REV0_GD_SIZE,
&fs->e2fs_gd[g_count], E2FS_REV0_GD_SIZE);
}
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
}
if (!allerror && error)
allerror = error;
return (allerror);
}
/*
* Return the root of a filesystem.
*/
static int
ext2_root(struct mount *mp, int flags, struct vnode **vpp)
{
struct vnode *nvp;
int error;
error = VFS_VGET(mp, EXT2_ROOTINO, LK_EXCLUSIVE, &nvp);
if (error)
return (error);
*vpp = nvp;
return (0);
}