8a1509e442
When operating in SU or SU+J mode, ffs_syncvnode() might need to instantiate other vnode by inode number while owning syncing vnode lock. Typically this other vnode is the parent of our vnode, but due to renames occuring right before fsync (or during fsync when we drop the syncing vnode lock, see below) it might be no longer parent. More, the called function flush_pagedep_deps() needs to lock other vnode while owning the lock for vnode which owns the buffer, for which the dependencies are flushed. This creates another instance of the same LoR as was fixed in softdep_sync(). Put the generic code for safe relocking into new SU helper get_parent_vp() and use it in flush_pagedep_deps(). The case for safe relocking of two vnodes with undefined lock order was extracted into vn helper vn_lock_pair(). Due to call sequence ffs_syncvnode()->softdep_sync_buf()->flush_pagedep_deps(), ffs_syncvnode() indicates with ERELOOKUP that passed vnode was unlocked in process, and can return ENOENT if the passed vnode reclaimed. All callers of the function were inspected. Because UFS namei lookups store auxiliary information about directory entry in in-memory directory inode, and this information is then used by UFS code that creates/removed directory entry in the actual mutating VOPs, it is critical that directory vnode lock is not dropped between lookup and VOP. For softdep_prelink(), which ensures that later link/unlink operation can proceed without overflowing the journal, calls were moved to the place where it is safe to drop processing VOP because mutations are not yet applied. Then, ERELOOKUP causes restart of the whole VFS operation (typically VFS syscall) at top level, including the re-lookup of the involved pathes. [Note that we already do the same restart for failing calls to vn_start_write(), so formally this patch does not introduce new behavior.] Similarly, unsafe calls to fsync in snapshot creation code were plugged. A possible view on these failures is that it does not make sense to continue creating snapshot if the snapshot vnode was reclaimed due to forced unmount. It is possible that relock/ERELOOKUP situation occurs in ffs_truncate() called from ufs_inactive(). In this case, dropping the vnode lock is not safe. Detect the situation with VI_DOINGINACT and reschedule inactivation by setting VI_OWEINACT. ufs_inactive() rechecks VI_OWEINACT and avoids reclaiming vnode is truncation failed this way. In ffs_truncate(), allocation of the EOF block for partial truncation is re-done after vnode is synced, since we cannot leave the buffer locked through ffs_syncvnode(). In collaboration with: pho Reviewed by: mckusick (previous version), markj Tested by: markj (syzkaller), pho Sponsored by: The FreeBSD Foundation Differential revision: https://reviews.freebsd.org/D26136
805 lines
25 KiB
C
805 lines
25 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_quota.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/random.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
#include <ufs/ufs/extattr.h>
|
|
#include <ufs/ufs/quota.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <ufs/ffs/fs.h>
|
|
#include <ufs/ffs/ffs_extern.h>
|
|
|
|
static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t,
|
|
ufs2_daddr_t, int, ufs2_daddr_t *);
|
|
|
|
static void
|
|
ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags)
|
|
{
|
|
if ((flags & IO_SYNC) != 0)
|
|
bwrite(bp);
|
|
else if (DOINGASYNC(vp))
|
|
bdwrite(bp);
|
|
else
|
|
bawrite(bp);
|
|
}
|
|
|
|
/*
|
|
* Update the access, modified, and inode change times as specified by the
|
|
* IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode
|
|
* to disk if the IN_MODIFIED flag is set (it may be set initially, or by
|
|
* the timestamp update). The IN_LAZYMOD flag is set to force a write
|
|
* later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs
|
|
* is currently being suspended (or is suspended) and vnode has been accessed.
|
|
* If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to
|
|
* reflect the presumably successful write, and if waitfor is set, then wait
|
|
* for the write to complete.
|
|
*/
|
|
int
|
|
ffs_update(vp, waitfor)
|
|
struct vnode *vp;
|
|
int waitfor;
|
|
{
|
|
struct fs *fs;
|
|
struct buf *bp;
|
|
struct inode *ip;
|
|
daddr_t bn;
|
|
int flags, error;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "ffs_update");
|
|
ufs_itimes(vp);
|
|
ip = VTOI(vp);
|
|
if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
|
|
return (0);
|
|
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
|
|
/*
|
|
* The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the
|
|
* file size and block pointer fields in the inode. When these
|
|
* fields have been changed, the fsync() and fsyncdata() system
|
|
* calls must write the inode to ensure their semantics that the
|
|
* file is on stable store.
|
|
*
|
|
* The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until
|
|
* a synchronous write of the inode is done. If they are cleared
|
|
* on an asynchronous write, then the inode may not yet have been
|
|
* written to the disk when an fsync() or fsyncdata() call is done.
|
|
* Absent these flags, these calls would not know that they needed
|
|
* to write the inode. Thus, these flags only can be cleared on
|
|
* synchronous writes of the inode. Since the inode will be locked
|
|
* for the duration of the I/O that writes it to disk, no fsync()
|
|
* or fsyncdata() will be able to run before the on-disk inode
|
|
* is complete.
|
|
*/
|
|
if (waitfor)
|
|
ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA);
|
|
fs = ITOFS(ip);
|
|
if (fs->fs_ronly && ITOUMP(ip)->um_fsckpid == 0)
|
|
return (0);
|
|
/*
|
|
* If we are updating a snapshot and another process is currently
|
|
* writing the buffer containing the inode for this snapshot then
|
|
* a deadlock can occur when it tries to check the snapshot to see
|
|
* if that block needs to be copied. Thus when updating a snapshot
|
|
* we check to see if the buffer is already locked, and if it is
|
|
* we drop the snapshot lock until the buffer has been written
|
|
* and is available to us. We have to grab a reference to the
|
|
* snapshot vnode to prevent it from being removed while we are
|
|
* waiting for the buffer.
|
|
*/
|
|
flags = 0;
|
|
if (IS_SNAPSHOT(ip))
|
|
flags = GB_LOCK_NOWAIT;
|
|
loop:
|
|
bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
|
|
error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn,
|
|
(int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp);
|
|
if (error != 0) {
|
|
if (error != EBUSY)
|
|
return (error);
|
|
KASSERT((IS_SNAPSHOT(ip)), ("EBUSY from non-snapshot"));
|
|
/*
|
|
* Wait for our inode block to become available.
|
|
*
|
|
* Hold a reference to the vnode to protect against
|
|
* ffs_snapgone(). Since we hold a reference, it can only
|
|
* get reclaimed (VIRF_DOOMED flag) in a forcible downgrade
|
|
* or unmount. For an unmount, the entire filesystem will be
|
|
* gone, so we cannot attempt to touch anything associated
|
|
* with it while the vnode is unlocked; all we can do is
|
|
* pause briefly and try again. If when we relock the vnode
|
|
* we discover that it has been reclaimed, updating it is no
|
|
* longer necessary and we can just return an error.
|
|
*/
|
|
vref(vp);
|
|
VOP_UNLOCK(vp);
|
|
pause("ffsupd", 1);
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
vrele(vp);
|
|
if (VN_IS_DOOMED(vp))
|
|
return (ENOENT);
|
|
goto loop;
|
|
}
|
|
if (DOINGSOFTDEP(vp))
|
|
softdep_update_inodeblock(ip, bp, waitfor);
|
|
else if (ip->i_effnlink != ip->i_nlink)
|
|
panic("ffs_update: bad link cnt");
|
|
if (I_IS_UFS1(ip)) {
|
|
*((struct ufs1_dinode *)bp->b_data +
|
|
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
|
|
/*
|
|
* XXX: FIX? The entropy here is desirable,
|
|
* but the harvesting may be expensive
|
|
*/
|
|
random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME);
|
|
} else {
|
|
ffs_update_dinode_ckhash(fs, ip->i_din2);
|
|
*((struct ufs2_dinode *)bp->b_data +
|
|
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
|
|
/*
|
|
* XXX: FIX? The entropy here is desirable,
|
|
* but the harvesting may be expensive
|
|
*/
|
|
random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME);
|
|
}
|
|
if (waitfor) {
|
|
error = bwrite(bp);
|
|
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
|
|
error = 0;
|
|
} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
|
|
bawrite(bp);
|
|
error = 0;
|
|
} else {
|
|
if (bp->b_bufsize == fs->fs_bsize)
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
bdwrite(bp);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#define SINGLE 0 /* index of single indirect block */
|
|
#define DOUBLE 1 /* index of double indirect block */
|
|
#define TRIPLE 2 /* index of triple indirect block */
|
|
/*
|
|
* Truncate the inode ip to at most length size, freeing the
|
|
* disk blocks.
|
|
*/
|
|
int
|
|
ffs_truncate(vp, length, flags, cred)
|
|
struct vnode *vp;
|
|
off_t length;
|
|
int flags;
|
|
struct ucred *cred;
|
|
{
|
|
struct inode *ip;
|
|
ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR];
|
|
ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR];
|
|
ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR];
|
|
ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno;
|
|
struct bufobj *bo;
|
|
struct fs *fs;
|
|
struct buf *bp;
|
|
struct ufsmount *ump;
|
|
int softdeptrunc, journaltrunc;
|
|
int needextclean, extblocks;
|
|
int offset, size, level, nblocks;
|
|
int i, error, allerror, indiroff, waitforupdate;
|
|
u_long key;
|
|
off_t osize;
|
|
|
|
ip = VTOI(vp);
|
|
ump = VFSTOUFS(vp->v_mount);
|
|
fs = ump->um_fs;
|
|
bo = &vp->v_bufobj;
|
|
|
|
ASSERT_VOP_LOCKED(vp, "ffs_truncate");
|
|
|
|
if (length < 0)
|
|
return (EINVAL);
|
|
if (length > fs->fs_maxfilesize)
|
|
return (EFBIG);
|
|
#ifdef QUOTA
|
|
error = getinoquota(ip);
|
|
if (error)
|
|
return (error);
|
|
#endif
|
|
/*
|
|
* Historically clients did not have to specify which data
|
|
* they were truncating. So, if not specified, we assume
|
|
* traditional behavior, e.g., just the normal data.
|
|
*/
|
|
if ((flags & (IO_EXT | IO_NORMAL)) == 0)
|
|
flags |= IO_NORMAL;
|
|
if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp))
|
|
flags |= IO_SYNC;
|
|
waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp);
|
|
/*
|
|
* If we are truncating the extended-attributes, and cannot
|
|
* do it with soft updates, then do it slowly here. If we are
|
|
* truncating both the extended attributes and the file contents
|
|
* (e.g., the file is being unlinked), then pick it off with
|
|
* soft updates below.
|
|
*/
|
|
allerror = 0;
|
|
needextclean = 0;
|
|
softdeptrunc = 0;
|
|
journaltrunc = DOINGSUJ(vp);
|
|
journaltrunc = 0; /* XXX temp patch until bug found */
|
|
if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0)
|
|
softdeptrunc = !softdep_slowdown(vp);
|
|
extblocks = 0;
|
|
datablocks = DIP(ip, i_blocks);
|
|
if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) {
|
|
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
|
|
datablocks -= extblocks;
|
|
}
|
|
if ((flags & IO_EXT) && extblocks > 0) {
|
|
if (length != 0)
|
|
panic("ffs_truncate: partial trunc of extdata");
|
|
if (softdeptrunc || journaltrunc) {
|
|
if ((flags & IO_NORMAL) == 0)
|
|
goto extclean;
|
|
needextclean = 1;
|
|
} else {
|
|
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
|
|
return (error);
|
|
#ifdef QUOTA
|
|
(void) chkdq(ip, -extblocks, NOCRED, FORCE);
|
|
#endif
|
|
vinvalbuf(vp, V_ALT, 0, 0);
|
|
vn_pages_remove(vp,
|
|
OFF_TO_IDX(lblktosize(fs, -extblocks)), 0);
|
|
osize = ip->i_din2->di_extsize;
|
|
ip->i_din2->di_blocks -= extblocks;
|
|
ip->i_din2->di_extsize = 0;
|
|
for (i = 0; i < UFS_NXADDR; i++) {
|
|
oldblks[i] = ip->i_din2->di_extb[i];
|
|
ip->i_din2->di_extb[i] = 0;
|
|
}
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
|
|
if ((error = ffs_update(vp, waitforupdate)))
|
|
return (error);
|
|
for (i = 0; i < UFS_NXADDR; i++) {
|
|
if (oldblks[i] == 0)
|
|
continue;
|
|
ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i],
|
|
sblksize(fs, osize, i), ip->i_number,
|
|
vp->v_type, NULL, SINGLETON_KEY);
|
|
}
|
|
}
|
|
}
|
|
if ((flags & IO_NORMAL) == 0)
|
|
return (0);
|
|
if (vp->v_type == VLNK &&
|
|
(ip->i_size < vp->v_mount->mnt_maxsymlinklen ||
|
|
datablocks == 0)) {
|
|
#ifdef INVARIANTS
|
|
if (length != 0)
|
|
panic("ffs_truncate: partial truncate of symlink");
|
|
#endif
|
|
bzero(SHORTLINK(ip), (u_int)ip->i_size);
|
|
ip->i_size = 0;
|
|
DIP_SET(ip, i_size, 0);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
if (needextclean)
|
|
goto extclean;
|
|
return (ffs_update(vp, waitforupdate));
|
|
}
|
|
if (ip->i_size == length) {
|
|
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
|
|
if (needextclean)
|
|
goto extclean;
|
|
return (ffs_update(vp, 0));
|
|
}
|
|
if (fs->fs_ronly)
|
|
panic("ffs_truncate: read-only filesystem");
|
|
if (IS_SNAPSHOT(ip))
|
|
ffs_snapremove(vp);
|
|
vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
|
|
osize = ip->i_size;
|
|
/*
|
|
* Lengthen the size of the file. We must ensure that the
|
|
* last byte of the file is allocated. Since the smallest
|
|
* value of osize is 0, length will be at least 1.
|
|
*/
|
|
if (osize < length) {
|
|
vnode_pager_setsize(vp, length);
|
|
flags |= BA_CLRBUF;
|
|
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
|
|
if (error) {
|
|
vnode_pager_setsize(vp, osize);
|
|
return (error);
|
|
}
|
|
ip->i_size = length;
|
|
DIP_SET(ip, i_size, length);
|
|
if (bp->b_bufsize == fs->fs_bsize)
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
ffs_inode_bwrite(vp, bp, flags);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
return (ffs_update(vp, waitforupdate));
|
|
}
|
|
/*
|
|
* Lookup block number for a given offset. Zero length files
|
|
* have no blocks, so return a blkno of -1.
|
|
*/
|
|
lbn = lblkno(fs, length - 1);
|
|
if (length == 0) {
|
|
blkno = -1;
|
|
} else if (lbn < UFS_NDADDR) {
|
|
blkno = DIP(ip, i_db[lbn]);
|
|
} else {
|
|
error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize,
|
|
cred, BA_METAONLY, &bp);
|
|
if (error)
|
|
return (error);
|
|
indiroff = (lbn - UFS_NDADDR) % NINDIR(fs);
|
|
if (I_IS_UFS1(ip))
|
|
blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff];
|
|
else
|
|
blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff];
|
|
/*
|
|
* If the block number is non-zero, then the indirect block
|
|
* must have been previously allocated and need not be written.
|
|
* If the block number is zero, then we may have allocated
|
|
* the indirect block and hence need to write it out.
|
|
*/
|
|
if (blkno != 0)
|
|
brelse(bp);
|
|
else if (flags & IO_SYNC)
|
|
bwrite(bp);
|
|
else
|
|
bdwrite(bp);
|
|
}
|
|
/*
|
|
* If the block number at the new end of the file is zero,
|
|
* then we must allocate it to ensure that the last block of
|
|
* the file is allocated. Soft updates does not handle this
|
|
* case, so here we have to clean up the soft updates data
|
|
* structures describing the allocation past the truncation
|
|
* point. Finding and deallocating those structures is a lot of
|
|
* work. Since partial truncation with a hole at the end occurs
|
|
* rarely, we solve the problem by syncing the file so that it
|
|
* will have no soft updates data structures left.
|
|
*/
|
|
if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
|
|
return (error);
|
|
if (blkno != 0 && DOINGSOFTDEP(vp)) {
|
|
if (softdeptrunc == 0 && journaltrunc == 0) {
|
|
/*
|
|
* If soft updates cannot handle this truncation,
|
|
* clean up soft dependency data structures and
|
|
* fall through to the synchronous truncation.
|
|
*/
|
|
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
|
|
return (error);
|
|
} else {
|
|
flags = IO_NORMAL | (needextclean ? IO_EXT: 0);
|
|
if (journaltrunc)
|
|
softdep_journal_freeblocks(ip, cred, length,
|
|
flags);
|
|
else
|
|
softdep_setup_freeblocks(ip, length, flags);
|
|
ASSERT_VOP_LOCKED(vp, "ffs_truncate1");
|
|
if (journaltrunc == 0) {
|
|
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
|
|
error = ffs_update(vp, 0);
|
|
}
|
|
return (error);
|
|
}
|
|
}
|
|
/*
|
|
* Shorten the size of the file. If the last block of the
|
|
* shortened file is unallocated, we must allocate it.
|
|
* Additionally, if the file is not being truncated to a
|
|
* block boundary, the contents of the partial block
|
|
* following the end of the file must be zero'ed in
|
|
* case it ever becomes accessible again because of
|
|
* subsequent file growth. Directories however are not
|
|
* zero'ed as they should grow back initialized to empty.
|
|
*/
|
|
offset = blkoff(fs, length);
|
|
if (blkno != 0 && offset == 0) {
|
|
ip->i_size = length;
|
|
DIP_SET(ip, i_size, length);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
} else {
|
|
lbn = lblkno(fs, length);
|
|
flags |= BA_CLRBUF;
|
|
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
|
|
if (error)
|
|
return (error);
|
|
ffs_inode_bwrite(vp, bp, flags);
|
|
|
|
/*
|
|
* When we are doing soft updates and the UFS_BALLOC
|
|
* above fills in a direct block hole with a full sized
|
|
* block that will be truncated down to a fragment below,
|
|
* we must flush out the block dependency with an FSYNC
|
|
* so that we do not get a soft updates inconsistency
|
|
* when we create the fragment below.
|
|
*/
|
|
if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR &&
|
|
fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
|
|
(error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
|
|
return (error);
|
|
|
|
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
|
|
if (error)
|
|
return (error);
|
|
ip->i_size = length;
|
|
DIP_SET(ip, i_size, length);
|
|
size = blksize(fs, ip, lbn);
|
|
if (vp->v_type != VDIR && offset != 0)
|
|
bzero((char *)bp->b_data + offset,
|
|
(u_int)(size - offset));
|
|
/* Kirk's code has reallocbuf(bp, size, 1) here */
|
|
allocbuf(bp, size);
|
|
if (bp->b_bufsize == fs->fs_bsize)
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
ffs_inode_bwrite(vp, bp, flags);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
}
|
|
/*
|
|
* Calculate index into inode's block list of
|
|
* last direct and indirect blocks (if any)
|
|
* which we want to keep. Lastblock is -1 when
|
|
* the file is truncated to 0.
|
|
*/
|
|
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
|
|
lastiblock[SINGLE] = lastblock - UFS_NDADDR;
|
|
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
|
|
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
|
|
nblocks = btodb(fs->fs_bsize);
|
|
/*
|
|
* Update file and block pointers on disk before we start freeing
|
|
* blocks. If we crash before free'ing blocks below, the blocks
|
|
* will be returned to the free list. lastiblock values are also
|
|
* normalized to -1 for calls to ffs_indirtrunc below.
|
|
*/
|
|
for (level = TRIPLE; level >= SINGLE; level--) {
|
|
oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]);
|
|
if (lastiblock[level] < 0) {
|
|
DIP_SET(ip, i_ib[level], 0);
|
|
lastiblock[level] = -1;
|
|
}
|
|
}
|
|
for (i = 0; i < UFS_NDADDR; i++) {
|
|
oldblks[i] = DIP(ip, i_db[i]);
|
|
if (i > lastblock)
|
|
DIP_SET(ip, i_db[i], 0);
|
|
}
|
|
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
|
|
allerror = ffs_update(vp, waitforupdate);
|
|
|
|
/*
|
|
* Having written the new inode to disk, save its new configuration
|
|
* and put back the old block pointers long enough to process them.
|
|
* Note that we save the new block configuration so we can check it
|
|
* when we are done.
|
|
*/
|
|
for (i = 0; i < UFS_NDADDR; i++) {
|
|
newblks[i] = DIP(ip, i_db[i]);
|
|
DIP_SET(ip, i_db[i], oldblks[i]);
|
|
}
|
|
for (i = 0; i < UFS_NIADDR; i++) {
|
|
newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]);
|
|
DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]);
|
|
}
|
|
ip->i_size = osize;
|
|
DIP_SET(ip, i_size, osize);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
|
|
error = vtruncbuf(vp, length, fs->fs_bsize);
|
|
if (error && (allerror == 0))
|
|
allerror = error;
|
|
|
|
/*
|
|
* Indirect blocks first.
|
|
*/
|
|
indir_lbn[SINGLE] = -UFS_NDADDR;
|
|
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
|
|
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
|
|
for (level = TRIPLE; level >= SINGLE; level--) {
|
|
bn = DIP(ip, i_ib[level]);
|
|
if (bn != 0) {
|
|
error = ffs_indirtrunc(ip, indir_lbn[level],
|
|
fsbtodb(fs, bn), lastiblock[level], level, &count);
|
|
if (error)
|
|
allerror = error;
|
|
blocksreleased += count;
|
|
if (lastiblock[level] < 0) {
|
|
DIP_SET(ip, i_ib[level], 0);
|
|
ffs_blkfree(ump, fs, ump->um_devvp, bn,
|
|
fs->fs_bsize, ip->i_number,
|
|
vp->v_type, NULL, SINGLETON_KEY);
|
|
blocksreleased += nblocks;
|
|
}
|
|
}
|
|
if (lastiblock[level] >= 0)
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* All whole direct blocks or frags.
|
|
*/
|
|
key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number);
|
|
for (i = UFS_NDADDR - 1; i > lastblock; i--) {
|
|
long bsize;
|
|
|
|
bn = DIP(ip, i_db[i]);
|
|
if (bn == 0)
|
|
continue;
|
|
DIP_SET(ip, i_db[i], 0);
|
|
bsize = blksize(fs, ip, i);
|
|
ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number,
|
|
vp->v_type, NULL, key);
|
|
blocksreleased += btodb(bsize);
|
|
}
|
|
ffs_blkrelease_finish(ump, key);
|
|
if (lastblock < 0)
|
|
goto done;
|
|
|
|
/*
|
|
* Finally, look for a change in size of the
|
|
* last direct block; release any frags.
|
|
*/
|
|
bn = DIP(ip, i_db[lastblock]);
|
|
if (bn != 0) {
|
|
long oldspace, newspace;
|
|
|
|
/*
|
|
* Calculate amount of space we're giving
|
|
* back as old block size minus new block size.
|
|
*/
|
|
oldspace = blksize(fs, ip, lastblock);
|
|
ip->i_size = length;
|
|
DIP_SET(ip, i_size, length);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
|
|
newspace = blksize(fs, ip, lastblock);
|
|
if (newspace == 0)
|
|
panic("ffs_truncate: newspace");
|
|
if (oldspace - newspace > 0) {
|
|
/*
|
|
* Block number of space to be free'd is
|
|
* the old block # plus the number of frags
|
|
* required for the storage we're keeping.
|
|
*/
|
|
bn += numfrags(fs, newspace);
|
|
ffs_blkfree(ump, fs, ump->um_devvp, bn,
|
|
oldspace - newspace, ip->i_number, vp->v_type,
|
|
NULL, SINGLETON_KEY);
|
|
blocksreleased += btodb(oldspace - newspace);
|
|
}
|
|
}
|
|
done:
|
|
#ifdef INVARIANTS
|
|
for (level = SINGLE; level <= TRIPLE; level++)
|
|
if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level]))
|
|
panic("ffs_truncate1: level %d newblks %jd != i_ib %jd",
|
|
level, (intmax_t)newblks[UFS_NDADDR + level],
|
|
(intmax_t)DIP(ip, i_ib[level]));
|
|
for (i = 0; i < UFS_NDADDR; i++)
|
|
if (newblks[i] != DIP(ip, i_db[i]))
|
|
panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd",
|
|
i, (intmax_t)newblks[UFS_NDADDR + level],
|
|
(intmax_t)DIP(ip, i_ib[level]));
|
|
BO_LOCK(bo);
|
|
if (length == 0 &&
|
|
(fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) &&
|
|
(bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
|
|
panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d",
|
|
vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt);
|
|
BO_UNLOCK(bo);
|
|
#endif /* INVARIANTS */
|
|
/*
|
|
* Put back the real size.
|
|
*/
|
|
ip->i_size = length;
|
|
DIP_SET(ip, i_size, length);
|
|
if (DIP(ip, i_blocks) >= blocksreleased)
|
|
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased);
|
|
else /* sanity */
|
|
DIP_SET(ip, i_blocks, 0);
|
|
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
|
|
#ifdef QUOTA
|
|
(void) chkdq(ip, -blocksreleased, NOCRED, FORCE);
|
|
#endif
|
|
return (allerror);
|
|
|
|
extclean:
|
|
if (journaltrunc)
|
|
softdep_journal_freeblocks(ip, cred, length, IO_EXT);
|
|
else
|
|
softdep_setup_freeblocks(ip, length, IO_EXT);
|
|
return (ffs_update(vp, waitforupdate));
|
|
}
|
|
|
|
/*
|
|
* Release blocks associated with the inode ip and stored in the indirect
|
|
* block bn. Blocks are free'd in LIFO order up to (but not including)
|
|
* lastbn. If level is greater than SINGLE, the block is an indirect block
|
|
* and recursive calls to indirtrunc must be used to cleanse other indirect
|
|
* blocks.
|
|
*/
|
|
static int
|
|
ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
|
|
struct inode *ip;
|
|
ufs2_daddr_t lbn, lastbn;
|
|
ufs2_daddr_t dbn;
|
|
int level;
|
|
ufs2_daddr_t *countp;
|
|
{
|
|
struct buf *bp;
|
|
struct fs *fs;
|
|
struct ufsmount *ump;
|
|
struct vnode *vp;
|
|
caddr_t copy = NULL;
|
|
u_long key;
|
|
int i, nblocks, error = 0, allerror = 0;
|
|
ufs2_daddr_t nb, nlbn, last;
|
|
ufs2_daddr_t blkcount, factor, blocksreleased = 0;
|
|
ufs1_daddr_t *bap1 = NULL;
|
|
ufs2_daddr_t *bap2 = NULL;
|
|
#define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i])
|
|
|
|
fs = ITOFS(ip);
|
|
ump = ITOUMP(ip);
|
|
|
|
/*
|
|
* Calculate index in current block of last
|
|
* block to be kept. -1 indicates the entire
|
|
* block so we need not calculate the index.
|
|
*/
|
|
factor = lbn_offset(fs, level);
|
|
last = lastbn;
|
|
if (lastbn > 0)
|
|
last /= factor;
|
|
nblocks = btodb(fs->fs_bsize);
|
|
/*
|
|
* Get buffer of block pointers, zero those entries corresponding
|
|
* to blocks to be free'd, and update on disk copy first. Since
|
|
* double(triple) indirect before single(double) indirect, calls
|
|
* to VOP_BMAP() on these blocks will fail. However, we already
|
|
* have the on-disk address, so we just pass it to bread() instead
|
|
* of having bread() attempt to calculate it using VOP_BMAP().
|
|
*/
|
|
vp = ITOV(ip);
|
|
error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0,
|
|
NOCRED, 0, NULL, &bp);
|
|
if (error) {
|
|
*countp = 0;
|
|
return (error);
|
|
}
|
|
|
|
if (I_IS_UFS1(ip))
|
|
bap1 = (ufs1_daddr_t *)bp->b_data;
|
|
else
|
|
bap2 = (ufs2_daddr_t *)bp->b_data;
|
|
if (lastbn != -1) {
|
|
copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
|
|
bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize);
|
|
for (i = last + 1; i < NINDIR(fs); i++)
|
|
if (I_IS_UFS1(ip))
|
|
bap1[i] = 0;
|
|
else
|
|
bap2[i] = 0;
|
|
if (DOINGASYNC(vp)) {
|
|
bdwrite(bp);
|
|
} else {
|
|
error = bwrite(bp);
|
|
if (error)
|
|
allerror = error;
|
|
}
|
|
if (I_IS_UFS1(ip))
|
|
bap1 = (ufs1_daddr_t *)copy;
|
|
else
|
|
bap2 = (ufs2_daddr_t *)copy;
|
|
}
|
|
|
|
/*
|
|
* Recursively free totally unused blocks.
|
|
*/
|
|
key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number);
|
|
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
|
|
i--, nlbn += factor) {
|
|
nb = BAP(ip, i);
|
|
if (nb == 0)
|
|
continue;
|
|
if (level > SINGLE) {
|
|
if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
|
|
(ufs2_daddr_t)-1, level - 1, &blkcount)) != 0)
|
|
allerror = error;
|
|
blocksreleased += blkcount;
|
|
}
|
|
ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize,
|
|
ip->i_number, vp->v_type, NULL, key);
|
|
blocksreleased += nblocks;
|
|
}
|
|
ffs_blkrelease_finish(ump, key);
|
|
|
|
/*
|
|
* Recursively free last partial block.
|
|
*/
|
|
if (level > SINGLE && lastbn >= 0) {
|
|
last = lastbn % factor;
|
|
nb = BAP(ip, i);
|
|
if (nb != 0) {
|
|
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
|
|
last, level - 1, &blkcount);
|
|
if (error)
|
|
allerror = error;
|
|
blocksreleased += blkcount;
|
|
}
|
|
}
|
|
if (copy != NULL) {
|
|
free(copy, M_TEMP);
|
|
} else {
|
|
bp->b_flags |= B_INVAL | B_NOCACHE;
|
|
brelse(bp);
|
|
}
|
|
|
|
*countp = blocksreleased;
|
|
return (allerror);
|
|
}
|
|
|
|
int
|
|
ffs_rdonly(struct inode *ip)
|
|
{
|
|
|
|
return (ITOFS(ip)->fs_ronly != 0);
|
|
}
|