Marius Strobl 340e331450 Partially revert r203829; as it turns out what the PowerPC OFW loader did
was incorrect as further down the road cons_probe() calls malloc() so the
former can't be called before init_heap() has succeed. Instead just exit
to the firmware in case init_heap() fails like OF_init() does when hitting
a problem as we're then likely running in a very broken environment where
hardly anything can be trusted to work.
2010-10-29 20:42:02 +00:00

959 lines
23 KiB
C

/*-
* Initial implementation:
* Copyright (c) 2001 Robert Drehmel
* All rights reserved.
*
* As long as the above copyright statement and this notice remain
* unchanged, you can do what ever you want with this file.
*/
/*-
* Copyright (c) 2008 Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* FreeBSD/sparc64 kernel loader - machine dependent part
*
* - implements copyin and readin functions that map kernel
* pages on demand. The machine independent code does not
* know the size of the kernel early enough to pre-enter
* TTEs and install just one 4MB mapping seemed to limiting
* to me.
*/
#include <stand.h>
#include <sys/param.h>
#include <sys/exec.h>
#include <sys/linker.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <vm/vm.h>
#include <machine/asi.h>
#include <machine/cmt.h>
#include <machine/cpufunc.h>
#include <machine/elf.h>
#include <machine/fireplane.h>
#include <machine/jbus.h>
#include <machine/lsu.h>
#include <machine/metadata.h>
#include <machine/tte.h>
#include <machine/tlb.h>
#include <machine/upa.h>
#include <machine/ver.h>
#include <machine/vmparam.h>
#include "bootstrap.h"
#include "libofw.h"
#include "dev_net.h"
#ifndef CTASSERT
#define CTASSERT(x) _CTASSERT(x, __LINE__)
#define _CTASSERT(x, y) __CTASSERT(x, y)
#define __CTASSERT(x, y) typedef char __assert ## y[(x) ? 1 : -1]
#endif
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
enum {
HEAPVA = 0x800000,
HEAPSZ = 0x1000000,
LOADSZ = 0x1000000 /* for kernel and modules */
};
/* At least Sun Fire V1280 require page sized allocations to be claimed. */
CTASSERT(HEAPSZ % PAGE_SIZE == 0);
static struct mmu_ops {
void (*tlb_init)(void);
int (*mmu_mapin)(vm_offset_t va, vm_size_t len);
} *mmu_ops;
typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
void *openfirmware);
static inline u_long dtlb_get_data_sun4u(u_int);
static int dtlb_enter_sun4u(u_int, u_long data, vm_offset_t);
static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t);
static inline u_long itlb_get_data_sun4u(u_int);
static int itlb_enter_sun4u(u_int, u_long data, vm_offset_t);
static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t);
static void itlb_relocate_locked0_sun4u(void);
extern vm_offset_t md_load(char *, vm_offset_t *);
static int sparc64_autoload(void);
static ssize_t sparc64_readin(const int, vm_offset_t, const size_t);
static ssize_t sparc64_copyin(const void *, vm_offset_t, size_t);
static void sparc64_maphint(vm_offset_t, size_t);
static vm_offset_t claim_virt(vm_offset_t, size_t, int);
static vm_offset_t alloc_phys(size_t, int);
static int map_phys(int, size_t, vm_offset_t, vm_offset_t);
static void release_phys(vm_offset_t, u_int);
static int __elfN(exec)(struct preloaded_file *);
static int mmu_mapin_sun4u(vm_offset_t, vm_size_t);
static int mmu_mapin_sun4v(vm_offset_t, vm_size_t);
static vm_offset_t init_heap(void);
static phandle_t find_bsp_sun4u(phandle_t, uint32_t);
const char *cpu_cpuid_prop_sun4u(void);
uint32_t cpu_get_mid_sun4u(void);
static void tlb_init_sun4u(void);
static void tlb_init_sun4v(void);
#ifdef LOADER_DEBUG
typedef u_int64_t tte_t;
static void pmap_print_tlb_sun4u(void);
static void pmap_print_tte_sun4u(tte_t, tte_t);
#endif
static struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u };
static struct mmu_ops mmu_ops_sun4v = { tlb_init_sun4v, mmu_mapin_sun4v };
/* sun4u */
struct tlb_entry *dtlb_store;
struct tlb_entry *itlb_store;
u_int dtlb_slot;
u_int itlb_slot;
static int cpu_impl;
static u_int dtlb_slot_max;
static u_int itlb_slot_max;
/* sun4v */
static struct tlb_entry *tlb_store;
static int is_sun4v = 0;
/*
* no direct TLB access on sun4v
* we somewhat arbitrarily declare enough
* slots to cover a 4GB AS with 4MB pages
*/
#define SUN4V_TLB_SLOT_MAX (1 << 10)
static vm_offset_t curkva = 0;
static vm_offset_t heapva;
static phandle_t root;
/*
* Machine dependent structures that the machine independent
* loader part uses.
*/
struct devsw *devsw[] = {
#ifdef LOADER_DISK_SUPPORT
&ofwdisk,
#endif
#ifdef LOADER_NET_SUPPORT
&netdev,
#endif
0
};
struct arch_switch archsw;
static struct file_format sparc64_elf = {
__elfN(loadfile),
__elfN(exec)
};
struct file_format *file_formats[] = {
&sparc64_elf,
0
};
struct fs_ops *file_system[] = {
#ifdef LOADER_UFS_SUPPORT
&ufs_fsops,
#endif
#ifdef LOADER_CD9660_SUPPORT
&cd9660_fsops,
#endif
#ifdef LOADER_ZIP_SUPPORT
&zipfs_fsops,
#endif
#ifdef LOADER_GZIP_SUPPORT
&gzipfs_fsops,
#endif
#ifdef LOADER_BZIP2_SUPPORT
&bzipfs_fsops,
#endif
#ifdef LOADER_NFS_SUPPORT
&nfs_fsops,
#endif
#ifdef LOADER_TFTP_SUPPORT
&tftp_fsops,
#endif
0
};
struct netif_driver *netif_drivers[] = {
#ifdef LOADER_NET_SUPPORT
&ofwnet,
#endif
0
};
extern struct console ofwconsole;
struct console *consoles[] = {
&ofwconsole,
0
};
#ifdef LOADER_DEBUG
static int
watch_phys_set_mask(vm_offset_t pa, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
(mask << LSU_PM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_phys_set(vm_offset_t pa, int sz)
{
u_long off;
off = (u_long)pa & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
}
static int
watch_virt_set_mask(vm_offset_t va, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
(mask << LSU_VM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_virt_set(vm_offset_t va, int sz)
{
u_long off;
off = (u_long)va & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
}
#endif
/*
* archsw functions
*/
static int
sparc64_autoload(void)
{
return (0);
}
static ssize_t
sparc64_readin(const int fd, vm_offset_t va, const size_t len)
{
mmu_ops->mmu_mapin(va, len);
return (read(fd, (void *)va, len));
}
static ssize_t
sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
{
mmu_ops->mmu_mapin(dest, len);
memcpy((void *)dest, src, len);
return (len);
}
static void
sparc64_maphint(vm_offset_t va, size_t len)
{
vm_paddr_t pa;
vm_offset_t mva;
size_t size;
int i, free_excess = 0;
if (!is_sun4v)
return;
if (tlb_store[va >> 22].te_pa != -1)
return;
/* round up to nearest 4MB page */
size = (len + PAGE_MASK_4M) & ~PAGE_MASK_4M;
#if 0
pa = alloc_phys(PAGE_SIZE_256M, PAGE_SIZE_256M);
if (pa != -1)
free_excess = 1;
else
#endif
pa = alloc_phys(size, PAGE_SIZE_256M);
if (pa == -1)
pa = alloc_phys(size, PAGE_SIZE_4M);
if (pa == -1)
panic("%s: out of memory", __func__);
for (i = 0; i < size; i += PAGE_SIZE_4M) {
mva = claim_virt(va + i, PAGE_SIZE_4M, 0);
if (mva != (va + i))
panic("%s: can't claim virtual page "
"(wanted %#lx, got %#lx)",
__func__, va, mva);
tlb_store[mva >> 22].te_pa = pa + i;
if (map_phys(-1, PAGE_SIZE_4M, mva, pa + i) != 0)
printf("%s: can't map physical page\n", __func__);
}
if (free_excess)
release_phys(pa, PAGE_SIZE_256M);
}
/*
* other MD functions
*/
static vm_offset_t
claim_virt(vm_offset_t virt, size_t size, int align)
{
vm_offset_t mva;
if (OF_call_method("claim", mmu, 3, 1, virt, size, align, &mva) == -1)
return ((vm_offset_t)-1);
return (mva);
}
static vm_offset_t
alloc_phys(size_t size, int align)
{
cell_t phys_hi, phys_low;
if (OF_call_method("claim", memory, 2, 2, size, align, &phys_low,
&phys_hi) == -1)
return ((vm_offset_t)-1);
return ((vm_offset_t)phys_hi << 32 | phys_low);
}
static int
map_phys(int mode, size_t size, vm_offset_t virt, vm_offset_t phys)
{
return (OF_call_method("map", mmu, 5, 0, (uint32_t)phys,
(uint32_t)(phys >> 32), virt, size, mode));
}
static void
release_phys(vm_offset_t phys, u_int size)
{
(void)OF_call_method("release", memory, 3, 0, (uint32_t)phys,
(uint32_t)(phys >> 32), size);
}
static int
__elfN(exec)(struct preloaded_file *fp)
{
struct file_metadata *fmp;
vm_offset_t mdp;
Elf_Addr entry;
Elf_Ehdr *e;
int error;
if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0)
return (EFTYPE);
e = (Elf_Ehdr *)&fmp->md_data;
if ((error = md_load(fp->f_args, &mdp)) != 0)
return (error);
printf("jumping to kernel entry at %#lx.\n", e->e_entry);
#ifdef LOADER_DEBUG
pmap_print_tlb_sun4u();
#endif
dev_cleanup();
entry = e->e_entry;
OF_release((void *)heapva, HEAPSZ);
((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
panic("%s: exec returned", __func__);
}
static inline u_long
dtlb_get_data_sun4u(u_int slot)
{
/*
* We read ASI_DTLB_DATA_ACCESS_REG twice in order to work
* around errata of USIII and beyond.
*/
(void)ldxa(TLB_DAR_SLOT(slot), ASI_DTLB_DATA_ACCESS_REG);
return (ldxa(TLB_DAR_SLOT(slot), ASI_DTLB_DATA_ACCESS_REG));
}
static inline u_long
itlb_get_data_sun4u(u_int slot)
{
/*
* We read ASI_ITLB_DATA_ACCESS_REG twice in order to work
* around errata of USIII and beyond.
*/
(void)ldxa(TLB_DAR_SLOT(slot), ASI_ITLB_DATA_ACCESS_REG);
return (ldxa(TLB_DAR_SLOT(slot), ASI_ITLB_DATA_ACCESS_REG));
}
static vm_offset_t
dtlb_va_to_pa_sun4u(vm_offset_t va)
{
u_long pstate, reg;
int i;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
for (i = 0; i < dtlb_slot_max; i++) {
reg = ldxa(TLB_DAR_SLOT(i), ASI_DTLB_TAG_READ_REG);
if (TLB_TAR_VA(reg) != va)
continue;
reg = dtlb_get_data_sun4u(i);
wrpr(pstate, pstate, 0);
reg >>= TD_PA_SHIFT;
if (cpu_impl == CPU_IMPL_SPARC64V ||
cpu_impl >= CPU_IMPL_ULTRASPARCIII)
return (reg & TD_PA_CH_MASK);
return (reg & TD_PA_SF_MASK);
}
wrpr(pstate, pstate, 0);
return (-1);
}
static vm_offset_t
itlb_va_to_pa_sun4u(vm_offset_t va)
{
u_long pstate, reg;
int i;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
for (i = 0; i < itlb_slot_max; i++) {
reg = ldxa(TLB_DAR_SLOT(i), ASI_ITLB_TAG_READ_REG);
if (TLB_TAR_VA(reg) != va)
continue;
reg = itlb_get_data_sun4u(i);
wrpr(pstate, pstate, 0);
reg >>= TD_PA_SHIFT;
if (cpu_impl == CPU_IMPL_SPARC64V ||
cpu_impl >= CPU_IMPL_ULTRASPARCIII)
return (reg & TD_PA_CH_MASK);
return (reg & TD_PA_SF_MASK);
}
wrpr(pstate, pstate, 0);
return (-1);
}
static int
dtlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
{
return (OF_call_method("SUNW,dtlb-load", mmu, 3, 0, index, data,
virt));
}
static int
itlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
{
if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp && index == 0 &&
(data & TD_L) != 0)
panic("%s: won't enter locked TLB entry at index 0 on USIII+",
__func__);
return (OF_call_method("SUNW,itlb-load", mmu, 3, 0, index, data,
virt));
}
static void
itlb_relocate_locked0_sun4u(void)
{
u_long data, pstate, tag;
int i;
if (cpu_impl != CPU_IMPL_ULTRASPARCIIIp)
return;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
data = itlb_get_data_sun4u(0);
if ((data & (TD_V | TD_L)) != (TD_V | TD_L)) {
wrpr(pstate, pstate, 0);
return;
}
/* Flush the mapping of slot 0. */
tag = ldxa(TLB_DAR_SLOT(0), ASI_ITLB_TAG_READ_REG);
stxa(TLB_DEMAP_VA(TLB_TAR_VA(tag)) | TLB_DEMAP_PRIMARY |
TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0);
flush(0); /* The USIII-family ignores the address. */
/*
* Search a replacement slot != 0 and enter the data and tag
* that formerly were in slot 0.
*/
for (i = 1; i < itlb_slot_max; i++) {
if ((itlb_get_data_sun4u(i) & TD_V) != 0)
continue;
stxa(AA_IMMU_TAR, ASI_IMMU, tag);
stxa(TLB_DAR_SLOT(i), ASI_ITLB_DATA_ACCESS_REG, data);
flush(0); /* The USIII-family ignores the address. */
break;
}
wrpr(pstate, pstate, 0);
if (i == itlb_slot_max)
panic("%s: could not find a replacement slot", __func__);
}
static int
mmu_mapin_sun4u(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
u_long data;
u_int index;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if (dtlb_va_to_pa_sun4u(va) == (vm_offset_t)-1 ||
itlb_va_to_pa_sun4u(va) == (vm_offset_t)-1) {
/* Allocate a physical page, claim the virtual area. */
if (pa == (vm_offset_t)-1) {
pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("%s: out of memory", __func__);
mva = claim_virt(va, PAGE_SIZE_4M, 0);
if (mva != va)
panic("%s: can't claim virtual page "
"(wanted %#lx, got %#lx)",
__func__, va, mva);
/*
* The mappings may have changed, be paranoid.
*/
continue;
}
/*
* Actually, we can only allocate two pages less at
* most (depending on the kernel TSB size).
*/
if (dtlb_slot >= dtlb_slot_max)
panic("%s: out of dtlb_slots", __func__);
if (itlb_slot >= itlb_slot_max)
panic("%s: out of itlb_slots", __func__);
data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
TD_CV | TD_P | TD_W;
dtlb_store[dtlb_slot].te_pa = pa;
dtlb_store[dtlb_slot].te_va = va;
index = dtlb_slot_max - dtlb_slot - 1;
if (dtlb_enter_sun4u(index, data, va) < 0)
panic("%s: can't enter dTLB slot %d data "
"%#lx va %#lx", __func__, index, data,
va);
dtlb_slot++;
itlb_store[itlb_slot].te_pa = pa;
itlb_store[itlb_slot].te_va = va;
index = itlb_slot_max - itlb_slot - 1;
if (itlb_enter_sun4u(index, data, va) < 0)
panic("%s: can't enter iTLB slot %d data "
"%#lx va %#lxd", __func__, index, data,
va);
itlb_slot++;
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
release_phys(pa, PAGE_SIZE_4M);
return (0);
}
static int
mmu_mapin_sun4v(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if ((va >> 22) > SUN4V_TLB_SLOT_MAX)
panic("%s: trying to map more than 4GB", __func__);
if (tlb_store[va >> 22].te_pa == -1) {
/* Allocate a physical page, claim the virtual area */
if (pa == (vm_offset_t)-1) {
pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("%s: out of memory", __func__);
mva = claim_virt(va, PAGE_SIZE_4M, 0);
if (mva != va)
panic("%s: can't claim virtual page "
"(wanted %#lx, got %#lx)",
__func__, va, mva);
}
tlb_store[va >> 22].te_pa = pa;
if (map_phys(-1, PAGE_SIZE_4M, va, pa) == -1)
printf("%s: can't map physical page\n",
__func__);
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
release_phys(pa, PAGE_SIZE_4M);
return (0);
}
static vm_offset_t
init_heap(void)
{
/* There is no need for continuous physical heap memory. */
heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
return (heapva);
}
static phandle_t
find_bsp_sun4u(phandle_t node, uint32_t bspid)
{
char type[sizeof("cpu")];
phandle_t child;
uint32_t cpuid;
for (; node > 0; node = OF_peer(node)) {
child = OF_child(node);
if (child > 0) {
child = find_bsp_sun4u(child, bspid);
if (child > 0)
return (child);
} else {
if (OF_getprop(node, "device_type", type,
sizeof(type)) <= 0)
continue;
if (strcmp(type, "cpu") != 0)
continue;
if (OF_getprop(node, cpu_cpuid_prop_sun4u(), &cpuid,
sizeof(cpuid)) <= 0)
continue;
if (cpuid == bspid)
return (node);
}
}
return (0);
}
const char *
cpu_cpuid_prop_sun4u(void)
{
switch (cpu_impl) {
case CPU_IMPL_SPARC64:
case CPU_IMPL_SPARC64V:
case CPU_IMPL_ULTRASPARCI:
case CPU_IMPL_ULTRASPARCII:
case CPU_IMPL_ULTRASPARCIIi:
case CPU_IMPL_ULTRASPARCIIe:
return ("upa-portid");
case CPU_IMPL_ULTRASPARCIII:
case CPU_IMPL_ULTRASPARCIIIp:
case CPU_IMPL_ULTRASPARCIIIi:
case CPU_IMPL_ULTRASPARCIIIip:
return ("portid");
case CPU_IMPL_ULTRASPARCIV:
case CPU_IMPL_ULTRASPARCIVp:
return ("cpuid");
default:
return ("");
}
}
uint32_t
cpu_get_mid_sun4u(void)
{
switch (cpu_impl) {
case CPU_IMPL_SPARC64:
case CPU_IMPL_SPARC64V:
case CPU_IMPL_ULTRASPARCI:
case CPU_IMPL_ULTRASPARCII:
case CPU_IMPL_ULTRASPARCIIi:
case CPU_IMPL_ULTRASPARCIIe:
return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIII:
case CPU_IMPL_ULTRASPARCIIIp:
return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
ASI_FIREPLANE_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIIIi:
case CPU_IMPL_ULTRASPARCIIIip:
return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIV:
case CPU_IMPL_ULTRASPARCIVp:
return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
default:
return (0);
}
}
static void
tlb_init_sun4u(void)
{
phandle_t bsp;
cpu_impl = VER_IMPL(rdpr(ver));
bsp = find_bsp_sun4u(OF_child(root), cpu_get_mid_sun4u());
if (bsp == 0)
panic("%s: no node for bootcpu?!?!", __func__);
if (OF_getprop(bsp, "#dtlb-entries", &dtlb_slot_max,
sizeof(dtlb_slot_max)) == -1 ||
OF_getprop(bsp, "#itlb-entries", &itlb_slot_max,
sizeof(itlb_slot_max)) == -1)
panic("%s: can't get TLB slot max.", __func__);
if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp) {
#ifdef LOADER_DEBUG
printf("pre fixup:\n");
pmap_print_tlb_sun4u();
#endif
/*
* Relocate the locked entry in it16 slot 0 (if existent)
* as part of working around Cheetah+ erratum 34.
*/
itlb_relocate_locked0_sun4u();
#ifdef LOADER_DEBUG
printf("post fixup:\n");
pmap_print_tlb_sun4u();
#endif
}
dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
if (dtlb_store == NULL || itlb_store == NULL)
panic("%s: can't allocate TLB store", __func__);
}
static void
tlb_init_sun4v(void)
{
tlb_store = malloc(SUN4V_TLB_SLOT_MAX * sizeof(*tlb_store));
memset(tlb_store, 0xFF, SUN4V_TLB_SLOT_MAX * sizeof(*tlb_store));
}
int
main(int (*openfirm)(void *))
{
char bootpath[64];
char compatible[32];
struct devsw **dp;
/*
* Tell the Open Firmware functions where they find the OFW gate.
*/
OF_init(openfirm);
archsw.arch_getdev = ofw_getdev;
archsw.arch_copyin = sparc64_copyin;
archsw.arch_copyout = ofw_copyout;
archsw.arch_readin = sparc64_readin;
archsw.arch_autoload = sparc64_autoload;
archsw.arch_maphint = sparc64_maphint;
if (init_heap() == (vm_offset_t)-1)
OF_exit();
setheap((void *)heapva, (void *)(heapva + HEAPSZ));
/*
* Probe for a console.
*/
cons_probe();
if ((root = OF_peer(0)) == -1)
panic("%s: can't get root phandle", __func__);
OF_getprop(root, "compatible", compatible, sizeof(compatible));
if (!strcmp(compatible, "sun4v")) {
printf("\nBooting with sun4v support.\n");
mmu_ops = &mmu_ops_sun4v;
is_sun4v = 1;
} else {
printf("\nBooting with sun4u support.\n");
mmu_ops = &mmu_ops_sun4u;
}
mmu_ops->tlb_init();
/*
* Initialize devices.
*/
for (dp = devsw; *dp != 0; dp++) {
if ((*dp)->dv_init != 0)
(*dp)->dv_init();
}
/*
* Set up the current device.
*/
OF_getprop(chosen, "bootpath", bootpath, sizeof(bootpath));
/*
* Sun compatible bootable CD-ROMs have a disk label placed
* before the cd9660 data, with the actual filesystem being
* in the first partition, while the other partitions contain
* pseudo disk labels with embedded boot blocks for different
* architectures, which may be followed by UFS filesystems.
* The firmware will set the boot path to the partition it
* boots from ('f' in the sun4u case), but we want the kernel
* to be loaded from the cd9660 fs ('a'), so the boot path
* needs to be altered.
*/
if (bootpath[strlen(bootpath) - 2] == ':' &&
bootpath[strlen(bootpath) - 1] == 'f') {
bootpath[strlen(bootpath) - 1] = 'a';
printf("Boot path set to %s\n", bootpath);
}
env_setenv("currdev", EV_VOLATILE, bootpath,
ofw_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, bootpath,
env_noset, env_nounset);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
printf("bootpath=\"%s\"\n", bootpath);
/* Give control to the machine independent loader code. */
interact();
return (1);
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
printf("Rebooting...\n");
OF_exit();
}
/* provide this for panic, as it's not in the startup code */
void
exit(int code)
{
OF_exit();
}
#ifdef LOADER_DEBUG
static const char *const page_sizes[] = {
" 8k", " 64k", "512k", " 4m"
};
static void
pmap_print_tte_sun4u(tte_t tag, tte_t tte)
{
printf("%s %s ",
page_sizes[(tte >> TD_SIZE_SHIFT) & TD_SIZE_MASK],
tag & TD_G ? "G" : " ");
printf(tte & TD_W ? "W " : " ");
printf(tte & TD_P ? "\e[33mP\e[0m " : " ");
printf(tte & TD_E ? "E " : " ");
printf(tte & TD_CV ? "CV " : " ");
printf(tte & TD_CP ? "CP " : " ");
printf(tte & TD_L ? "\e[32mL\e[0m " : " ");
printf(tte & TD_IE ? "IE " : " ");
printf(tte & TD_NFO ? "NFO " : " ");
printf("pa=0x%lx va=0x%lx ctx=%ld\n",
TD_PA(tte), TLB_TAR_VA(tag), TLB_TAR_CTX(tag));
}
static void
pmap_print_tlb_sun4u(void)
{
tte_t tag, tte;
u_long pstate;
int i;
pstate = rdpr(pstate);
for (i = 0; i < itlb_slot_max; i++) {
wrpr(pstate, pstate & ~PSTATE_IE, 0);
tte = itlb_get_data_sun4u(i);
wrpr(pstate, pstate, 0);
if (!(tte & TD_V))
continue;
tag = ldxa(TLB_DAR_SLOT(i), ASI_ITLB_TAG_READ_REG);
printf("iTLB-%2u: ", i);
pmap_print_tte_sun4u(tag, tte);
}
for (i = 0; i < dtlb_slot_max; i++) {
wrpr(pstate, pstate & ~PSTATE_IE, 0);
tte = dtlb_get_data_sun4u(i);
wrpr(pstate, pstate, 0);
if (!(tte & TD_V))
continue;
tag = ldxa(TLB_DAR_SLOT(i), ASI_DTLB_TAG_READ_REG);
printf("dTLB-%2u: ", i);
pmap_print_tte_sun4u(tag, tte);
}
}
#endif