freebsd-nq/sys/dev/usb/net/if_smsc.c
Ed Maste eea248ec9a smsc: remove pre-FreeBSD-10 compat support
Sponsored by:	The FreeBSD Foundation
2020-02-24 19:50:28 +00:00

1785 lines
46 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012
* Ben Gray <bgray@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SMSC LAN9xxx devices (http://www.smsc.com/)
*
* The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
* support USB 2.0 and 10/100 Mbps Ethernet.
*
* The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
* The driver only covers the Ethernet part, the standard USB hub driver
* supports the hub part.
*
* This driver is closely modelled on the Linux driver written and copyrighted
* by SMSC.
*
*
*
*
* H/W TCP & UDP Checksum Offloading
* ---------------------------------
* The chip supports both tx and rx offloading of UDP & TCP checksums, this
* feature can be dynamically enabled/disabled.
*
* RX checksuming is performed across bytes after the IPv4 header to the end of
* the Ethernet frame, this means if the frame is padded with non-zero values
* the H/W checksum will be incorrect, however the rx code compensates for this.
*
* TX checksuming is more complicated, the device requires a special header to
* be prefixed onto the start of the frame which indicates the start and end
* positions of the UDP or TCP frame. This requires the driver to manually
* go through the packet data and decode the headers prior to sending.
* On Linux they generally provide cues to the location of the csum and the
* area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
* hence this is not as optimal and therefore h/w tX checksum is currently not
* implemented.
*
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/random.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "opt_platform.h"
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/usb/usb_fdt_support.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR smsc_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_smscreg.h>
#include "miibus_if.h"
#ifdef USB_DEBUG
static int smsc_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, smsc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"USB smsc");
SYSCTL_INT(_hw_usb_smsc, OID_AUTO, debug, CTLFLAG_RWTUN, &smsc_debug, 0,
"Debug level");
#endif
/*
* Various supported device vendors/products.
*/
static const struct usb_device_id smsc_devs[] = {
#define SMSC_DEV(p,i) { USB_VPI(USB_VENDOR_SMC2, USB_PRODUCT_SMC2_##p, i) }
SMSC_DEV(LAN89530_ETH, 0),
SMSC_DEV(LAN9500_ETH, 0),
SMSC_DEV(LAN9500_ETH_2, 0),
SMSC_DEV(LAN9500A_ETH, 0),
SMSC_DEV(LAN9500A_ETH_2, 0),
SMSC_DEV(LAN9505_ETH, 0),
SMSC_DEV(LAN9505A_ETH, 0),
SMSC_DEV(LAN9514_ETH, 0),
SMSC_DEV(LAN9514_ETH_2, 0),
SMSC_DEV(LAN9530_ETH, 0),
SMSC_DEV(LAN9730_ETH, 0),
SMSC_DEV(LAN9500_SAL10, 0),
SMSC_DEV(LAN9505_SAL10, 0),
SMSC_DEV(LAN9500A_SAL10, 0),
SMSC_DEV(LAN9505A_SAL10, 0),
SMSC_DEV(LAN9514_SAL10, 0),
SMSC_DEV(LAN9500A_HAL, 0),
SMSC_DEV(LAN9505A_HAL, 0),
#undef SMSC_DEV
};
#ifdef USB_DEBUG
#define smsc_dbg_printf(sc, fmt, args...) \
do { \
if (smsc_debug > 0) \
device_printf((sc)->sc_ue.ue_dev, "debug: " fmt, ##args); \
} while(0)
#else
#define smsc_dbg_printf(sc, fmt, args...) do { } while (0)
#endif
#define smsc_warn_printf(sc, fmt, args...) \
device_printf((sc)->sc_ue.ue_dev, "warning: " fmt, ##args)
#define smsc_err_printf(sc, fmt, args...) \
device_printf((sc)->sc_ue.ue_dev, "error: " fmt, ##args)
#define ETHER_IS_VALID(addr) \
(!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
static device_probe_t smsc_probe;
static device_attach_t smsc_attach;
static device_detach_t smsc_detach;
static usb_callback_t smsc_bulk_read_callback;
static usb_callback_t smsc_bulk_write_callback;
static miibus_readreg_t smsc_miibus_readreg;
static miibus_writereg_t smsc_miibus_writereg;
static miibus_statchg_t smsc_miibus_statchg;
static int smsc_attach_post_sub(struct usb_ether *ue);
static uether_fn_t smsc_attach_post;
static uether_fn_t smsc_init;
static uether_fn_t smsc_stop;
static uether_fn_t smsc_start;
static uether_fn_t smsc_tick;
static uether_fn_t smsc_setmulti;
static uether_fn_t smsc_setpromisc;
static int smsc_ifmedia_upd(struct ifnet *);
static void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int smsc_chip_init(struct smsc_softc *sc);
static int smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static const struct usb_config smsc_config[SMSC_N_TRANSFER] = {
[SMSC_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.frames = 16,
.bufsize = 16 * (MCLBYTES + 16),
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = smsc_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
[SMSC_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 20480, /* bytes */
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = smsc_bulk_read_callback,
.timeout = 0, /* no timeout */
},
/* The SMSC chip supports an interrupt endpoints, however they aren't
* needed as we poll on the MII status.
*/
};
static const struct usb_ether_methods smsc_ue_methods = {
.ue_attach_post = smsc_attach_post,
.ue_attach_post_sub = smsc_attach_post_sub,
.ue_start = smsc_start,
.ue_ioctl = smsc_ioctl,
.ue_init = smsc_init,
.ue_stop = smsc_stop,
.ue_tick = smsc_tick,
.ue_setmulti = smsc_setmulti,
.ue_setpromisc = smsc_setpromisc,
.ue_mii_upd = smsc_ifmedia_upd,
.ue_mii_sts = smsc_ifmedia_sts,
};
/**
* smsc_read_reg - Reads a 32-bit register on the device
* @sc: driver soft context
* @off: offset of the register
* @data: pointer a value that will be populated with the register value
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, a USB_ERR_?? error code on failure.
*/
static int
smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data)
{
struct usb_device_request req;
uint32_t buf;
usb_error_t err;
SMSC_LOCK_ASSERT(sc, MA_OWNED);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = SMSC_UR_READ_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = uether_do_request(&sc->sc_ue, &req, &buf, 1000);
if (err != 0)
smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off);
*data = le32toh(buf);
return (err);
}
/**
* smsc_write_reg - Writes a 32-bit register on the device
* @sc: driver soft context
* @off: offset of the register
* @data: the 32-bit value to write into the register
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, a USB_ERR_?? error code on failure.
*/
static int
smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data)
{
struct usb_device_request req;
uint32_t buf;
usb_error_t err;
SMSC_LOCK_ASSERT(sc, MA_OWNED);
buf = htole32(data);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = SMSC_UR_WRITE_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = uether_do_request(&sc->sc_ue, &req, &buf, 1000);
if (err != 0)
smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off);
return (err);
}
/**
* smsc_wait_for_bits - Polls on a register value until bits are cleared
* @sc: soft context
* @reg: offset of the register
* @bits: if the bits are clear the function returns
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*/
static int
smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits)
{
usb_ticks_t start_ticks;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
uint32_t val;
int err;
SMSC_LOCK_ASSERT(sc, MA_OWNED);
start_ticks = (usb_ticks_t)ticks;
do {
if ((err = smsc_read_reg(sc, reg, &val)) != 0)
return (err);
if (!(val & bits))
return (0);
uether_pause(&sc->sc_ue, hz / 100);
} while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks);
return (USB_ERR_TIMEOUT);
}
/**
* smsc_eeprom_read - Reads the attached EEPROM
* @sc: soft context
* @off: the eeprom address offset
* @buf: stores the bytes
* @buflen: the number of bytes to read
*
* Simply reads bytes from an attached eeprom.
*
* LOCKING:
* The function takes and releases the device lock if it is not already held.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*/
static int
smsc_eeprom_read(struct smsc_softc *sc, uint16_t off, uint8_t *buf, uint16_t buflen)
{
usb_ticks_t start_ticks;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
int err;
int locked;
uint32_t val;
uint16_t i;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
SMSC_LOCK(sc);
err = smsc_wait_for_bits(sc, SMSC_EEPROM_CMD, SMSC_EEPROM_CMD_BUSY);
if (err != 0) {
smsc_warn_printf(sc, "eeprom busy, failed to read data\n");
goto done;
}
/* start reading the bytes, one at a time */
for (i = 0; i < buflen; i++) {
val = SMSC_EEPROM_CMD_BUSY | (SMSC_EEPROM_CMD_ADDR_MASK & (off + i));
if ((err = smsc_write_reg(sc, SMSC_EEPROM_CMD, val)) != 0)
goto done;
start_ticks = (usb_ticks_t)ticks;
do {
if ((err = smsc_read_reg(sc, SMSC_EEPROM_CMD, &val)) != 0)
goto done;
if (!(val & SMSC_EEPROM_CMD_BUSY) || (val & SMSC_EEPROM_CMD_TIMEOUT))
break;
uether_pause(&sc->sc_ue, hz / 100);
} while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks);
if (val & (SMSC_EEPROM_CMD_BUSY | SMSC_EEPROM_CMD_TIMEOUT)) {
smsc_warn_printf(sc, "eeprom command failed\n");
err = USB_ERR_IOERROR;
break;
}
if ((err = smsc_read_reg(sc, SMSC_EEPROM_DATA, &val)) != 0)
goto done;
buf[i] = (val & 0xff);
}
done:
if (!locked)
SMSC_UNLOCK(sc);
return (err);
}
/**
* smsc_miibus_readreg - Reads a MII/MDIO register
* @dev: usb ether device
* @phy: the number of phy reading from
* @reg: the register address
*
* Attempts to read a phy register over the MII bus.
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*
* RETURNS:
* Returns the 16-bits read from the MII register, if this function fails 0
* is returned.
*/
static int
smsc_miibus_readreg(device_t dev, int phy, int reg)
{
struct smsc_softc *sc = device_get_softc(dev);
int locked;
uint32_t addr;
uint32_t val = 0;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
SMSC_LOCK(sc);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(sc, "MII is busy\n");
goto done;
}
addr = (phy << 11) | (reg << 6) | SMSC_MII_READ | SMSC_MII_BUSY;
smsc_write_reg(sc, SMSC_MII_ADDR, addr);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
smsc_warn_printf(sc, "MII read timeout\n");
smsc_read_reg(sc, SMSC_MII_DATA, &val);
val = le32toh(val);
done:
if (!locked)
SMSC_UNLOCK(sc);
return (val & 0xFFFF);
}
/**
* smsc_miibus_writereg - Writes a MII/MDIO register
* @dev: usb ether device
* @phy: the number of phy writing to
* @reg: the register address
* @val: the value to write
*
* Attempts to write a phy register over the MII bus.
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*
* RETURNS:
* Always returns 0 regardless of success or failure.
*/
static int
smsc_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct smsc_softc *sc = device_get_softc(dev);
int locked;
uint32_t addr;
if (sc->sc_phyno != phy)
return (0);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
SMSC_LOCK(sc);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(sc, "MII is busy\n");
goto done;
}
val = htole32(val);
smsc_write_reg(sc, SMSC_MII_DATA, val);
addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE | SMSC_MII_BUSY;
smsc_write_reg(sc, SMSC_MII_ADDR, addr);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
smsc_warn_printf(sc, "MII write timeout\n");
done:
if (!locked)
SMSC_UNLOCK(sc);
return (0);
}
/**
* smsc_miibus_statchg - Called to detect phy status change
* @dev: usb ether device
*
* This function is called periodically by the system to poll for status
* changes of the link.
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*/
static void
smsc_miibus_statchg(device_t dev)
{
struct smsc_softc *sc = device_get_softc(dev);
struct mii_data *mii = uether_getmii(&sc->sc_ue);
struct ifnet *ifp;
int locked;
int err;
uint32_t flow;
uint32_t afc_cfg;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
SMSC_LOCK(sc);
ifp = uether_getifp(&sc->sc_ue);
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
/* Use the MII status to determine link status */
sc->sc_flags &= ~SMSC_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= SMSC_FLAG_LINK;
break;
case IFM_1000_T:
/* Gigabit ethernet not supported by chipset */
break;
default:
break;
}
}
/* Lost link, do nothing. */
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
smsc_dbg_printf(sc, "link flag not set\n");
goto done;
}
err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg);
if (err) {
smsc_warn_printf(sc, "failed to read initial AFC_CFG, error %d\n", err);
goto done;
}
/* Enable/disable full duplex operation and TX/RX pause */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
smsc_dbg_printf(sc, "full duplex operation\n");
sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
flow = 0xffff0002;
else
flow = 0;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
afc_cfg |= 0xf;
else
afc_cfg &= ~0xf;
} else {
smsc_dbg_printf(sc, "half duplex operation\n");
sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
flow = 0;
afc_cfg |= 0xf;
}
err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
err += smsc_write_reg(sc, SMSC_FLOW, flow);
err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg);
if (err)
smsc_warn_printf(sc, "media change failed, error %d\n", err);
done:
if (!locked)
SMSC_UNLOCK(sc);
}
/**
* smsc_ifmedia_upd - Set media options
* @ifp: interface pointer
*
* Basically boilerplate code that simply calls the mii functions to set the
* media options.
*
* LOCKING:
* The device lock must be held before this function is called.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
smsc_ifmedia_upd(struct ifnet *ifp)
{
struct smsc_softc *sc = ifp->if_softc;
struct mii_data *mii = uether_getmii(&sc->sc_ue);
struct mii_softc *miisc;
int err;
SMSC_LOCK_ASSERT(sc, MA_OWNED);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
err = mii_mediachg(mii);
return (err);
}
/**
* smsc_ifmedia_sts - Report current media status
* @ifp: inet interface pointer
* @ifmr: interface media request
*
* Basically boilerplate code that simply calls the mii functions to get the
* media status.
*
* LOCKING:
* Internally takes and releases the device lock.
*/
static void
smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct smsc_softc *sc = ifp->if_softc;
struct mii_data *mii = uether_getmii(&sc->sc_ue);
SMSC_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SMSC_UNLOCK(sc);
}
/**
* smsc_hash - Calculate the hash of a mac address
* @addr: The mac address to calculate the hash on
*
* This function is used when configuring a range of m'cast mac addresses to
* filter on. The hash of the mac address is put in the device's mac hash
* table.
*
* RETURNS:
* Returns a value from 0-63 value which is the hash of the mac address.
*/
static inline uint32_t
smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
{
return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
}
static u_int
smsc_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint32_t hash, *hashtbl = arg;
hash = smsc_hash(LLADDR(sdl));
hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
return (1);
}
/**
* smsc_setmulti - Setup multicast
* @ue: usb ethernet device context
*
* Tells the device to either accept frames with a multicast mac address, a
* select group of m'cast mac addresses or just the devices mac address.
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
smsc_setmulti(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint32_t hashtbl[2] = { 0, 0 };
SMSC_LOCK_ASSERT(sc, MA_OWNED);
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
smsc_dbg_printf(sc, "receive all multicast enabled\n");
sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
} else {
if (if_foreach_llmaddr(ifp, smsc_hash_maddr, &hashtbl) > 0) {
/* We are filtering on a set of address so calculate
* hashes of each of the address and set the
* corresponding bits in the register.
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
} else {
/* Only receive packets with destination set to
* our mac address
*/
sc->sc_mac_csr &= ~(SMSC_MAC_CSR_MCPAS | SMSC_MAC_CSR_HPFILT);
}
/* Debug */
if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT)
smsc_dbg_printf(sc, "receive select group of macs\n");
else
smsc_dbg_printf(sc, "receive own packets only\n");
}
/* Write the hash table and mac control registers */
smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]);
smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]);
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
}
/**
* smsc_setpromisc - Enables/disables promiscuous mode
* @ue: usb ethernet device context
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
smsc_setpromisc(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
smsc_dbg_printf(sc, "promiscuous mode %sabled\n",
(ifp->if_flags & IFF_PROMISC) ? "en" : "dis");
SMSC_LOCK_ASSERT(sc, MA_OWNED);
if (ifp->if_flags & IFF_PROMISC)
sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS;
else
sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
}
/**
* smsc_sethwcsum - Enable or disable H/W UDP and TCP checksumming
* @sc: driver soft context
*
* LOCKING:
* Should be called with the SMSC lock held.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int smsc_sethwcsum(struct smsc_softc *sc)
{
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
uint32_t val;
int err;
if (!ifp)
return (-EIO);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
err = smsc_read_reg(sc, SMSC_COE_CTRL, &val);
if (err != 0) {
smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n", err);
return (err);
}
/* Enable/disable the Rx checksum */
if ((ifp->if_capabilities & ifp->if_capenable) & IFCAP_RXCSUM)
val |= SMSC_COE_CTRL_RX_EN;
else
val &= ~SMSC_COE_CTRL_RX_EN;
/* Enable/disable the Tx checksum (currently not supported) */
if ((ifp->if_capabilities & ifp->if_capenable) & IFCAP_TXCSUM)
val |= SMSC_COE_CTRL_TX_EN;
else
val &= ~SMSC_COE_CTRL_TX_EN;
err = smsc_write_reg(sc, SMSC_COE_CTRL, val);
if (err != 0) {
smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n", err);
return (err);
}
return (0);
}
/**
* smsc_setmacaddress - Sets the mac address in the device
* @sc: driver soft context
* @addr: pointer to array contain at least 6 bytes of the mac
*
* Writes the MAC address into the device, usually the MAC is programmed with
* values from the EEPROM.
*
* LOCKING:
* Should be called with the SMSC lock held.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr)
{
int err;
uint32_t val;
smsc_dbg_printf(sc, "setting mac address to %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0)
goto done;
val = (addr[5] << 8) | addr[4];
err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val);
done:
return (err);
}
/**
* smsc_reset - Reset the SMSC chip
* @sc: device soft context
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
smsc_reset(struct smsc_softc *sc)
{
struct usb_config_descriptor *cd;
usb_error_t err;
cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev);
err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx,
cd->bConfigurationValue);
if (err)
smsc_warn_printf(sc, "reset failed (ignored)\n");
/* Wait a little while for the chip to get its brains in order. */
uether_pause(&sc->sc_ue, hz / 100);
/* Reinitialize controller to achieve full reset. */
smsc_chip_init(sc);
}
/**
* smsc_init - Initialises the LAN95xx chip
* @ue: USB ether interface
*
* Called when the interface is brought up (i.e. ifconfig ue0 up), this
* initialise the interface and the rx/tx pipes.
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
smsc_init(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
if (smsc_setmacaddress(sc, IF_LLADDR(ifp)))
smsc_dbg_printf(sc, "setting MAC address failed\n");
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Cancel pending I/O */
smsc_stop(ue);
/* Reset the ethernet interface. */
smsc_reset(sc);
/* Load the multicast filter. */
smsc_setmulti(ue);
/* TCP/UDP checksum offload engines. */
smsc_sethwcsum(sc);
usbd_xfer_set_stall(sc->sc_xfer[SMSC_BULK_DT_WR]);
/* Indicate we are up and running. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/* Switch to selected media. */
smsc_ifmedia_upd(ifp);
smsc_start(ue);
}
/**
* smsc_bulk_read_callback - Read callback used to process the USB URB
* @xfer: the USB transfer
* @error:
*
* Reads the URB data which can contain one or more ethernet frames, the
* frames are copyed into a mbuf and given to the system.
*
* LOCKING:
* No locking required, doesn't access internal driver settings.
*/
static void
smsc_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct smsc_softc *sc = usbd_xfer_softc(xfer);
struct usb_ether *ue = &sc->sc_ue;
struct ifnet *ifp = uether_getifp(ue);
struct mbuf *m;
struct usb_page_cache *pc;
uint32_t rxhdr;
uint16_t pktlen;
int off;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
smsc_dbg_printf(sc, "rx : actlen %d\n", actlen);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
/* There is always a zero length frame after bringing the IF up */
if (actlen < (sizeof(rxhdr) + ETHER_CRC_LEN))
goto tr_setup;
/* There maybe multiple packets in the USB frame, each will have a
* header and each needs to have it's own mbuf allocated and populated
* for it.
*/
pc = usbd_xfer_get_frame(xfer, 0);
off = 0;
while (off < actlen) {
/* The frame header is always aligned on a 4 byte boundary */
off = ((off + 0x3) & ~0x3);
usbd_copy_out(pc, off, &rxhdr, sizeof(rxhdr));
off += (sizeof(rxhdr) + ETHER_ALIGN);
rxhdr = le32toh(rxhdr);
pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
smsc_dbg_printf(sc, "rx : rxhdr 0x%08x : pktlen %d : actlen %d : "
"off %d\n", rxhdr, pktlen, actlen, off);
if (rxhdr & SMSC_RX_STAT_ERROR) {
smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if (rxhdr & SMSC_RX_STAT_COLLISION)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
} else {
/* Check if the ethernet frame is too big or too small */
if ((pktlen < ETHER_HDR_LEN) || (pktlen > (actlen - off)))
goto tr_setup;
/* Create a new mbuf to store the packet in */
m = uether_newbuf();
if (m == NULL) {
smsc_warn_printf(sc, "failed to create new mbuf\n");
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
goto tr_setup;
}
usbd_copy_out(pc, off, mtod(m, uint8_t *), pktlen);
/* Check if RX TCP/UDP checksumming is being offloaded */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
/* Remove the extra 2 bytes of the csum */
pktlen -= 2;
/* The checksum appears to be simplistically calculated
* over the udp/tcp header and data up to the end of the
* eth frame. Which means if the eth frame is padded
* the csum calculation is incorrectly performed over
* the padding bytes as well. Therefore to be safe we
* ignore the H/W csum on frames less than or equal to
* 64 bytes.
*
* Ignore H/W csum for non-IPv4 packets.
*/
if ((be16toh(eh->ether_type) == ETHERTYPE_IP) &&
(pktlen > ETHER_MIN_LEN)) {
struct ip *ip;
ip = (struct ip *)(eh + 1);
if ((ip->ip_v == IPVERSION) &&
((ip->ip_p == IPPROTO_TCP) ||
(ip->ip_p == IPPROTO_UDP))) {
/* Indicate the UDP/TCP csum has been calculated */
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
/* Copy the TCP/UDP checksum from the last 2 bytes
* of the transfer and put in the csum_data field.
*/
usbd_copy_out(pc, (off + pktlen),
&m->m_pkthdr.csum_data, 2);
/* The data is copied in network order, but the
* csum algorithm in the kernel expects it to be
* in host network order.
*/
m->m_pkthdr.csum_data = ntohs(m->m_pkthdr.csum_data);
smsc_dbg_printf(sc, "RX checksum offloaded (0x%04x)\n",
m->m_pkthdr.csum_data);
}
}
/* Need to adjust the offset as well or we'll be off
* by 2 because the csum is removed from the packet
* length.
*/
off += 2;
}
/* Finally enqueue the mbuf on the receive queue */
/* Remove 4 trailing bytes */
if (pktlen < (4 + ETHER_HDR_LEN)) {
m_freem(m);
goto tr_setup;
}
uether_rxmbuf(ue, m, pktlen - 4);
}
/* Update the offset to move to the next potential packet */
off += pktlen;
}
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
uether_rxflush(ue);
return;
default:
if (error != USB_ERR_CANCELLED) {
smsc_warn_printf(sc, "bulk read error, %s\n", usbd_errstr(error));
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
/**
* smsc_bulk_write_callback - Write callback used to send ethernet frame(s)
* @xfer: the USB transfer
* @error: error code if the transfers is in an errored state
*
* The main write function that pulls ethernet frames off the queue and sends
* them out.
*
* LOCKING:
*
*/
static void
smsc_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct smsc_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
struct usb_page_cache *pc;
struct mbuf *m;
uint32_t txhdr;
uint32_t frm_len = 0;
int nframes;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0 ||
(ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) {
/* Don't send anything if there is no link or controller is busy. */
return;
}
for (nframes = 0; nframes < 16 &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd); nframes++) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES,
nframes);
frm_len = 0;
pc = usbd_xfer_get_frame(xfer, nframes);
/* Each frame is prefixed with two 32-bit values describing the
* length of the packet and buffer.
*/
txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
txhdr = htole32(txhdr);
usbd_copy_in(pc, 0, &txhdr, sizeof(txhdr));
txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
txhdr = htole32(txhdr);
usbd_copy_in(pc, 4, &txhdr, sizeof(txhdr));
frm_len += 8;
/* Next copy in the actual packet */
usbd_m_copy_in(pc, frm_len, m, 0, m->m_pkthdr.len);
frm_len += m->m_pkthdr.len;
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
/* If there's a BPF listener, bounce a copy of this frame to him */
BPF_MTAP(ifp, m);
m_freem(m);
/* Set frame length. */
usbd_xfer_set_frame_len(xfer, nframes, frm_len);
}
if (nframes != 0) {
usbd_xfer_set_frames(xfer, nframes);
usbd_transfer_submit(xfer);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return;
default:
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (error != USB_ERR_CANCELLED) {
smsc_err_printf(sc, "usb error on tx: %s\n", usbd_errstr(error));
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
/**
* smsc_tick - Called periodically to monitor the state of the LAN95xx chip
* @ue: USB ether interface
*
* Simply calls the mii status functions to check the state of the link.
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
smsc_tick(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
struct mii_data *mii = uether_getmii(&sc->sc_ue);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
mii_tick(mii);
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
smsc_miibus_statchg(ue->ue_dev);
if ((sc->sc_flags & SMSC_FLAG_LINK) != 0)
smsc_start(ue);
}
}
/**
* smsc_start - Starts communication with the LAN95xx chip
* @ue: USB ether interface
*
*
*
*/
static void
smsc_start(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
/*
* start the USB transfers, if not already started:
*/
usbd_transfer_start(sc->sc_xfer[SMSC_BULK_DT_RD]);
usbd_transfer_start(sc->sc_xfer[SMSC_BULK_DT_WR]);
}
/**
* smsc_stop - Stops communication with the LAN95xx chip
* @ue: USB ether interface
*
*
*
*/
static void
smsc_stop(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~SMSC_FLAG_LINK;
/*
* stop all the transfers, if not already stopped:
*/
usbd_transfer_stop(sc->sc_xfer[SMSC_BULK_DT_WR]);
usbd_transfer_stop(sc->sc_xfer[SMSC_BULK_DT_RD]);
}
/**
* smsc_phy_init - Initialises the in-built SMSC phy
* @sc: driver soft context
*
* Resets the PHY part of the chip and then initialises it to default
* values. The 'link down' and 'auto-negotiation complete' interrupts
* from the PHY are also enabled, however we don't monitor the interrupt
* endpoints for the moment.
*
* RETURNS:
* Returns 0 on success or EIO if failed to reset the PHY.
*/
static int
smsc_phy_init(struct smsc_softc *sc)
{
int bmcr;
usb_ticks_t start_ticks;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
SMSC_LOCK_ASSERT(sc, MA_OWNED);
/* Reset phy and wait for reset to complete */
smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, BMCR_RESET);
start_ticks = ticks;
do {
uether_pause(&sc->sc_ue, hz / 100);
bmcr = smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR);
} while ((bmcr & BMCR_RESET) && ((ticks - start_ticks) < max_ticks));
if (((usb_ticks_t)(ticks - start_ticks)) >= max_ticks) {
smsc_err_printf(sc, "PHY reset timed-out");
return (EIO);
}
smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_ANAR,
ANAR_10 | ANAR_10_FD | ANAR_TX | ANAR_TX_FD | /* all modes */
ANAR_CSMA |
ANAR_FC |
ANAR_PAUSE_ASYM);
/* Setup the phy to interrupt when the link goes down or autoneg completes */
smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, SMSC_PHY_INTR_STAT);
smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, SMSC_PHY_INTR_MASK,
(SMSC_PHY_INTR_ANEG_COMP | SMSC_PHY_INTR_LINK_DOWN));
/* Restart auto-negotation */
bmcr = smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR);
bmcr |= BMCR_STARTNEG;
smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, bmcr);
return (0);
}
/**
* smsc_chip_init - Initialises the chip after power on
* @sc: driver soft context
*
* This initialisation sequence is modelled on the procedure in the Linux
* driver.
*
* RETURNS:
* Returns 0 on success or an error code on failure.
*/
static int
smsc_chip_init(struct smsc_softc *sc)
{
int err;
int locked;
uint32_t reg_val;
int burst_cap;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
SMSC_LOCK(sc);
/* Enter H/W config mode */
smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST)) != 0) {
smsc_warn_printf(sc, "timed-out waiting for reset to complete\n");
goto init_failed;
}
/* Reset the PHY */
smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST)) != 0) {
smsc_warn_printf(sc, "timed-out waiting for phy reset to complete\n");
goto init_failed;
}
/* Set the mac address */
if ((err = smsc_setmacaddress(sc, sc->sc_ue.ue_eaddr)) != 0) {
smsc_warn_printf(sc, "failed to set the MAC address\n");
goto init_failed;
}
/* Don't know what the HW_CFG_BIR bit is, but following the reset sequence
* as used in the Linux driver.
*/
if ((err = smsc_read_reg(sc, SMSC_HW_CFG, &reg_val)) != 0) {
smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err);
goto init_failed;
}
reg_val |= SMSC_HW_CFG_BIR;
smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
/* There is a so called 'turbo mode' that the linux driver supports, it
* seems to allow you to jam multiple frames per Rx transaction. By default
* this driver supports that and therefore allows multiple frames per URB.
*
* The xfer buffer size needs to reflect this as well, therefore based on
* the calculations in the Linux driver the RX bufsize is set to 18944,
* bufsz = (16 * 1024 + 5 * 512)
*
* Burst capability is the number of URBs that can be in a burst of data/
* ethernet frames.
*/
if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_HIGH)
burst_cap = 37;
else
burst_cap = 128;
smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap);
/* Set the default bulk in delay (magic value from Linux driver) */
smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000);
/*
* Initialise the RX interface
*/
if ((err = smsc_read_reg(sc, SMSC_HW_CFG, &reg_val)) < 0) {
smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n", err);
goto init_failed;
}
/* Adjust the packet offset in the buffer (designed to try and align IP
* header on 4 byte boundary)
*/
reg_val &= ~SMSC_HW_CFG_RXDOFF;
reg_val |= (ETHER_ALIGN << 9) & SMSC_HW_CFG_RXDOFF;
/* The following setings are used for 'turbo mode', a.k.a multiple frames
* per Rx transaction (again info taken form Linux driver).
*/
reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
/* Clear the status register ? */
smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff);
/* Read and display the revision register */
if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err);
goto init_failed;
}
device_printf(sc->sc_ue.ue_dev, "chip 0x%04lx, rev. %04lx\n",
(sc->sc_rev_id & SMSC_ID_REV_CHIP_ID_MASK) >> 16,
(sc->sc_rev_id & SMSC_ID_REV_CHIP_REV_MASK));
/* GPIO/LED setup */
reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
SMSC_LED_GPIO_CFG_FDX_LED;
smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val);
/*
* Initialise the TX interface
*/
smsc_write_reg(sc, SMSC_FLOW, 0);
smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
/* Read the current MAC configuration */
if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err);
goto init_failed;
}
/* Vlan */
smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
/*
* Initialise the PHY
*/
if ((err = smsc_phy_init(sc)) != 0)
goto init_failed;
/*
* Start TX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON);
/*
* Start RX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
if (!locked)
SMSC_UNLOCK(sc);
return (0);
init_failed:
if (!locked)
SMSC_UNLOCK(sc);
smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err);
return (err);
}
/**
* smsc_ioctl - ioctl function for the device
* @ifp: interface pointer
* @cmd: the ioctl command
* @data: data passed in the ioctl call, typically a pointer to struct ifreq.
*
* The ioctl routine is overridden to detect change requests for the H/W
* checksum capabilities.
*
* RETURNS:
* 0 on success and an error code on failure.
*/
static int
smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct usb_ether *ue = ifp->if_softc;
struct smsc_softc *sc;
struct ifreq *ifr;
int rc;
int mask;
int reinit;
if (cmd == SIOCSIFCAP) {
sc = uether_getsc(ue);
ifr = (struct ifreq *)data;
SMSC_LOCK(sc);
rc = 0;
reinit = 0;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
/* Modify the RX CSUM enable bits */
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
reinit = 1;
}
}
SMSC_UNLOCK(sc);
if (reinit)
uether_init(ue);
} else {
rc = uether_ioctl(ifp, cmd, data);
}
return (rc);
}
/**
* smsc_attach_post - Called after the driver attached to the USB interface
* @ue: the USB ethernet device
*
* This is where the chip is intialised for the first time. This is different
* from the smsc_init() function in that that one is designed to setup the
* H/W to match the UE settings and can be called after a reset.
*
*
*/
static void
smsc_attach_post(struct usb_ether *ue)
{
struct smsc_softc *sc = uether_getsc(ue);
uint32_t mac_h, mac_l;
int err;
smsc_dbg_printf(sc, "smsc_attach_post\n");
/* Setup some of the basics */
sc->sc_phyno = 1;
/* Attempt to get the mac address, if an EEPROM is not attached this
* will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
* address based on urandom.
*/
memset(sc->sc_ue.ue_eaddr, 0xff, ETHER_ADDR_LEN);
/* Check if there is already a MAC address in the register */
if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) &&
(smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) {
sc->sc_ue.ue_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
sc->sc_ue.ue_eaddr[4] = (uint8_t)((mac_h) & 0xff);
sc->sc_ue.ue_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
sc->sc_ue.ue_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
sc->sc_ue.ue_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
sc->sc_ue.ue_eaddr[0] = (uint8_t)((mac_l) & 0xff);
}
/* MAC address is not set so try to read from EEPROM, if that fails generate
* a random MAC address.
*/
if (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr)) {
err = smsc_eeprom_read(sc, 0x01, sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN);
#ifdef FDT
if ((err != 0) || (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr)))
err = usb_fdt_get_mac_addr(sc->sc_ue.ue_dev, &sc->sc_ue);
#endif
if ((err != 0) || (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr))) {
read_random(sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN);
sc->sc_ue.ue_eaddr[0] &= ~0x01; /* unicast */
sc->sc_ue.ue_eaddr[0] |= 0x02; /* locally administered */
}
}
/* Initialise the chip for the first time */
smsc_chip_init(sc);
}
/**
* smsc_attach_post_sub - Called after the driver attached to the USB interface
* @ue: the USB ethernet device
*
* Most of this is boilerplate code and copied from the base USB ethernet
* driver. It has been overriden so that we can indicate to the system that
* the chip supports H/W checksumming.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
smsc_attach_post_sub(struct usb_ether *ue)
{
struct smsc_softc *sc;
struct ifnet *ifp;
int error;
sc = uether_getsc(ue);
ifp = ue->ue_ifp;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = uether_start;
ifp->if_ioctl = smsc_ioctl;
ifp->if_init = uether_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
/* The chip supports TCP/UDP checksum offloading on TX and RX paths, however
* currently only RX checksum is supported in the driver (see top of file).
*/
ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_VLAN_MTU;
ifp->if_hwassist = 0;
/* TX checksuming is disabled (for now?)
ifp->if_capabilities |= IFCAP_TXCSUM;
ifp->if_capenable |= IFCAP_TXCSUM;
ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
*/
ifp->if_capenable = ifp->if_capabilities;
mtx_lock(&Giant);
error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp,
uether_ifmedia_upd, ue->ue_methods->ue_mii_sts,
BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0);
mtx_unlock(&Giant);
return (error);
}
/**
* smsc_probe - Probe the interface.
* @dev: smsc device handle
*
* Checks if the device is a match for this driver.
*
* RETURNS:
* Returns 0 on success or an error code on failure.
*/
static int
smsc_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != SMSC_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != SMSC_IFACE_IDX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(smsc_devs, sizeof(smsc_devs), uaa));
}
/**
* smsc_attach - Attach the interface.
* @dev: smsc device handle
*
* Allocate softc structures, do ifmedia setup and ethernet/BPF attach.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
smsc_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct smsc_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
uint8_t iface_index;
int err;
sc->sc_flags = USB_GET_DRIVER_INFO(uaa);
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
/* Setup the endpoints for the SMSC LAN95xx device(s) */
iface_index = SMSC_IFACE_IDX;
err = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
smsc_config, SMSC_N_TRANSFER, sc, &sc->sc_mtx);
if (err) {
device_printf(dev, "error: allocating USB transfers failed\n");
goto detach;
}
ue->ue_sc = sc;
ue->ue_dev = dev;
ue->ue_udev = uaa->device;
ue->ue_mtx = &sc->sc_mtx;
ue->ue_methods = &smsc_ue_methods;
err = uether_ifattach(ue);
if (err) {
device_printf(dev, "error: could not attach interface\n");
goto detach;
}
return (0); /* success */
detach:
smsc_detach(dev);
return (ENXIO); /* failure */
}
/**
* smsc_detach - Detach the interface.
* @dev: smsc device handle
*
* RETURNS:
* Returns 0.
*/
static int
smsc_detach(device_t dev)
{
struct smsc_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
usbd_transfer_unsetup(sc->sc_xfer, SMSC_N_TRANSFER);
uether_ifdetach(ue);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static device_method_t smsc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, smsc_probe),
DEVMETHOD(device_attach, smsc_attach),
DEVMETHOD(device_detach, smsc_detach),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, smsc_miibus_readreg),
DEVMETHOD(miibus_writereg, smsc_miibus_writereg),
DEVMETHOD(miibus_statchg, smsc_miibus_statchg),
DEVMETHOD_END
};
static driver_t smsc_driver = {
.name = "smsc",
.methods = smsc_methods,
.size = sizeof(struct smsc_softc),
};
static devclass_t smsc_devclass;
DRIVER_MODULE(smsc, uhub, smsc_driver, smsc_devclass, NULL, 0);
DRIVER_MODULE(miibus, smsc, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(smsc, uether, 1, 1, 1);
MODULE_DEPEND(smsc, usb, 1, 1, 1);
MODULE_DEPEND(smsc, ether, 1, 1, 1);
MODULE_DEPEND(smsc, miibus, 1, 1, 1);
MODULE_VERSION(smsc, 1);
USB_PNP_HOST_INFO(smsc_devs);