freebsd-nq/lib/libvmmapi/vmmapi.c
Neel Natu 08e3ff329a Add HPET device emulation to bhyve.
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.

At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.

This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
2013-11-25 19:04:51 +00:00

841 lines
18 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <machine/specialreg.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <libutil.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include "vmmapi.h"
#define MB (1024 * 1024UL)
#define GB (1024 * 1024 * 1024UL)
struct vmctx {
int fd;
uint32_t lowmem_limit;
enum vm_mmap_style vms;
size_t lowmem;
char *lowmem_addr;
size_t highmem;
char *highmem_addr;
char *name;
};
#define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
#define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
static int
vm_device_open(const char *name)
{
int fd, len;
char *vmfile;
len = strlen("/dev/vmm/") + strlen(name) + 1;
vmfile = malloc(len);
assert(vmfile != NULL);
snprintf(vmfile, len, "/dev/vmm/%s", name);
/* Open the device file */
fd = open(vmfile, O_RDWR, 0);
free(vmfile);
return (fd);
}
int
vm_create(const char *name)
{
return (CREATE((char *)name));
}
struct vmctx *
vm_open(const char *name)
{
struct vmctx *vm;
vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
assert(vm != NULL);
vm->fd = -1;
vm->lowmem_limit = 3 * GB;
vm->name = (char *)(vm + 1);
strcpy(vm->name, name);
if ((vm->fd = vm_device_open(vm->name)) < 0)
goto err;
return (vm);
err:
vm_destroy(vm);
return (NULL);
}
void
vm_destroy(struct vmctx *vm)
{
assert(vm != NULL);
if (vm->fd >= 0)
close(vm->fd);
DESTROY(vm->name);
free(vm);
}
int
vm_parse_memsize(const char *optarg, size_t *ret_memsize)
{
char *endptr;
size_t optval;
int error;
optval = strtoul(optarg, &endptr, 0);
if (*optarg != '\0' && *endptr == '\0') {
/*
* For the sake of backward compatibility if the memory size
* specified on the command line is less than a megabyte then
* it is interpreted as being in units of MB.
*/
if (optval < MB)
optval *= MB;
*ret_memsize = optval;
error = 0;
} else
error = expand_number(optarg, ret_memsize);
return (error);
}
int
vm_get_memory_seg(struct vmctx *ctx, vm_paddr_t gpa, size_t *ret_len,
int *wired)
{
int error;
struct vm_memory_segment seg;
bzero(&seg, sizeof(seg));
seg.gpa = gpa;
error = ioctl(ctx->fd, VM_GET_MEMORY_SEG, &seg);
*ret_len = seg.len;
if (wired != NULL)
*wired = seg.wired;
return (error);
}
uint32_t
vm_get_lowmem_limit(struct vmctx *ctx)
{
return (ctx->lowmem_limit);
}
void
vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
{
ctx->lowmem_limit = limit;
}
static int
setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char **addr)
{
int error;
struct vm_memory_segment seg;
/*
* Create and optionally map 'len' bytes of memory at guest
* physical address 'gpa'
*/
bzero(&seg, sizeof(seg));
seg.gpa = gpa;
seg.len = len;
error = ioctl(ctx->fd, VM_MAP_MEMORY, &seg);
if (error == 0 && addr != NULL) {
*addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED,
ctx->fd, gpa);
}
return (error);
}
int
vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
{
char **addr;
int error;
/* XXX VM_MMAP_SPARSE not implemented yet */
assert(vms == VM_MMAP_NONE || vms == VM_MMAP_ALL);
ctx->vms = vms;
/*
* If 'memsize' cannot fit entirely in the 'lowmem' segment then
* create another 'highmem' segment above 4GB for the remainder.
*/
if (memsize > ctx->lowmem_limit) {
ctx->lowmem = ctx->lowmem_limit;
ctx->highmem = memsize - ctx->lowmem;
} else {
ctx->lowmem = memsize;
ctx->highmem = 0;
}
if (ctx->lowmem > 0) {
addr = (vms == VM_MMAP_ALL) ? &ctx->lowmem_addr : NULL;
error = setup_memory_segment(ctx, 0, ctx->lowmem, addr);
if (error)
return (error);
}
if (ctx->highmem > 0) {
addr = (vms == VM_MMAP_ALL) ? &ctx->highmem_addr : NULL;
error = setup_memory_segment(ctx, 4*GB, ctx->highmem, addr);
if (error)
return (error);
}
return (0);
}
void *
vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
{
/* XXX VM_MMAP_SPARSE not implemented yet */
assert(ctx->vms == VM_MMAP_ALL);
if (gaddr < ctx->lowmem && gaddr + len <= ctx->lowmem)
return ((void *)(ctx->lowmem_addr + gaddr));
if (gaddr >= 4*GB) {
gaddr -= 4*GB;
if (gaddr < ctx->highmem && gaddr + len <= ctx->highmem)
return ((void *)(ctx->highmem_addr + gaddr));
}
return (NULL);
}
int
vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
uint64_t base, uint32_t limit, uint32_t access)
{
int error;
struct vm_seg_desc vmsegdesc;
bzero(&vmsegdesc, sizeof(vmsegdesc));
vmsegdesc.cpuid = vcpu;
vmsegdesc.regnum = reg;
vmsegdesc.desc.base = base;
vmsegdesc.desc.limit = limit;
vmsegdesc.desc.access = access;
error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
return (error);
}
int
vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
uint64_t *base, uint32_t *limit, uint32_t *access)
{
int error;
struct vm_seg_desc vmsegdesc;
bzero(&vmsegdesc, sizeof(vmsegdesc));
vmsegdesc.cpuid = vcpu;
vmsegdesc.regnum = reg;
error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
if (error == 0) {
*base = vmsegdesc.desc.base;
*limit = vmsegdesc.desc.limit;
*access = vmsegdesc.desc.access;
}
return (error);
}
int
vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
{
int error;
struct vm_register vmreg;
bzero(&vmreg, sizeof(vmreg));
vmreg.cpuid = vcpu;
vmreg.regnum = reg;
vmreg.regval = val;
error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
return (error);
}
int
vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
{
int error;
struct vm_register vmreg;
bzero(&vmreg, sizeof(vmreg));
vmreg.cpuid = vcpu;
vmreg.regnum = reg;
error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
*ret_val = vmreg.regval;
return (error);
}
int
vm_run(struct vmctx *ctx, int vcpu, uint64_t rip, struct vm_exit *vmexit)
{
int error;
struct vm_run vmrun;
bzero(&vmrun, sizeof(vmrun));
vmrun.cpuid = vcpu;
vmrun.rip = rip;
error = ioctl(ctx->fd, VM_RUN, &vmrun);
bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
return (error);
}
static int
vm_inject_event_real(struct vmctx *ctx, int vcpu, enum vm_event_type type,
int vector, int error_code, int error_code_valid)
{
struct vm_event ev;
bzero(&ev, sizeof(ev));
ev.cpuid = vcpu;
ev.type = type;
ev.vector = vector;
ev.error_code = error_code;
ev.error_code_valid = error_code_valid;
return (ioctl(ctx->fd, VM_INJECT_EVENT, &ev));
}
int
vm_inject_event(struct vmctx *ctx, int vcpu, enum vm_event_type type,
int vector)
{
return (vm_inject_event_real(ctx, vcpu, type, vector, 0, 0));
}
int
vm_inject_event2(struct vmctx *ctx, int vcpu, enum vm_event_type type,
int vector, int error_code)
{
return (vm_inject_event_real(ctx, vcpu, type, vector, error_code, 1));
}
int
vm_apicid2vcpu(struct vmctx *ctx, int apicid)
{
/*
* The apic id associated with the 'vcpu' has the same numerical value
* as the 'vcpu' itself.
*/
return (apicid);
}
int
vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
{
struct vm_lapic_irq vmirq;
bzero(&vmirq, sizeof(vmirq));
vmirq.cpuid = vcpu;
vmirq.vector = vector;
return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
}
int
vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
}
int
vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
}
int
vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
}
int
vm_inject_nmi(struct vmctx *ctx, int vcpu)
{
struct vm_nmi vmnmi;
bzero(&vmnmi, sizeof(vmnmi));
vmnmi.cpuid = vcpu;
return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
}
static struct {
const char *name;
int type;
} capstrmap[] = {
{ "hlt_exit", VM_CAP_HALT_EXIT },
{ "mtrap_exit", VM_CAP_MTRAP_EXIT },
{ "pause_exit", VM_CAP_PAUSE_EXIT },
{ "unrestricted_guest", VM_CAP_UNRESTRICTED_GUEST },
{ "enable_invpcid", VM_CAP_ENABLE_INVPCID },
{ 0 }
};
int
vm_capability_name2type(const char *capname)
{
int i;
for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
if (strcmp(capstrmap[i].name, capname) == 0)
return (capstrmap[i].type);
}
return (-1);
}
const char *
vm_capability_type2name(int type)
{
int i;
for (i = 0; capstrmap[i].name != NULL; i++) {
if (capstrmap[i].type == type)
return (capstrmap[i].name);
}
return (NULL);
}
int
vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
int *retval)
{
int error;
struct vm_capability vmcap;
bzero(&vmcap, sizeof(vmcap));
vmcap.cpuid = vcpu;
vmcap.captype = cap;
error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
*retval = vmcap.capval;
return (error);
}
int
vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
{
struct vm_capability vmcap;
bzero(&vmcap, sizeof(vmcap));
vmcap.cpuid = vcpu;
vmcap.captype = cap;
vmcap.capval = val;
return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
}
int
vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
{
struct vm_pptdev pptdev;
bzero(&pptdev, sizeof(pptdev));
pptdev.bus = bus;
pptdev.slot = slot;
pptdev.func = func;
return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
}
int
vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
{
struct vm_pptdev pptdev;
bzero(&pptdev, sizeof(pptdev));
pptdev.bus = bus;
pptdev.slot = slot;
pptdev.func = func;
return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
}
int
vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
struct vm_pptdev_mmio pptmmio;
bzero(&pptmmio, sizeof(pptmmio));
pptmmio.bus = bus;
pptmmio.slot = slot;
pptmmio.func = func;
pptmmio.gpa = gpa;
pptmmio.len = len;
pptmmio.hpa = hpa;
return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
}
int
vm_setup_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int destcpu, int vector, int numvec)
{
struct vm_pptdev_msi pptmsi;
bzero(&pptmsi, sizeof(pptmsi));
pptmsi.vcpu = vcpu;
pptmsi.bus = bus;
pptmsi.slot = slot;
pptmsi.func = func;
pptmsi.destcpu = destcpu;
pptmsi.vector = vector;
pptmsi.numvec = numvec;
return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
}
int
vm_setup_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int idx, uint32_t msg, uint32_t vector_control, uint64_t addr)
{
struct vm_pptdev_msix pptmsix;
bzero(&pptmsix, sizeof(pptmsix));
pptmsix.vcpu = vcpu;
pptmsix.bus = bus;
pptmsix.slot = slot;
pptmsix.func = func;
pptmsix.idx = idx;
pptmsix.msg = msg;
pptmsix.addr = addr;
pptmsix.vector_control = vector_control;
return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
}
uint64_t *
vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
int *ret_entries)
{
int error;
static struct vm_stats vmstats;
vmstats.cpuid = vcpu;
error = ioctl(ctx->fd, VM_STATS, &vmstats);
if (error == 0) {
if (ret_entries)
*ret_entries = vmstats.num_entries;
if (ret_tv)
*ret_tv = vmstats.tv;
return (vmstats.statbuf);
} else
return (NULL);
}
const char *
vm_get_stat_desc(struct vmctx *ctx, int index)
{
static struct vm_stat_desc statdesc;
statdesc.index = index;
if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
return (statdesc.desc);
else
return (NULL);
}
int
vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
{
int error;
struct vm_x2apic x2apic;
bzero(&x2apic, sizeof(x2apic));
x2apic.cpuid = vcpu;
error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
*state = x2apic.state;
return (error);
}
int
vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
{
int error;
struct vm_x2apic x2apic;
bzero(&x2apic, sizeof(x2apic));
x2apic.cpuid = vcpu;
x2apic.state = state;
error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
return (error);
}
/*
* From Intel Vol 3a:
* Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
*/
int
vcpu_reset(struct vmctx *vmctx, int vcpu)
{
int error;
uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
uint32_t desc_access, desc_limit;
uint16_t sel;
zero = 0;
rflags = 0x2;
error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
if (error)
goto done;
rip = 0xfff0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
goto done;
cr0 = CR0_NE;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
goto done;
cr4 = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
goto done;
/*
* CS: present, r/w, accessed, 16-bit, byte granularity, usable
*/
desc_base = 0xffff0000;
desc_limit = 0xffff;
desc_access = 0x0093;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
sel = 0xf000;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
goto done;
/*
* SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
*/
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x0093;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
goto done;
/* General purpose registers */
rdx = 0xf00;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
goto done;
/* GDTR, IDTR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
desc_base, desc_limit, desc_access);
if (error != 0)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
desc_base, desc_limit, desc_access);
if (error != 0)
goto done;
/* TR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x0000008b;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
goto done;
/* LDTR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x00000082;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
desc_limit, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
goto done;
/* XXX cr2, debug registers */
error = 0;
done:
return (error);
}
int
vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
{
int error, i;
struct vm_gpa_pte gpapte;
bzero(&gpapte, sizeof(gpapte));
gpapte.gpa = gpa;
error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
if (error == 0) {
*num = gpapte.ptenum;
for (i = 0; i < gpapte.ptenum; i++)
pte[i] = gpapte.pte[i];
}
return (error);
}
int
vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
{
int error;
struct vm_hpet_cap cap;
bzero(&cap, sizeof(struct vm_hpet_cap));
error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
if (capabilities != NULL)
*capabilities = cap.capabilities;
return (error);
}