772c8b6749
Sponsored by: The FreeBSD Foundation
3631 lines
88 KiB
C
3631 lines
88 KiB
C
/*-
|
|
* Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
|
|
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
|
|
* Copyright (c) 2004-2006 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* uma_core.c Implementation of the Universal Memory allocator
|
|
*
|
|
* This allocator is intended to replace the multitude of similar object caches
|
|
* in the standard FreeBSD kernel. The intent is to be flexible as well as
|
|
* efficient. A primary design goal is to return unused memory to the rest of
|
|
* the system. This will make the system as a whole more flexible due to the
|
|
* ability to move memory to subsystems which most need it instead of leaving
|
|
* pools of reserved memory unused.
|
|
*
|
|
* The basic ideas stem from similar slab/zone based allocators whose algorithms
|
|
* are well known.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* - Improve memory usage for large allocations
|
|
* - Investigate cache size adjustments
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_param.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bitset.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/random.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
#include <vm/memguard.h>
|
|
#endif
|
|
|
|
/*
|
|
* This is the zone and keg from which all zones are spawned. The idea is that
|
|
* even the zone & keg heads are allocated from the allocator, so we use the
|
|
* bss section to bootstrap us.
|
|
*/
|
|
static struct uma_keg masterkeg;
|
|
static struct uma_zone masterzone_k;
|
|
static struct uma_zone masterzone_z;
|
|
static uma_zone_t kegs = &masterzone_k;
|
|
static uma_zone_t zones = &masterzone_z;
|
|
|
|
/* This is the zone from which all of uma_slab_t's are allocated. */
|
|
static uma_zone_t slabzone;
|
|
|
|
/*
|
|
* The initial hash tables come out of this zone so they can be allocated
|
|
* prior to malloc coming up.
|
|
*/
|
|
static uma_zone_t hashzone;
|
|
|
|
/* The boot-time adjusted value for cache line alignment. */
|
|
int uma_align_cache = 64 - 1;
|
|
|
|
static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
|
|
|
|
/*
|
|
* Are we allowed to allocate buckets?
|
|
*/
|
|
static int bucketdisable = 1;
|
|
|
|
/* Linked list of all kegs in the system */
|
|
static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
|
|
|
|
/* Linked list of all cache-only zones in the system */
|
|
static LIST_HEAD(,uma_zone) uma_cachezones =
|
|
LIST_HEAD_INITIALIZER(uma_cachezones);
|
|
|
|
/* This RW lock protects the keg list */
|
|
static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
|
|
|
|
/*
|
|
* Pointer and counter to pool of pages, that is preallocated at
|
|
* startup to bootstrap UMA. Early zones continue to use the pool
|
|
* until it is depleted, so allocations may happen after boot, thus
|
|
* we need a mutex to protect it.
|
|
*/
|
|
static char *bootmem;
|
|
static int boot_pages;
|
|
static struct mtx uma_boot_pages_mtx;
|
|
|
|
static struct sx uma_drain_lock;
|
|
|
|
/* Is the VM done starting up? */
|
|
static int booted = 0;
|
|
#define UMA_STARTUP 1
|
|
#define UMA_STARTUP2 2
|
|
|
|
/*
|
|
* This is the handle used to schedule events that need to happen
|
|
* outside of the allocation fast path.
|
|
*/
|
|
static struct callout uma_callout;
|
|
#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
|
|
|
|
/*
|
|
* This structure is passed as the zone ctor arg so that I don't have to create
|
|
* a special allocation function just for zones.
|
|
*/
|
|
struct uma_zctor_args {
|
|
const char *name;
|
|
size_t size;
|
|
uma_ctor ctor;
|
|
uma_dtor dtor;
|
|
uma_init uminit;
|
|
uma_fini fini;
|
|
uma_import import;
|
|
uma_release release;
|
|
void *arg;
|
|
uma_keg_t keg;
|
|
int align;
|
|
uint32_t flags;
|
|
};
|
|
|
|
struct uma_kctor_args {
|
|
uma_zone_t zone;
|
|
size_t size;
|
|
uma_init uminit;
|
|
uma_fini fini;
|
|
int align;
|
|
uint32_t flags;
|
|
};
|
|
|
|
struct uma_bucket_zone {
|
|
uma_zone_t ubz_zone;
|
|
char *ubz_name;
|
|
int ubz_entries; /* Number of items it can hold. */
|
|
int ubz_maxsize; /* Maximum allocation size per-item. */
|
|
};
|
|
|
|
/*
|
|
* Compute the actual number of bucket entries to pack them in power
|
|
* of two sizes for more efficient space utilization.
|
|
*/
|
|
#define BUCKET_SIZE(n) \
|
|
(((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
|
|
|
|
#define BUCKET_MAX BUCKET_SIZE(256)
|
|
|
|
struct uma_bucket_zone bucket_zones[] = {
|
|
{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
|
|
{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
|
|
{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
|
|
{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
|
|
{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
|
|
{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
|
|
{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
|
|
{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
|
|
{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
|
|
{ NULL, NULL, 0}
|
|
};
|
|
|
|
/*
|
|
* Flags and enumerations to be passed to internal functions.
|
|
*/
|
|
enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
|
|
|
|
/* Prototypes.. */
|
|
|
|
static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
|
|
static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
|
|
static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
|
|
static void page_free(void *, vm_size_t, uint8_t);
|
|
static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
|
|
static void cache_drain(uma_zone_t);
|
|
static void bucket_drain(uma_zone_t, uma_bucket_t);
|
|
static void bucket_cache_drain(uma_zone_t zone);
|
|
static int keg_ctor(void *, int, void *, int);
|
|
static void keg_dtor(void *, int, void *);
|
|
static int zone_ctor(void *, int, void *, int);
|
|
static void zone_dtor(void *, int, void *);
|
|
static int zero_init(void *, int, int);
|
|
static void keg_small_init(uma_keg_t keg);
|
|
static void keg_large_init(uma_keg_t keg);
|
|
static void zone_foreach(void (*zfunc)(uma_zone_t));
|
|
static void zone_timeout(uma_zone_t zone);
|
|
static int hash_alloc(struct uma_hash *);
|
|
static int hash_expand(struct uma_hash *, struct uma_hash *);
|
|
static void hash_free(struct uma_hash *hash);
|
|
static void uma_timeout(void *);
|
|
static void uma_startup3(void);
|
|
static void *zone_alloc_item(uma_zone_t, void *, int);
|
|
static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
|
|
static void bucket_enable(void);
|
|
static void bucket_init(void);
|
|
static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
|
|
static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
|
|
static void bucket_zone_drain(void);
|
|
static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
|
|
static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
|
|
static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
|
|
static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
|
|
static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
|
|
static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
|
|
uma_fini fini, int align, uint32_t flags);
|
|
static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
|
|
static void zone_release(uma_zone_t zone, void **bucket, int cnt);
|
|
static void uma_zero_item(void *item, uma_zone_t zone);
|
|
|
|
void uma_print_zone(uma_zone_t);
|
|
void uma_print_stats(void);
|
|
static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
#ifdef INVARIANTS
|
|
static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
|
|
static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
|
|
#endif
|
|
|
|
SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
|
|
|
|
SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
|
|
0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
|
|
|
|
SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
|
|
0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
|
|
|
|
static int zone_warnings = 1;
|
|
SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
|
|
"Warn when UMA zones becomes full");
|
|
|
|
/*
|
|
* This routine checks to see whether or not it's safe to enable buckets.
|
|
*/
|
|
static void
|
|
bucket_enable(void)
|
|
{
|
|
bucketdisable = vm_page_count_min();
|
|
}
|
|
|
|
/*
|
|
* Initialize bucket_zones, the array of zones of buckets of various sizes.
|
|
*
|
|
* For each zone, calculate the memory required for each bucket, consisting
|
|
* of the header and an array of pointers.
|
|
*/
|
|
static void
|
|
bucket_init(void)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
int size;
|
|
|
|
for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
|
|
size = roundup(sizeof(struct uma_bucket), sizeof(void *));
|
|
size += sizeof(void *) * ubz->ubz_entries;
|
|
ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a desired number of entries for a bucket, return the zone from which
|
|
* to allocate the bucket.
|
|
*/
|
|
static struct uma_bucket_zone *
|
|
bucket_zone_lookup(int entries)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
|
|
if (ubz->ubz_entries >= entries)
|
|
return (ubz);
|
|
ubz--;
|
|
return (ubz);
|
|
}
|
|
|
|
static int
|
|
bucket_select(int size)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
ubz = &bucket_zones[0];
|
|
if (size > ubz->ubz_maxsize)
|
|
return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
|
|
|
|
for (; ubz->ubz_entries != 0; ubz++)
|
|
if (ubz->ubz_maxsize < size)
|
|
break;
|
|
ubz--;
|
|
return (ubz->ubz_entries);
|
|
}
|
|
|
|
static uma_bucket_t
|
|
bucket_alloc(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
uma_bucket_t bucket;
|
|
|
|
/*
|
|
* This is to stop us from allocating per cpu buckets while we're
|
|
* running out of vm.boot_pages. Otherwise, we would exhaust the
|
|
* boot pages. This also prevents us from allocating buckets in
|
|
* low memory situations.
|
|
*/
|
|
if (bucketdisable)
|
|
return (NULL);
|
|
/*
|
|
* To limit bucket recursion we store the original zone flags
|
|
* in a cookie passed via zalloc_arg/zfree_arg. This allows the
|
|
* NOVM flag to persist even through deep recursions. We also
|
|
* store ZFLAG_BUCKET once we have recursed attempting to allocate
|
|
* a bucket for a bucket zone so we do not allow infinite bucket
|
|
* recursion. This cookie will even persist to frees of unused
|
|
* buckets via the allocation path or bucket allocations in the
|
|
* free path.
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
|
|
udata = (void *)(uintptr_t)zone->uz_flags;
|
|
else {
|
|
if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
|
|
return (NULL);
|
|
udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
|
|
}
|
|
if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
|
|
flags |= M_NOVM;
|
|
ubz = bucket_zone_lookup(zone->uz_count);
|
|
if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
|
|
ubz++;
|
|
bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
|
|
if (bucket) {
|
|
#ifdef INVARIANTS
|
|
bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
|
|
#endif
|
|
bucket->ub_cnt = 0;
|
|
bucket->ub_entries = ubz->ubz_entries;
|
|
}
|
|
|
|
return (bucket);
|
|
}
|
|
|
|
static void
|
|
bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
KASSERT(bucket->ub_cnt == 0,
|
|
("bucket_free: Freeing a non free bucket."));
|
|
if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
|
|
udata = (void *)(uintptr_t)zone->uz_flags;
|
|
ubz = bucket_zone_lookup(bucket->ub_entries);
|
|
uma_zfree_arg(ubz->ubz_zone, bucket, udata);
|
|
}
|
|
|
|
static void
|
|
bucket_zone_drain(void)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
|
|
zone_drain(ubz->ubz_zone);
|
|
}
|
|
|
|
static void
|
|
zone_log_warning(uma_zone_t zone)
|
|
{
|
|
static const struct timeval warninterval = { 300, 0 };
|
|
|
|
if (!zone_warnings || zone->uz_warning == NULL)
|
|
return;
|
|
|
|
if (ratecheck(&zone->uz_ratecheck, &warninterval))
|
|
printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
|
|
}
|
|
|
|
static inline void
|
|
zone_maxaction(uma_zone_t zone)
|
|
{
|
|
|
|
if (zone->uz_maxaction.ta_func != NULL)
|
|
taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
|
|
}
|
|
|
|
static void
|
|
zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
|
|
{
|
|
uma_klink_t klink;
|
|
|
|
LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
|
|
kegfn(klink->kl_keg);
|
|
}
|
|
|
|
/*
|
|
* Routine called by timeout which is used to fire off some time interval
|
|
* based calculations. (stats, hash size, etc.)
|
|
*
|
|
* Arguments:
|
|
* arg Unused
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
uma_timeout(void *unused)
|
|
{
|
|
bucket_enable();
|
|
zone_foreach(zone_timeout);
|
|
|
|
/* Reschedule this event */
|
|
callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
|
|
}
|
|
|
|
/*
|
|
* Routine to perform timeout driven calculations. This expands the
|
|
* hashes and does per cpu statistics aggregation.
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
static void
|
|
keg_timeout(uma_keg_t keg)
|
|
{
|
|
|
|
KEG_LOCK(keg);
|
|
/*
|
|
* Expand the keg hash table.
|
|
*
|
|
* This is done if the number of slabs is larger than the hash size.
|
|
* What I'm trying to do here is completely reduce collisions. This
|
|
* may be a little aggressive. Should I allow for two collisions max?
|
|
*/
|
|
if (keg->uk_flags & UMA_ZONE_HASH &&
|
|
keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
|
|
struct uma_hash newhash;
|
|
struct uma_hash oldhash;
|
|
int ret;
|
|
|
|
/*
|
|
* This is so involved because allocating and freeing
|
|
* while the keg lock is held will lead to deadlock.
|
|
* I have to do everything in stages and check for
|
|
* races.
|
|
*/
|
|
newhash = keg->uk_hash;
|
|
KEG_UNLOCK(keg);
|
|
ret = hash_alloc(&newhash);
|
|
KEG_LOCK(keg);
|
|
if (ret) {
|
|
if (hash_expand(&keg->uk_hash, &newhash)) {
|
|
oldhash = keg->uk_hash;
|
|
keg->uk_hash = newhash;
|
|
} else
|
|
oldhash = newhash;
|
|
|
|
KEG_UNLOCK(keg);
|
|
hash_free(&oldhash);
|
|
return;
|
|
}
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
static void
|
|
zone_timeout(uma_zone_t zone)
|
|
{
|
|
|
|
zone_foreach_keg(zone, &keg_timeout);
|
|
}
|
|
|
|
/*
|
|
* Allocate and zero fill the next sized hash table from the appropriate
|
|
* backing store.
|
|
*
|
|
* Arguments:
|
|
* hash A new hash structure with the old hash size in uh_hashsize
|
|
*
|
|
* Returns:
|
|
* 1 on success and 0 on failure.
|
|
*/
|
|
static int
|
|
hash_alloc(struct uma_hash *hash)
|
|
{
|
|
int oldsize;
|
|
int alloc;
|
|
|
|
oldsize = hash->uh_hashsize;
|
|
|
|
/* We're just going to go to a power of two greater */
|
|
if (oldsize) {
|
|
hash->uh_hashsize = oldsize * 2;
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
|
|
hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
|
|
M_UMAHASH, M_NOWAIT);
|
|
} else {
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
|
|
hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
|
|
M_WAITOK);
|
|
hash->uh_hashsize = UMA_HASH_SIZE_INIT;
|
|
}
|
|
if (hash->uh_slab_hash) {
|
|
bzero(hash->uh_slab_hash, alloc);
|
|
hash->uh_hashmask = hash->uh_hashsize - 1;
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Expands the hash table for HASH zones. This is done from zone_timeout
|
|
* to reduce collisions. This must not be done in the regular allocation
|
|
* path, otherwise, we can recurse on the vm while allocating pages.
|
|
*
|
|
* Arguments:
|
|
* oldhash The hash you want to expand
|
|
* newhash The hash structure for the new table
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*
|
|
* Discussion:
|
|
*/
|
|
static int
|
|
hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
|
|
{
|
|
uma_slab_t slab;
|
|
int hval;
|
|
int i;
|
|
|
|
if (!newhash->uh_slab_hash)
|
|
return (0);
|
|
|
|
if (oldhash->uh_hashsize >= newhash->uh_hashsize)
|
|
return (0);
|
|
|
|
/*
|
|
* I need to investigate hash algorithms for resizing without a
|
|
* full rehash.
|
|
*/
|
|
|
|
for (i = 0; i < oldhash->uh_hashsize; i++)
|
|
while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
|
|
slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
|
|
SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
|
|
hval = UMA_HASH(newhash, slab->us_data);
|
|
SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
|
|
slab, us_hlink);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Free the hash bucket to the appropriate backing store.
|
|
*
|
|
* Arguments:
|
|
* slab_hash The hash bucket we're freeing
|
|
* hashsize The number of entries in that hash bucket
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
hash_free(struct uma_hash *hash)
|
|
{
|
|
if (hash->uh_slab_hash == NULL)
|
|
return;
|
|
if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
|
|
zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
|
|
else
|
|
free(hash->uh_slab_hash, M_UMAHASH);
|
|
}
|
|
|
|
/*
|
|
* Frees all outstanding items in a bucket
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to, must be unlocked.
|
|
* bucket The free/alloc bucket with items, cpu queue must be locked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
|
|
static void
|
|
bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
|
|
{
|
|
int i;
|
|
|
|
if (bucket == NULL)
|
|
return;
|
|
|
|
if (zone->uz_fini)
|
|
for (i = 0; i < bucket->ub_cnt; i++)
|
|
zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
|
|
zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
|
|
bucket->ub_cnt = 0;
|
|
}
|
|
|
|
/*
|
|
* Drains the per cpu caches for a zone.
|
|
*
|
|
* NOTE: This may only be called while the zone is being turn down, and not
|
|
* during normal operation. This is necessary in order that we do not have
|
|
* to migrate CPUs to drain the per-CPU caches.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to drain, must be unlocked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
cache_drain(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
int cpu;
|
|
|
|
/*
|
|
* XXX: It is safe to not lock the per-CPU caches, because we're
|
|
* tearing down the zone anyway. I.e., there will be no further use
|
|
* of the caches at this point.
|
|
*
|
|
* XXX: It would good to be able to assert that the zone is being
|
|
* torn down to prevent improper use of cache_drain().
|
|
*
|
|
* XXX: We lock the zone before passing into bucket_cache_drain() as
|
|
* it is used elsewhere. Should the tear-down path be made special
|
|
* there in some form?
|
|
*/
|
|
CPU_FOREACH(cpu) {
|
|
cache = &zone->uz_cpu[cpu];
|
|
bucket_drain(zone, cache->uc_allocbucket);
|
|
bucket_drain(zone, cache->uc_freebucket);
|
|
if (cache->uc_allocbucket != NULL)
|
|
bucket_free(zone, cache->uc_allocbucket, NULL);
|
|
if (cache->uc_freebucket != NULL)
|
|
bucket_free(zone, cache->uc_freebucket, NULL);
|
|
cache->uc_allocbucket = cache->uc_freebucket = NULL;
|
|
}
|
|
ZONE_LOCK(zone);
|
|
bucket_cache_drain(zone);
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
static void
|
|
cache_shrink(uma_zone_t zone)
|
|
{
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
|
|
return;
|
|
|
|
ZONE_LOCK(zone);
|
|
zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
static void
|
|
cache_drain_safe_cpu(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_bucket_t b1, b2;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
|
|
return;
|
|
|
|
b1 = b2 = NULL;
|
|
ZONE_LOCK(zone);
|
|
critical_enter();
|
|
cache = &zone->uz_cpu[curcpu];
|
|
if (cache->uc_allocbucket) {
|
|
if (cache->uc_allocbucket->ub_cnt != 0)
|
|
LIST_INSERT_HEAD(&zone->uz_buckets,
|
|
cache->uc_allocbucket, ub_link);
|
|
else
|
|
b1 = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = NULL;
|
|
}
|
|
if (cache->uc_freebucket) {
|
|
if (cache->uc_freebucket->ub_cnt != 0)
|
|
LIST_INSERT_HEAD(&zone->uz_buckets,
|
|
cache->uc_freebucket, ub_link);
|
|
else
|
|
b2 = cache->uc_freebucket;
|
|
cache->uc_freebucket = NULL;
|
|
}
|
|
critical_exit();
|
|
ZONE_UNLOCK(zone);
|
|
if (b1)
|
|
bucket_free(zone, b1, NULL);
|
|
if (b2)
|
|
bucket_free(zone, b2, NULL);
|
|
}
|
|
|
|
/*
|
|
* Safely drain per-CPU caches of a zone(s) to alloc bucket.
|
|
* This is an expensive call because it needs to bind to all CPUs
|
|
* one by one and enter a critical section on each of them in order
|
|
* to safely access their cache buckets.
|
|
* Zone lock must not be held on call this function.
|
|
*/
|
|
static void
|
|
cache_drain_safe(uma_zone_t zone)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* Polite bucket sizes shrinking was not enouth, shrink aggressively.
|
|
*/
|
|
if (zone)
|
|
cache_shrink(zone);
|
|
else
|
|
zone_foreach(cache_shrink);
|
|
|
|
CPU_FOREACH(cpu) {
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, cpu);
|
|
thread_unlock(curthread);
|
|
|
|
if (zone)
|
|
cache_drain_safe_cpu(zone);
|
|
else
|
|
zone_foreach(cache_drain_safe_cpu);
|
|
}
|
|
thread_lock(curthread);
|
|
sched_unbind(curthread);
|
|
thread_unlock(curthread);
|
|
}
|
|
|
|
/*
|
|
* Drain the cached buckets from a zone. Expects a locked zone on entry.
|
|
*/
|
|
static void
|
|
bucket_cache_drain(uma_zone_t zone)
|
|
{
|
|
uma_bucket_t bucket;
|
|
|
|
/*
|
|
* Drain the bucket queues and free the buckets, we just keep two per
|
|
* cpu (alloc/free).
|
|
*/
|
|
while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
bucket_drain(zone, bucket);
|
|
bucket_free(zone, bucket, NULL);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
|
|
/*
|
|
* Shrink further bucket sizes. Price of single zone lock collision
|
|
* is probably lower then price of global cache drain.
|
|
*/
|
|
if (zone->uz_count > zone->uz_count_min)
|
|
zone->uz_count--;
|
|
}
|
|
|
|
static void
|
|
keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
|
|
{
|
|
uint8_t *mem;
|
|
int i;
|
|
uint8_t flags;
|
|
|
|
CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
|
|
keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
|
|
|
|
mem = slab->us_data;
|
|
flags = slab->us_flags;
|
|
i = start;
|
|
if (keg->uk_fini != NULL) {
|
|
for (i--; i > -1; i--)
|
|
keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
|
|
keg->uk_size);
|
|
}
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
|
|
keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
|
|
}
|
|
|
|
/*
|
|
* Frees pages from a keg back to the system. This is done on demand from
|
|
* the pageout daemon.
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
static void
|
|
keg_drain(uma_keg_t keg)
|
|
{
|
|
struct slabhead freeslabs = { 0 };
|
|
uma_slab_t slab, tmp;
|
|
|
|
/*
|
|
* We don't want to take pages from statically allocated kegs at this
|
|
* time
|
|
*/
|
|
if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
|
|
return;
|
|
|
|
CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u",
|
|
keg->uk_name, keg, keg->uk_free);
|
|
KEG_LOCK(keg);
|
|
if (keg->uk_free == 0)
|
|
goto finished;
|
|
|
|
LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
|
|
/* We have nowhere to free these to. */
|
|
if (slab->us_flags & UMA_SLAB_BOOT)
|
|
continue;
|
|
|
|
LIST_REMOVE(slab, us_link);
|
|
keg->uk_pages -= keg->uk_ppera;
|
|
keg->uk_free -= keg->uk_ipers;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
|
|
|
|
SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
|
|
}
|
|
finished:
|
|
KEG_UNLOCK(keg);
|
|
|
|
while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
|
|
SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
|
|
keg_free_slab(keg, slab, keg->uk_ipers);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zone_drain_wait(uma_zone_t zone, int waitok)
|
|
{
|
|
|
|
/*
|
|
* Set draining to interlock with zone_dtor() so we can release our
|
|
* locks as we go. Only dtor() should do a WAITOK call since it
|
|
* is the only call that knows the structure will still be available
|
|
* when it wakes up.
|
|
*/
|
|
ZONE_LOCK(zone);
|
|
while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
|
|
if (waitok == M_NOWAIT)
|
|
goto out;
|
|
msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
|
|
}
|
|
zone->uz_flags |= UMA_ZFLAG_DRAINING;
|
|
bucket_cache_drain(zone);
|
|
ZONE_UNLOCK(zone);
|
|
/*
|
|
* The DRAINING flag protects us from being freed while
|
|
* we're running. Normally the uma_rwlock would protect us but we
|
|
* must be able to release and acquire the right lock for each keg.
|
|
*/
|
|
zone_foreach_keg(zone, &keg_drain);
|
|
ZONE_LOCK(zone);
|
|
zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
|
|
wakeup(zone);
|
|
out:
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
void
|
|
zone_drain(uma_zone_t zone)
|
|
{
|
|
|
|
zone_drain_wait(zone, M_NOWAIT);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new slab for a keg. This does not insert the slab onto a list.
|
|
*
|
|
* Arguments:
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* The slab that was allocated or NULL if there is no memory and the
|
|
* caller specified M_NOWAIT.
|
|
*/
|
|
static uma_slab_t
|
|
keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
|
|
{
|
|
uma_alloc allocf;
|
|
uma_slab_t slab;
|
|
uint8_t *mem;
|
|
uint8_t flags;
|
|
int i;
|
|
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
slab = NULL;
|
|
mem = NULL;
|
|
|
|
allocf = keg->uk_allocf;
|
|
KEG_UNLOCK(keg);
|
|
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
|
|
slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
|
|
if (slab == NULL)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This reproduces the old vm_zone behavior of zero filling pages the
|
|
* first time they are added to a zone.
|
|
*
|
|
* Malloced items are zeroed in uma_zalloc.
|
|
*/
|
|
|
|
if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
|
|
wait |= M_ZERO;
|
|
else
|
|
wait &= ~M_ZERO;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_NODUMP)
|
|
wait |= M_NODUMP;
|
|
|
|
/* zone is passed for legacy reasons. */
|
|
mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
|
|
if (mem == NULL) {
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
|
|
slab = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/* Point the slab into the allocated memory */
|
|
if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
|
|
slab = (uma_slab_t )(mem + keg->uk_pgoff);
|
|
|
|
if (keg->uk_flags & UMA_ZONE_VTOSLAB)
|
|
for (i = 0; i < keg->uk_ppera; i++)
|
|
vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
|
|
|
|
slab->us_keg = keg;
|
|
slab->us_data = mem;
|
|
slab->us_freecount = keg->uk_ipers;
|
|
slab->us_flags = flags;
|
|
BIT_FILL(SLAB_SETSIZE, &slab->us_free);
|
|
#ifdef INVARIANTS
|
|
BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
|
|
#endif
|
|
|
|
if (keg->uk_init != NULL) {
|
|
for (i = 0; i < keg->uk_ipers; i++)
|
|
if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
|
|
keg->uk_size, wait) != 0)
|
|
break;
|
|
if (i != keg->uk_ipers) {
|
|
keg_free_slab(keg, slab, i);
|
|
slab = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
KEG_LOCK(keg);
|
|
|
|
CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
|
|
slab, keg->uk_name, keg);
|
|
|
|
if (slab != NULL) {
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
|
|
|
|
keg->uk_pages += keg->uk_ppera;
|
|
keg->uk_free += keg->uk_ipers;
|
|
}
|
|
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* This function is intended to be used early on in place of page_alloc() so
|
|
* that we may use the boot time page cache to satisfy allocations before
|
|
* the VM is ready.
|
|
*/
|
|
static void *
|
|
startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
|
|
{
|
|
uma_keg_t keg;
|
|
void *mem;
|
|
int pages;
|
|
|
|
keg = zone_first_keg(zone);
|
|
pages = howmany(bytes, PAGE_SIZE);
|
|
KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
|
|
|
|
/*
|
|
* Check our small startup cache to see if it has pages remaining.
|
|
*/
|
|
mtx_lock(&uma_boot_pages_mtx);
|
|
if (pages <= boot_pages) {
|
|
mem = bootmem;
|
|
boot_pages -= pages;
|
|
bootmem += pages * PAGE_SIZE;
|
|
mtx_unlock(&uma_boot_pages_mtx);
|
|
*pflag = UMA_SLAB_BOOT;
|
|
return (mem);
|
|
}
|
|
mtx_unlock(&uma_boot_pages_mtx);
|
|
if (booted < UMA_STARTUP2)
|
|
panic("UMA: Increase vm.boot_pages");
|
|
/*
|
|
* Now that we've booted reset these users to their real allocator.
|
|
*/
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
|
|
#else
|
|
keg->uk_allocf = page_alloc;
|
|
#endif
|
|
return keg->uk_allocf(zone, bytes, pflag, wait);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from the system
|
|
*
|
|
* Arguments:
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*/
|
|
static void *
|
|
page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
|
|
{
|
|
void *p; /* Returned page */
|
|
|
|
*pflag = UMA_SLAB_KMEM;
|
|
p = (void *) kmem_malloc(kmem_arena, bytes, wait);
|
|
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from within an object
|
|
*
|
|
* Arguments:
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*/
|
|
static void *
|
|
noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
|
|
{
|
|
TAILQ_HEAD(, vm_page) alloctail;
|
|
u_long npages;
|
|
vm_offset_t retkva, zkva;
|
|
vm_page_t p, p_next;
|
|
uma_keg_t keg;
|
|
|
|
TAILQ_INIT(&alloctail);
|
|
keg = zone_first_keg(zone);
|
|
|
|
npages = howmany(bytes, PAGE_SIZE);
|
|
while (npages > 0) {
|
|
p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
|
|
VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
|
|
((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
|
|
VM_ALLOC_NOWAIT));
|
|
if (p != NULL) {
|
|
/*
|
|
* Since the page does not belong to an object, its
|
|
* listq is unused.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&alloctail, p, listq);
|
|
npages--;
|
|
continue;
|
|
}
|
|
/*
|
|
* Page allocation failed, free intermediate pages and
|
|
* exit.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
|
|
vm_page_unwire(p, PQ_NONE);
|
|
vm_page_free(p);
|
|
}
|
|
return (NULL);
|
|
}
|
|
*flags = UMA_SLAB_PRIV;
|
|
zkva = keg->uk_kva +
|
|
atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
|
|
retkva = zkva;
|
|
TAILQ_FOREACH(p, &alloctail, listq) {
|
|
pmap_qenter(zkva, &p, 1);
|
|
zkva += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)retkva);
|
|
}
|
|
|
|
/*
|
|
* Frees a number of pages to the system
|
|
*
|
|
* Arguments:
|
|
* mem A pointer to the memory to be freed
|
|
* size The size of the memory being freed
|
|
* flags The original p->us_flags field
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
page_free(void *mem, vm_size_t size, uint8_t flags)
|
|
{
|
|
struct vmem *vmem;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
vmem = kmem_arena;
|
|
else if (flags & UMA_SLAB_KERNEL)
|
|
vmem = kernel_arena;
|
|
else
|
|
panic("UMA: page_free used with invalid flags %x", flags);
|
|
|
|
kmem_free(vmem, (vm_offset_t)mem, size);
|
|
}
|
|
|
|
/*
|
|
* Zero fill initializer
|
|
*
|
|
* Arguments/Returns follow uma_init specifications
|
|
*/
|
|
static int
|
|
zero_init(void *mem, int size, int flags)
|
|
{
|
|
bzero(mem, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Finish creating a small uma keg. This calculates ipers, and the keg size.
|
|
*
|
|
* Arguments
|
|
* keg The zone we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
keg_small_init(uma_keg_t keg)
|
|
{
|
|
u_int rsize;
|
|
u_int memused;
|
|
u_int wastedspace;
|
|
u_int shsize;
|
|
u_int slabsize;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_PCPU) {
|
|
u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
|
|
|
|
slabsize = sizeof(struct pcpu);
|
|
keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
|
|
PAGE_SIZE);
|
|
} else {
|
|
slabsize = UMA_SLAB_SIZE;
|
|
keg->uk_ppera = 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of each allocation (rsize) according to
|
|
* alignment. If the requested size is smaller than we have
|
|
* allocation bits for we round it up.
|
|
*/
|
|
rsize = keg->uk_size;
|
|
if (rsize < slabsize / SLAB_SETSIZE)
|
|
rsize = slabsize / SLAB_SETSIZE;
|
|
if (rsize & keg->uk_align)
|
|
rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
|
|
keg->uk_rsize = rsize;
|
|
|
|
KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
|
|
keg->uk_rsize < sizeof(struct pcpu),
|
|
("%s: size %u too large", __func__, keg->uk_rsize));
|
|
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
shsize = 0;
|
|
else
|
|
shsize = sizeof(struct uma_slab);
|
|
|
|
keg->uk_ipers = (slabsize - shsize) / rsize;
|
|
KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
|
|
("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
|
|
|
|
memused = keg->uk_ipers * rsize + shsize;
|
|
wastedspace = slabsize - memused;
|
|
|
|
/*
|
|
* We can't do OFFPAGE if we're internal or if we've been
|
|
* asked to not go to the VM for buckets. If we do this we
|
|
* may end up going to the VM for slabs which we do not
|
|
* want to do if we're UMA_ZFLAG_CACHEONLY as a result
|
|
* of UMA_ZONE_VM, which clearly forbids it.
|
|
*/
|
|
if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
|
|
(keg->uk_flags & UMA_ZFLAG_CACHEONLY))
|
|
return;
|
|
|
|
/*
|
|
* See if using an OFFPAGE slab will limit our waste. Only do
|
|
* this if it permits more items per-slab.
|
|
*
|
|
* XXX We could try growing slabsize to limit max waste as well.
|
|
* Historically this was not done because the VM could not
|
|
* efficiently handle contiguous allocations.
|
|
*/
|
|
if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
|
|
(keg->uk_ipers < (slabsize / keg->uk_rsize))) {
|
|
keg->uk_ipers = slabsize / keg->uk_rsize;
|
|
KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
|
|
("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
|
|
CTR6(KTR_UMA, "UMA decided we need offpage slab headers for "
|
|
"keg: %s(%p), calculated wastedspace = %d, "
|
|
"maximum wasted space allowed = %d, "
|
|
"calculated ipers = %d, "
|
|
"new wasted space = %d\n", keg->uk_name, keg, wastedspace,
|
|
slabsize / UMA_MAX_WASTE, keg->uk_ipers,
|
|
slabsize - keg->uk_ipers * keg->uk_rsize);
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE;
|
|
}
|
|
|
|
if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
|
|
(keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
|
|
keg->uk_flags |= UMA_ZONE_HASH;
|
|
}
|
|
|
|
/*
|
|
* Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
|
|
* OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
|
|
* more complicated.
|
|
*
|
|
* Arguments
|
|
* keg The keg we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
keg_large_init(uma_keg_t keg)
|
|
{
|
|
u_int shsize;
|
|
|
|
KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
|
|
KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
|
|
("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
|
|
KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
|
|
("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
|
|
|
|
keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
|
|
keg->uk_ipers = 1;
|
|
keg->uk_rsize = keg->uk_size;
|
|
|
|
/* Check whether we have enough space to not do OFFPAGE. */
|
|
if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
|
|
shsize = sizeof(struct uma_slab);
|
|
if (shsize & UMA_ALIGN_PTR)
|
|
shsize = (shsize & ~UMA_ALIGN_PTR) +
|
|
(UMA_ALIGN_PTR + 1);
|
|
|
|
if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
|
|
/*
|
|
* We can't do OFFPAGE if we're internal, in which case
|
|
* we need an extra page per allocation to contain the
|
|
* slab header.
|
|
*/
|
|
if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE;
|
|
else
|
|
keg->uk_ppera++;
|
|
}
|
|
}
|
|
|
|
if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
|
|
(keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
|
|
keg->uk_flags |= UMA_ZONE_HASH;
|
|
}
|
|
|
|
static void
|
|
keg_cachespread_init(uma_keg_t keg)
|
|
{
|
|
int alignsize;
|
|
int trailer;
|
|
int pages;
|
|
int rsize;
|
|
|
|
KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
|
|
("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
|
|
|
|
alignsize = keg->uk_align + 1;
|
|
rsize = keg->uk_size;
|
|
/*
|
|
* We want one item to start on every align boundary in a page. To
|
|
* do this we will span pages. We will also extend the item by the
|
|
* size of align if it is an even multiple of align. Otherwise, it
|
|
* would fall on the same boundary every time.
|
|
*/
|
|
if (rsize & keg->uk_align)
|
|
rsize = (rsize & ~keg->uk_align) + alignsize;
|
|
if ((rsize & alignsize) == 0)
|
|
rsize += alignsize;
|
|
trailer = rsize - keg->uk_size;
|
|
pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
|
|
pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
|
|
keg->uk_rsize = rsize;
|
|
keg->uk_ppera = pages;
|
|
keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
|
|
KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
|
|
("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
|
|
keg->uk_ipers));
|
|
}
|
|
|
|
/*
|
|
* Keg header ctor. This initializes all fields, locks, etc. And inserts
|
|
* the keg onto the global keg list.
|
|
*
|
|
* Arguments/Returns follow uma_ctor specifications
|
|
* udata Actually uma_kctor_args
|
|
*/
|
|
static int
|
|
keg_ctor(void *mem, int size, void *udata, int flags)
|
|
{
|
|
struct uma_kctor_args *arg = udata;
|
|
uma_keg_t keg = mem;
|
|
uma_zone_t zone;
|
|
|
|
bzero(keg, size);
|
|
keg->uk_size = arg->size;
|
|
keg->uk_init = arg->uminit;
|
|
keg->uk_fini = arg->fini;
|
|
keg->uk_align = arg->align;
|
|
keg->uk_free = 0;
|
|
keg->uk_reserve = 0;
|
|
keg->uk_pages = 0;
|
|
keg->uk_flags = arg->flags;
|
|
keg->uk_slabzone = NULL;
|
|
|
|
/*
|
|
* The master zone is passed to us at keg-creation time.
|
|
*/
|
|
zone = arg->zone;
|
|
keg->uk_name = zone->uz_name;
|
|
|
|
if (arg->flags & UMA_ZONE_VM)
|
|
keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
|
|
|
|
if (arg->flags & UMA_ZONE_ZINIT)
|
|
keg->uk_init = zero_init;
|
|
|
|
if (arg->flags & UMA_ZONE_MALLOC)
|
|
keg->uk_flags |= UMA_ZONE_VTOSLAB;
|
|
|
|
if (arg->flags & UMA_ZONE_PCPU)
|
|
#ifdef SMP
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE;
|
|
#else
|
|
keg->uk_flags &= ~UMA_ZONE_PCPU;
|
|
#endif
|
|
|
|
if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
|
|
keg_cachespread_init(keg);
|
|
} else {
|
|
if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
|
|
keg_large_init(keg);
|
|
else
|
|
keg_small_init(keg);
|
|
}
|
|
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
keg->uk_slabzone = slabzone;
|
|
|
|
/*
|
|
* If we haven't booted yet we need allocations to go through the
|
|
* startup cache until the vm is ready.
|
|
*/
|
|
if (booted < UMA_STARTUP2)
|
|
keg->uk_allocf = startup_alloc;
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
else if (keg->uk_ppera == 1)
|
|
keg->uk_allocf = uma_small_alloc;
|
|
#endif
|
|
else
|
|
keg->uk_allocf = page_alloc;
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
if (keg->uk_ppera == 1)
|
|
keg->uk_freef = uma_small_free;
|
|
else
|
|
#endif
|
|
keg->uk_freef = page_free;
|
|
|
|
/*
|
|
* Initialize keg's lock
|
|
*/
|
|
KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
|
|
|
|
/*
|
|
* If we're putting the slab header in the actual page we need to
|
|
* figure out where in each page it goes. This calculates a right
|
|
* justified offset into the memory on an ALIGN_PTR boundary.
|
|
*/
|
|
if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
|
|
u_int totsize;
|
|
|
|
/* Size of the slab struct and free list */
|
|
totsize = sizeof(struct uma_slab);
|
|
|
|
if (totsize & UMA_ALIGN_PTR)
|
|
totsize = (totsize & ~UMA_ALIGN_PTR) +
|
|
(UMA_ALIGN_PTR + 1);
|
|
keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
|
|
|
|
/*
|
|
* The only way the following is possible is if with our
|
|
* UMA_ALIGN_PTR adjustments we are now bigger than
|
|
* UMA_SLAB_SIZE. I haven't checked whether this is
|
|
* mathematically possible for all cases, so we make
|
|
* sure here anyway.
|
|
*/
|
|
totsize = keg->uk_pgoff + sizeof(struct uma_slab);
|
|
if (totsize > PAGE_SIZE * keg->uk_ppera) {
|
|
printf("zone %s ipers %d rsize %d size %d\n",
|
|
zone->uz_name, keg->uk_ipers, keg->uk_rsize,
|
|
keg->uk_size);
|
|
panic("UMA slab won't fit.");
|
|
}
|
|
}
|
|
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
hash_alloc(&keg->uk_hash);
|
|
|
|
CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n",
|
|
keg, zone->uz_name, zone,
|
|
(keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
|
|
keg->uk_free);
|
|
|
|
LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
|
|
|
|
rw_wlock(&uma_rwlock);
|
|
LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
|
|
rw_wunlock(&uma_rwlock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Zone header ctor. This initializes all fields, locks, etc.
|
|
*
|
|
* Arguments/Returns follow uma_ctor specifications
|
|
* udata Actually uma_zctor_args
|
|
*/
|
|
static int
|
|
zone_ctor(void *mem, int size, void *udata, int flags)
|
|
{
|
|
struct uma_zctor_args *arg = udata;
|
|
uma_zone_t zone = mem;
|
|
uma_zone_t z;
|
|
uma_keg_t keg;
|
|
|
|
bzero(zone, size);
|
|
zone->uz_name = arg->name;
|
|
zone->uz_ctor = arg->ctor;
|
|
zone->uz_dtor = arg->dtor;
|
|
zone->uz_slab = zone_fetch_slab;
|
|
zone->uz_init = NULL;
|
|
zone->uz_fini = NULL;
|
|
zone->uz_allocs = 0;
|
|
zone->uz_frees = 0;
|
|
zone->uz_fails = 0;
|
|
zone->uz_sleeps = 0;
|
|
zone->uz_count = 0;
|
|
zone->uz_count_min = 0;
|
|
zone->uz_flags = 0;
|
|
zone->uz_warning = NULL;
|
|
timevalclear(&zone->uz_ratecheck);
|
|
keg = arg->keg;
|
|
|
|
ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
|
|
|
|
/*
|
|
* This is a pure cache zone, no kegs.
|
|
*/
|
|
if (arg->import) {
|
|
if (arg->flags & UMA_ZONE_VM)
|
|
arg->flags |= UMA_ZFLAG_CACHEONLY;
|
|
zone->uz_flags = arg->flags;
|
|
zone->uz_size = arg->size;
|
|
zone->uz_import = arg->import;
|
|
zone->uz_release = arg->release;
|
|
zone->uz_arg = arg->arg;
|
|
zone->uz_lockptr = &zone->uz_lock;
|
|
rw_wlock(&uma_rwlock);
|
|
LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
|
|
rw_wunlock(&uma_rwlock);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Use the regular zone/keg/slab allocator.
|
|
*/
|
|
zone->uz_import = (uma_import)zone_import;
|
|
zone->uz_release = (uma_release)zone_release;
|
|
zone->uz_arg = zone;
|
|
|
|
if (arg->flags & UMA_ZONE_SECONDARY) {
|
|
KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
|
|
zone->uz_init = arg->uminit;
|
|
zone->uz_fini = arg->fini;
|
|
zone->uz_lockptr = &keg->uk_lock;
|
|
zone->uz_flags |= UMA_ZONE_SECONDARY;
|
|
rw_wlock(&uma_rwlock);
|
|
ZONE_LOCK(zone);
|
|
LIST_FOREACH(z, &keg->uk_zones, uz_link) {
|
|
if (LIST_NEXT(z, uz_link) == NULL) {
|
|
LIST_INSERT_AFTER(z, zone, uz_link);
|
|
break;
|
|
}
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
rw_wunlock(&uma_rwlock);
|
|
} else if (keg == NULL) {
|
|
if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
|
|
arg->align, arg->flags)) == NULL)
|
|
return (ENOMEM);
|
|
} else {
|
|
struct uma_kctor_args karg;
|
|
int error;
|
|
|
|
/* We should only be here from uma_startup() */
|
|
karg.size = arg->size;
|
|
karg.uminit = arg->uminit;
|
|
karg.fini = arg->fini;
|
|
karg.align = arg->align;
|
|
karg.flags = arg->flags;
|
|
karg.zone = zone;
|
|
error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
|
|
flags);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Link in the first keg.
|
|
*/
|
|
zone->uz_klink.kl_keg = keg;
|
|
LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
|
|
zone->uz_lockptr = &keg->uk_lock;
|
|
zone->uz_size = keg->uk_size;
|
|
zone->uz_flags |= (keg->uk_flags &
|
|
(UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
|
|
|
|
/*
|
|
* Some internal zones don't have room allocated for the per cpu
|
|
* caches. If we're internal, bail out here.
|
|
*/
|
|
if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
|
|
KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
|
|
("Secondary zone requested UMA_ZFLAG_INTERNAL"));
|
|
return (0);
|
|
}
|
|
|
|
out:
|
|
if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
|
|
zone->uz_count = bucket_select(zone->uz_size);
|
|
else
|
|
zone->uz_count = BUCKET_MAX;
|
|
zone->uz_count_min = zone->uz_count;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Keg header dtor. This frees all data, destroys locks, frees the hash
|
|
* table and removes the keg from the global list.
|
|
*
|
|
* Arguments/Returns follow uma_dtor specifications
|
|
* udata unused
|
|
*/
|
|
static void
|
|
keg_dtor(void *arg, int size, void *udata)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = (uma_keg_t)arg;
|
|
KEG_LOCK(keg);
|
|
if (keg->uk_free != 0) {
|
|
printf("Freed UMA keg (%s) was not empty (%d items). "
|
|
" Lost %d pages of memory.\n",
|
|
keg->uk_name ? keg->uk_name : "",
|
|
keg->uk_free, keg->uk_pages);
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
|
|
hash_free(&keg->uk_hash);
|
|
|
|
KEG_LOCK_FINI(keg);
|
|
}
|
|
|
|
/*
|
|
* Zone header dtor.
|
|
*
|
|
* Arguments/Returns follow uma_dtor specifications
|
|
* udata unused
|
|
*/
|
|
static void
|
|
zone_dtor(void *arg, int size, void *udata)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_zone_t zone;
|
|
uma_keg_t keg;
|
|
|
|
zone = (uma_zone_t)arg;
|
|
keg = zone_first_keg(zone);
|
|
|
|
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
|
|
cache_drain(zone);
|
|
|
|
rw_wlock(&uma_rwlock);
|
|
LIST_REMOVE(zone, uz_link);
|
|
rw_wunlock(&uma_rwlock);
|
|
/*
|
|
* XXX there are some races here where
|
|
* the zone can be drained but zone lock
|
|
* released and then refilled before we
|
|
* remove it... we dont care for now
|
|
*/
|
|
zone_drain_wait(zone, M_WAITOK);
|
|
/*
|
|
* Unlink all of our kegs.
|
|
*/
|
|
while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
|
|
klink->kl_keg = NULL;
|
|
LIST_REMOVE(klink, kl_link);
|
|
if (klink == &zone->uz_klink)
|
|
continue;
|
|
free(klink, M_TEMP);
|
|
}
|
|
/*
|
|
* We only destroy kegs from non secondary zones.
|
|
*/
|
|
if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
|
|
rw_wlock(&uma_rwlock);
|
|
LIST_REMOVE(keg, uk_link);
|
|
rw_wunlock(&uma_rwlock);
|
|
zone_free_item(kegs, keg, NULL, SKIP_NONE);
|
|
}
|
|
ZONE_LOCK_FINI(zone);
|
|
}
|
|
|
|
/*
|
|
* Traverses every zone in the system and calls a callback
|
|
*
|
|
* Arguments:
|
|
* zfunc A pointer to a function which accepts a zone
|
|
* as an argument.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_foreach(void (*zfunc)(uma_zone_t))
|
|
{
|
|
uma_keg_t keg;
|
|
uma_zone_t zone;
|
|
|
|
rw_rlock(&uma_rwlock);
|
|
LIST_FOREACH(keg, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(zone, &keg->uk_zones, uz_link)
|
|
zfunc(zone);
|
|
}
|
|
rw_runlock(&uma_rwlock);
|
|
}
|
|
|
|
/* Public functions */
|
|
/* See uma.h */
|
|
void
|
|
uma_startup(void *mem, int npages)
|
|
{
|
|
struct uma_zctor_args args;
|
|
|
|
rw_init(&uma_rwlock, "UMA lock");
|
|
|
|
/* "manually" create the initial zone */
|
|
memset(&args, 0, sizeof(args));
|
|
args.name = "UMA Kegs";
|
|
args.size = sizeof(struct uma_keg);
|
|
args.ctor = keg_ctor;
|
|
args.dtor = keg_dtor;
|
|
args.uminit = zero_init;
|
|
args.fini = NULL;
|
|
args.keg = &masterkeg;
|
|
args.align = 32 - 1;
|
|
args.flags = UMA_ZFLAG_INTERNAL;
|
|
/* The initial zone has no Per cpu queues so it's smaller */
|
|
zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
|
|
|
|
mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
|
|
bootmem = mem;
|
|
boot_pages = npages;
|
|
|
|
args.name = "UMA Zones";
|
|
args.size = sizeof(struct uma_zone) +
|
|
(sizeof(struct uma_cache) * (mp_maxid + 1));
|
|
args.ctor = zone_ctor;
|
|
args.dtor = zone_dtor;
|
|
args.uminit = zero_init;
|
|
args.fini = NULL;
|
|
args.keg = NULL;
|
|
args.align = 32 - 1;
|
|
args.flags = UMA_ZFLAG_INTERNAL;
|
|
/* The initial zone has no Per cpu queues so it's smaller */
|
|
zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
|
|
|
|
/* Now make a zone for slab headers */
|
|
slabzone = uma_zcreate("UMA Slabs",
|
|
sizeof(struct uma_slab),
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
|
|
|
|
hashzone = uma_zcreate("UMA Hash",
|
|
sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
|
|
|
|
bucket_init();
|
|
|
|
booted = UMA_STARTUP;
|
|
}
|
|
|
|
/* see uma.h */
|
|
void
|
|
uma_startup2(void)
|
|
{
|
|
booted = UMA_STARTUP2;
|
|
bucket_enable();
|
|
sx_init(&uma_drain_lock, "umadrain");
|
|
}
|
|
|
|
/*
|
|
* Initialize our callout handle
|
|
*
|
|
*/
|
|
|
|
static void
|
|
uma_startup3(void)
|
|
{
|
|
|
|
callout_init(&uma_callout, 1);
|
|
callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
|
|
}
|
|
|
|
static uma_keg_t
|
|
uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
|
|
int align, uint32_t flags)
|
|
{
|
|
struct uma_kctor_args args;
|
|
|
|
args.size = size;
|
|
args.uminit = uminit;
|
|
args.fini = fini;
|
|
args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
|
|
args.flags = flags;
|
|
args.zone = zone;
|
|
return (zone_alloc_item(kegs, &args, M_WAITOK));
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_set_align(int align)
|
|
{
|
|
|
|
if (align != UMA_ALIGN_CACHE)
|
|
uma_align_cache = align;
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init uminit, uma_fini fini, int align, uint32_t flags)
|
|
|
|
{
|
|
struct uma_zctor_args args;
|
|
uma_zone_t res;
|
|
bool locked;
|
|
|
|
KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
|
|
align, name));
|
|
|
|
/* This stuff is essential for the zone ctor */
|
|
memset(&args, 0, sizeof(args));
|
|
args.name = name;
|
|
args.size = size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = uminit;
|
|
args.fini = fini;
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* If a zone is being created with an empty constructor and
|
|
* destructor, pass UMA constructor/destructor which checks for
|
|
* memory use after free.
|
|
*/
|
|
if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
|
|
ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
|
|
args.ctor = trash_ctor;
|
|
args.dtor = trash_dtor;
|
|
args.uminit = trash_init;
|
|
args.fini = trash_fini;
|
|
}
|
|
#endif
|
|
args.align = align;
|
|
args.flags = flags;
|
|
args.keg = NULL;
|
|
|
|
if (booted < UMA_STARTUP2) {
|
|
locked = false;
|
|
} else {
|
|
sx_slock(&uma_drain_lock);
|
|
locked = true;
|
|
}
|
|
res = zone_alloc_item(zones, &args, M_WAITOK);
|
|
if (locked)
|
|
sx_sunlock(&uma_drain_lock);
|
|
return (res);
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init zinit, uma_fini zfini, uma_zone_t master)
|
|
{
|
|
struct uma_zctor_args args;
|
|
uma_keg_t keg;
|
|
uma_zone_t res;
|
|
bool locked;
|
|
|
|
keg = zone_first_keg(master);
|
|
memset(&args, 0, sizeof(args));
|
|
args.name = name;
|
|
args.size = keg->uk_size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = zinit;
|
|
args.fini = zfini;
|
|
args.align = keg->uk_align;
|
|
args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
|
|
args.keg = keg;
|
|
|
|
if (booted < UMA_STARTUP2) {
|
|
locked = false;
|
|
} else {
|
|
sx_slock(&uma_drain_lock);
|
|
locked = true;
|
|
}
|
|
/* XXX Attaches only one keg of potentially many. */
|
|
res = zone_alloc_item(zones, &args, M_WAITOK);
|
|
if (locked)
|
|
sx_sunlock(&uma_drain_lock);
|
|
return (res);
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init zinit, uma_fini zfini, uma_import zimport,
|
|
uma_release zrelease, void *arg, int flags)
|
|
{
|
|
struct uma_zctor_args args;
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
args.name = name;
|
|
args.size = size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = zinit;
|
|
args.fini = zfini;
|
|
args.import = zimport;
|
|
args.release = zrelease;
|
|
args.arg = arg;
|
|
args.align = 0;
|
|
args.flags = flags;
|
|
|
|
return (zone_alloc_item(zones, &args, M_WAITOK));
|
|
}
|
|
|
|
static void
|
|
zone_lock_pair(uma_zone_t a, uma_zone_t b)
|
|
{
|
|
if (a < b) {
|
|
ZONE_LOCK(a);
|
|
mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
|
|
} else {
|
|
ZONE_LOCK(b);
|
|
mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zone_unlock_pair(uma_zone_t a, uma_zone_t b)
|
|
{
|
|
|
|
ZONE_UNLOCK(a);
|
|
ZONE_UNLOCK(b);
|
|
}
|
|
|
|
int
|
|
uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_klink_t kl;
|
|
int error;
|
|
|
|
error = 0;
|
|
klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
|
|
|
|
zone_lock_pair(zone, master);
|
|
/*
|
|
* zone must use vtoslab() to resolve objects and must already be
|
|
* a secondary.
|
|
*/
|
|
if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
|
|
!= (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* The new master must also use vtoslab().
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The underlying object must be the same size. rsize
|
|
* may be different.
|
|
*/
|
|
if (master->uz_size != zone->uz_size) {
|
|
error = E2BIG;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Put it at the end of the list.
|
|
*/
|
|
klink->kl_keg = zone_first_keg(master);
|
|
LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
|
|
if (LIST_NEXT(kl, kl_link) == NULL) {
|
|
LIST_INSERT_AFTER(kl, klink, kl_link);
|
|
break;
|
|
}
|
|
}
|
|
klink = NULL;
|
|
zone->uz_flags |= UMA_ZFLAG_MULTI;
|
|
zone->uz_slab = zone_fetch_slab_multi;
|
|
|
|
out:
|
|
zone_unlock_pair(zone, master);
|
|
if (klink != NULL)
|
|
free(klink, M_TEMP);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zdestroy(uma_zone_t zone)
|
|
{
|
|
|
|
sx_slock(&uma_drain_lock);
|
|
zone_free_item(zones, zone, NULL, SKIP_NONE);
|
|
sx_sunlock(&uma_drain_lock);
|
|
}
|
|
|
|
void
|
|
uma_zwait(uma_zone_t zone)
|
|
{
|
|
void *item;
|
|
|
|
item = uma_zalloc_arg(zone, NULL, M_WAITOK);
|
|
uma_zfree(zone, item);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void *
|
|
uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
void *item;
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int lockfail;
|
|
int cpu;
|
|
|
|
/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
|
|
random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
|
|
|
|
/* This is the fast path allocation */
|
|
CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d",
|
|
curthread, zone->uz_name, zone, flags);
|
|
|
|
if (flags & M_WAITOK) {
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"uma_zalloc_arg: zone \"%s\"", zone->uz_name);
|
|
}
|
|
KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
|
|
("uma_zalloc_arg: called with spinlock or critical section held"));
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (memguard_cmp_zone(zone)) {
|
|
item = memguard_alloc(zone->uz_size, flags);
|
|
if (item != NULL) {
|
|
if (zone->uz_init != NULL &&
|
|
zone->uz_init(item, zone->uz_size, flags) != 0)
|
|
return (NULL);
|
|
if (zone->uz_ctor != NULL &&
|
|
zone->uz_ctor(item, zone->uz_size, udata,
|
|
flags) != 0) {
|
|
zone->uz_fini(item, zone->uz_size);
|
|
return (NULL);
|
|
}
|
|
return (item);
|
|
}
|
|
/* This is unfortunate but should not be fatal. */
|
|
}
|
|
#endif
|
|
/*
|
|
* If possible, allocate from the per-CPU cache. There are two
|
|
* requirements for safe access to the per-CPU cache: (1) the thread
|
|
* accessing the cache must not be preempted or yield during access,
|
|
* and (2) the thread must not migrate CPUs without switching which
|
|
* cache it accesses. We rely on a critical section to prevent
|
|
* preemption and migration. We release the critical section in
|
|
* order to acquire the zone mutex if we are unable to allocate from
|
|
* the current cache; when we re-acquire the critical section, we
|
|
* must detect and handle migration if it has occurred.
|
|
*/
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zalloc_start:
|
|
bucket = cache->uc_allocbucket;
|
|
if (bucket != NULL && bucket->ub_cnt > 0) {
|
|
bucket->ub_cnt--;
|
|
item = bucket->ub_bucket[bucket->ub_cnt];
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[bucket->ub_cnt] = NULL;
|
|
#endif
|
|
KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
|
|
cache->uc_allocs++;
|
|
critical_exit();
|
|
if (zone->uz_ctor != NULL &&
|
|
zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
|
|
atomic_add_long(&zone->uz_fails, 1);
|
|
zone_free_item(zone, item, udata, SKIP_DTOR);
|
|
return (NULL);
|
|
}
|
|
#ifdef INVARIANTS
|
|
uma_dbg_alloc(zone, NULL, item);
|
|
#endif
|
|
if (flags & M_ZERO)
|
|
uma_zero_item(item, zone);
|
|
return (item);
|
|
}
|
|
|
|
/*
|
|
* We have run out of items in our alloc bucket.
|
|
* See if we can switch with our free bucket.
|
|
*/
|
|
bucket = cache->uc_freebucket;
|
|
if (bucket != NULL && bucket->ub_cnt > 0) {
|
|
CTR2(KTR_UMA,
|
|
"uma_zalloc: zone %s(%p) swapping empty with alloc",
|
|
zone->uz_name, zone);
|
|
cache->uc_freebucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = bucket;
|
|
goto zalloc_start;
|
|
}
|
|
|
|
/*
|
|
* Discard any empty allocation bucket while we hold no locks.
|
|
*/
|
|
bucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = NULL;
|
|
critical_exit();
|
|
if (bucket != NULL)
|
|
bucket_free(zone, bucket, udata);
|
|
|
|
/* Short-circuit for zones without buckets and low memory. */
|
|
if (zone->uz_count == 0 || bucketdisable)
|
|
goto zalloc_item;
|
|
|
|
/*
|
|
* Attempt to retrieve the item from the per-CPU cache has failed, so
|
|
* we must go back to the zone. This requires the zone lock, so we
|
|
* must drop the critical section, then re-acquire it when we go back
|
|
* to the cache. Since the critical section is released, we may be
|
|
* preempted or migrate. As such, make sure not to maintain any
|
|
* thread-local state specific to the cache from prior to releasing
|
|
* the critical section.
|
|
*/
|
|
lockfail = 0;
|
|
if (ZONE_TRYLOCK(zone) == 0) {
|
|
/* Record contention to size the buckets. */
|
|
ZONE_LOCK(zone);
|
|
lockfail = 1;
|
|
}
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
/*
|
|
* Since we have locked the zone we may as well send back our stats.
|
|
*/
|
|
atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
|
|
atomic_add_long(&zone->uz_frees, cache->uc_frees);
|
|
cache->uc_allocs = 0;
|
|
cache->uc_frees = 0;
|
|
|
|
/* See if we lost the race to fill the cache. */
|
|
if (cache->uc_allocbucket != NULL) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
|
|
/*
|
|
* Check the zone's cache of buckets.
|
|
*/
|
|
if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
|
|
KASSERT(bucket->ub_cnt != 0,
|
|
("uma_zalloc_arg: Returning an empty bucket."));
|
|
|
|
LIST_REMOVE(bucket, ub_link);
|
|
cache->uc_allocbucket = bucket;
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
/* We are no longer associated with this CPU. */
|
|
critical_exit();
|
|
|
|
/*
|
|
* We bump the uz count when the cache size is insufficient to
|
|
* handle the working set.
|
|
*/
|
|
if (lockfail && zone->uz_count < BUCKET_MAX)
|
|
zone->uz_count++;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
/*
|
|
* Now lets just fill a bucket and put it on the free list. If that
|
|
* works we'll restart the allocation from the beginning and it
|
|
* will use the just filled bucket.
|
|
*/
|
|
bucket = zone_alloc_bucket(zone, udata, flags);
|
|
CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
|
|
zone->uz_name, zone, bucket);
|
|
if (bucket != NULL) {
|
|
ZONE_LOCK(zone);
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
/*
|
|
* See if we lost the race or were migrated. Cache the
|
|
* initialized bucket to make this less likely or claim
|
|
* the memory directly.
|
|
*/
|
|
if (cache->uc_allocbucket == NULL)
|
|
cache->uc_allocbucket = bucket;
|
|
else
|
|
LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
|
|
/*
|
|
* We may not be able to get a bucket so return an actual item.
|
|
*/
|
|
zalloc_item:
|
|
item = zone_alloc_item(zone, udata, flags);
|
|
|
|
return (item);
|
|
}
|
|
|
|
static uma_slab_t
|
|
keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
int reserve;
|
|
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
slab = NULL;
|
|
reserve = 0;
|
|
if ((flags & M_USE_RESERVE) == 0)
|
|
reserve = keg->uk_reserve;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Find a slab with some space. Prefer slabs that are partially
|
|
* used over those that are totally full. This helps to reduce
|
|
* fragmentation.
|
|
*/
|
|
if (keg->uk_free > reserve) {
|
|
if (!LIST_EMPTY(&keg->uk_part_slab)) {
|
|
slab = LIST_FIRST(&keg->uk_part_slab);
|
|
} else {
|
|
slab = LIST_FIRST(&keg->uk_free_slab);
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
|
|
us_link);
|
|
}
|
|
MPASS(slab->us_keg == keg);
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* M_NOVM means don't ask at all!
|
|
*/
|
|
if (flags & M_NOVM)
|
|
break;
|
|
|
|
if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
|
|
keg->uk_flags |= UMA_ZFLAG_FULL;
|
|
/*
|
|
* If this is not a multi-zone, set the FULL bit.
|
|
* Otherwise slab_multi() takes care of it.
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
|
|
zone->uz_flags |= UMA_ZFLAG_FULL;
|
|
zone_log_warning(zone);
|
|
zone_maxaction(zone);
|
|
}
|
|
if (flags & M_NOWAIT)
|
|
break;
|
|
zone->uz_sleeps++;
|
|
msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
|
|
continue;
|
|
}
|
|
slab = keg_alloc_slab(keg, zone, flags);
|
|
/*
|
|
* If we got a slab here it's safe to mark it partially used
|
|
* and return. We assume that the caller is going to remove
|
|
* at least one item.
|
|
*/
|
|
if (slab) {
|
|
MPASS(slab->us_keg == keg);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
|
|
return (slab);
|
|
}
|
|
/*
|
|
* We might not have been able to get a slab but another cpu
|
|
* could have while we were unlocked. Check again before we
|
|
* fail.
|
|
*/
|
|
flags |= M_NOVM;
|
|
}
|
|
return (slab);
|
|
}
|
|
|
|
static uma_slab_t
|
|
zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
if (keg == NULL) {
|
|
keg = zone_first_keg(zone);
|
|
KEG_LOCK(keg);
|
|
}
|
|
|
|
for (;;) {
|
|
slab = keg_fetch_slab(keg, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
if (flags & (M_NOWAIT | M_NOVM))
|
|
break;
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
|
|
* with the keg locked. On NULL no lock is held.
|
|
*
|
|
* The last pointer is used to seed the search. It is not required.
|
|
*/
|
|
static uma_slab_t
|
|
zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
int flags;
|
|
int empty;
|
|
int full;
|
|
|
|
/*
|
|
* Don't wait on the first pass. This will skip limit tests
|
|
* as well. We don't want to block if we can find a provider
|
|
* without blocking.
|
|
*/
|
|
flags = (rflags & ~M_WAITOK) | M_NOWAIT;
|
|
/*
|
|
* Use the last slab allocated as a hint for where to start
|
|
* the search.
|
|
*/
|
|
if (last != NULL) {
|
|
slab = keg_fetch_slab(last, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
KEG_UNLOCK(last);
|
|
}
|
|
/*
|
|
* Loop until we have a slab incase of transient failures
|
|
* while M_WAITOK is specified. I'm not sure this is 100%
|
|
* required but we've done it for so long now.
|
|
*/
|
|
for (;;) {
|
|
empty = 0;
|
|
full = 0;
|
|
/*
|
|
* Search the available kegs for slabs. Be careful to hold the
|
|
* correct lock while calling into the keg layer.
|
|
*/
|
|
LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
|
|
keg = klink->kl_keg;
|
|
KEG_LOCK(keg);
|
|
if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
|
|
slab = keg_fetch_slab(keg, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
}
|
|
if (keg->uk_flags & UMA_ZFLAG_FULL)
|
|
full++;
|
|
else
|
|
empty++;
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
if (rflags & (M_NOWAIT | M_NOVM))
|
|
break;
|
|
flags = rflags;
|
|
/*
|
|
* All kegs are full. XXX We can't atomically check all kegs
|
|
* and sleep so just sleep for a short period and retry.
|
|
*/
|
|
if (full && !empty) {
|
|
ZONE_LOCK(zone);
|
|
zone->uz_flags |= UMA_ZFLAG_FULL;
|
|
zone->uz_sleeps++;
|
|
zone_log_warning(zone);
|
|
zone_maxaction(zone);
|
|
msleep(zone, zone->uz_lockptr, PVM,
|
|
"zonelimit", hz/100);
|
|
zone->uz_flags &= ~UMA_ZFLAG_FULL;
|
|
ZONE_UNLOCK(zone);
|
|
continue;
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static void *
|
|
slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
|
|
{
|
|
void *item;
|
|
uint8_t freei;
|
|
|
|
MPASS(keg == slab->us_keg);
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
|
|
freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
|
|
BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
|
|
item = slab->us_data + (keg->uk_rsize * freei);
|
|
slab->us_freecount--;
|
|
keg->uk_free--;
|
|
|
|
/* Move this slab to the full list */
|
|
if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
|
|
}
|
|
|
|
return (item);
|
|
}
|
|
|
|
static int
|
|
zone_import(uma_zone_t zone, void **bucket, int max, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
int i;
|
|
|
|
slab = NULL;
|
|
keg = NULL;
|
|
/* Try to keep the buckets totally full */
|
|
for (i = 0; i < max; ) {
|
|
if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
|
|
break;
|
|
keg = slab->us_keg;
|
|
while (slab->us_freecount && i < max) {
|
|
bucket[i++] = slab_alloc_item(keg, slab);
|
|
if (keg->uk_free <= keg->uk_reserve)
|
|
break;
|
|
}
|
|
/* Don't grab more than one slab at a time. */
|
|
flags &= ~M_WAITOK;
|
|
flags |= M_NOWAIT;
|
|
}
|
|
if (slab != NULL)
|
|
KEG_UNLOCK(keg);
|
|
|
|
return i;
|
|
}
|
|
|
|
static uma_bucket_t
|
|
zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
uma_bucket_t bucket;
|
|
int max;
|
|
|
|
/* Don't wait for buckets, preserve caller's NOVM setting. */
|
|
bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
|
|
if (bucket == NULL)
|
|
return (NULL);
|
|
|
|
max = MIN(bucket->ub_entries, zone->uz_count);
|
|
bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
|
|
max, flags);
|
|
|
|
/*
|
|
* Initialize the memory if necessary.
|
|
*/
|
|
if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
|
|
int i;
|
|
|
|
for (i = 0; i < bucket->ub_cnt; i++)
|
|
if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
|
|
flags) != 0)
|
|
break;
|
|
/*
|
|
* If we couldn't initialize the whole bucket, put the
|
|
* rest back onto the freelist.
|
|
*/
|
|
if (i != bucket->ub_cnt) {
|
|
zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
|
|
bucket->ub_cnt - i);
|
|
#ifdef INVARIANTS
|
|
bzero(&bucket->ub_bucket[i],
|
|
sizeof(void *) * (bucket->ub_cnt - i));
|
|
#endif
|
|
bucket->ub_cnt = i;
|
|
}
|
|
}
|
|
|
|
if (bucket->ub_cnt == 0) {
|
|
bucket_free(zone, bucket, udata);
|
|
atomic_add_long(&zone->uz_fails, 1);
|
|
return (NULL);
|
|
}
|
|
|
|
return (bucket);
|
|
}
|
|
|
|
/*
|
|
* Allocates a single item from a zone.
|
|
*
|
|
* Arguments
|
|
* zone The zone to alloc for.
|
|
* udata The data to be passed to the constructor.
|
|
* flags M_WAITOK, M_NOWAIT, M_ZERO.
|
|
*
|
|
* Returns
|
|
* NULL if there is no memory and M_NOWAIT is set
|
|
* An item if successful
|
|
*/
|
|
|
|
static void *
|
|
zone_alloc_item(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
void *item;
|
|
|
|
item = NULL;
|
|
|
|
if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
|
|
goto fail;
|
|
atomic_add_long(&zone->uz_allocs, 1);
|
|
|
|
/*
|
|
* We have to call both the zone's init (not the keg's init)
|
|
* and the zone's ctor. This is because the item is going from
|
|
* a keg slab directly to the user, and the user is expecting it
|
|
* to be both zone-init'd as well as zone-ctor'd.
|
|
*/
|
|
if (zone->uz_init != NULL) {
|
|
if (zone->uz_init(item, zone->uz_size, flags) != 0) {
|
|
zone_free_item(zone, item, udata, SKIP_FINI);
|
|
goto fail;
|
|
}
|
|
}
|
|
if (zone->uz_ctor != NULL) {
|
|
if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
|
|
zone_free_item(zone, item, udata, SKIP_DTOR);
|
|
goto fail;
|
|
}
|
|
}
|
|
#ifdef INVARIANTS
|
|
uma_dbg_alloc(zone, NULL, item);
|
|
#endif
|
|
if (flags & M_ZERO)
|
|
uma_zero_item(item, zone);
|
|
|
|
CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
|
|
zone->uz_name, zone);
|
|
|
|
return (item);
|
|
|
|
fail:
|
|
CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
|
|
zone->uz_name, zone);
|
|
atomic_add_long(&zone->uz_fails, 1);
|
|
return (NULL);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int lockfail;
|
|
int cpu;
|
|
|
|
/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
|
|
random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
|
|
|
|
CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
|
|
zone->uz_name);
|
|
|
|
KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
|
|
("uma_zfree_arg: called with spinlock or critical section held"));
|
|
|
|
/* uma_zfree(..., NULL) does nothing, to match free(9). */
|
|
if (item == NULL)
|
|
return;
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(item)) {
|
|
if (zone->uz_dtor != NULL)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
if (zone->uz_fini != NULL)
|
|
zone->uz_fini(item, zone->uz_size);
|
|
memguard_free(item);
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef INVARIANTS
|
|
if (zone->uz_flags & UMA_ZONE_MALLOC)
|
|
uma_dbg_free(zone, udata, item);
|
|
else
|
|
uma_dbg_free(zone, NULL, item);
|
|
#endif
|
|
if (zone->uz_dtor != NULL)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
/*
|
|
* The race here is acceptable. If we miss it we'll just have to wait
|
|
* a little longer for the limits to be reset.
|
|
*/
|
|
if (zone->uz_flags & UMA_ZFLAG_FULL)
|
|
goto zfree_item;
|
|
|
|
/*
|
|
* If possible, free to the per-CPU cache. There are two
|
|
* requirements for safe access to the per-CPU cache: (1) the thread
|
|
* accessing the cache must not be preempted or yield during access,
|
|
* and (2) the thread must not migrate CPUs without switching which
|
|
* cache it accesses. We rely on a critical section to prevent
|
|
* preemption and migration. We release the critical section in
|
|
* order to acquire the zone mutex if we are unable to free to the
|
|
* current cache; when we re-acquire the critical section, we must
|
|
* detect and handle migration if it has occurred.
|
|
*/
|
|
zfree_restart:
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zfree_start:
|
|
/*
|
|
* Try to free into the allocbucket first to give LIFO ordering
|
|
* for cache-hot datastructures. Spill over into the freebucket
|
|
* if necessary. Alloc will swap them if one runs dry.
|
|
*/
|
|
bucket = cache->uc_allocbucket;
|
|
if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
|
|
bucket = cache->uc_freebucket;
|
|
if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
|
|
KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
|
|
("uma_zfree: Freeing to non free bucket index."));
|
|
bucket->ub_bucket[bucket->ub_cnt] = item;
|
|
bucket->ub_cnt++;
|
|
cache->uc_frees++;
|
|
critical_exit();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We must go back the zone, which requires acquiring the zone lock,
|
|
* which in turn means we must release and re-acquire the critical
|
|
* section. Since the critical section is released, we may be
|
|
* preempted or migrate. As such, make sure not to maintain any
|
|
* thread-local state specific to the cache from prior to releasing
|
|
* the critical section.
|
|
*/
|
|
critical_exit();
|
|
if (zone->uz_count == 0 || bucketdisable)
|
|
goto zfree_item;
|
|
|
|
lockfail = 0;
|
|
if (ZONE_TRYLOCK(zone) == 0) {
|
|
/* Record contention to size the buckets. */
|
|
ZONE_LOCK(zone);
|
|
lockfail = 1;
|
|
}
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
/*
|
|
* Since we have locked the zone we may as well send back our stats.
|
|
*/
|
|
atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
|
|
atomic_add_long(&zone->uz_frees, cache->uc_frees);
|
|
cache->uc_allocs = 0;
|
|
cache->uc_frees = 0;
|
|
|
|
bucket = cache->uc_freebucket;
|
|
if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zfree_start;
|
|
}
|
|
cache->uc_freebucket = NULL;
|
|
/* We are no longer associated with this CPU. */
|
|
critical_exit();
|
|
|
|
/* Can we throw this on the zone full list? */
|
|
if (bucket != NULL) {
|
|
CTR3(KTR_UMA,
|
|
"uma_zfree: zone %s(%p) putting bucket %p on free list",
|
|
zone->uz_name, zone, bucket);
|
|
/* ub_cnt is pointing to the last free item */
|
|
KASSERT(bucket->ub_cnt != 0,
|
|
("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
|
|
LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
|
|
}
|
|
|
|
/*
|
|
* We bump the uz count when the cache size is insufficient to
|
|
* handle the working set.
|
|
*/
|
|
if (lockfail && zone->uz_count < BUCKET_MAX)
|
|
zone->uz_count++;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
bucket = bucket_alloc(zone, udata, M_NOWAIT);
|
|
CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p",
|
|
zone->uz_name, zone, bucket);
|
|
if (bucket) {
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
if (cache->uc_freebucket == NULL) {
|
|
cache->uc_freebucket = bucket;
|
|
goto zfree_start;
|
|
}
|
|
/*
|
|
* We lost the race, start over. We have to drop our
|
|
* critical section to free the bucket.
|
|
*/
|
|
critical_exit();
|
|
bucket_free(zone, bucket, udata);
|
|
goto zfree_restart;
|
|
}
|
|
|
|
/*
|
|
* If nothing else caught this, we'll just do an internal free.
|
|
*/
|
|
zfree_item:
|
|
zone_free_item(zone, item, udata, SKIP_DTOR);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
|
|
{
|
|
uint8_t freei;
|
|
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
MPASS(keg == slab->us_keg);
|
|
|
|
/* Do we need to remove from any lists? */
|
|
if (slab->us_freecount+1 == keg->uk_ipers) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
|
|
} else if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
|
|
}
|
|
|
|
/* Slab management. */
|
|
freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
|
|
BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
|
|
slab->us_freecount++;
|
|
|
|
/* Keg statistics. */
|
|
keg->uk_free++;
|
|
}
|
|
|
|
static void
|
|
zone_release(uma_zone_t zone, void **bucket, int cnt)
|
|
{
|
|
void *item;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
uint8_t *mem;
|
|
int clearfull;
|
|
int i;
|
|
|
|
clearfull = 0;
|
|
keg = zone_first_keg(zone);
|
|
KEG_LOCK(keg);
|
|
for (i = 0; i < cnt; i++) {
|
|
item = bucket[i];
|
|
if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
|
|
mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
|
|
if (zone->uz_flags & UMA_ZONE_HASH) {
|
|
slab = hash_sfind(&keg->uk_hash, mem);
|
|
} else {
|
|
mem += keg->uk_pgoff;
|
|
slab = (uma_slab_t)mem;
|
|
}
|
|
} else {
|
|
slab = vtoslab((vm_offset_t)item);
|
|
if (slab->us_keg != keg) {
|
|
KEG_UNLOCK(keg);
|
|
keg = slab->us_keg;
|
|
KEG_LOCK(keg);
|
|
}
|
|
}
|
|
slab_free_item(keg, slab, item);
|
|
if (keg->uk_flags & UMA_ZFLAG_FULL) {
|
|
if (keg->uk_pages < keg->uk_maxpages) {
|
|
keg->uk_flags &= ~UMA_ZFLAG_FULL;
|
|
clearfull = 1;
|
|
}
|
|
|
|
/*
|
|
* We can handle one more allocation. Since we're
|
|
* clearing ZFLAG_FULL, wake up all procs blocked
|
|
* on pages. This should be uncommon, so keeping this
|
|
* simple for now (rather than adding count of blocked
|
|
* threads etc).
|
|
*/
|
|
wakeup(keg);
|
|
}
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
if (clearfull) {
|
|
ZONE_LOCK(zone);
|
|
zone->uz_flags &= ~UMA_ZFLAG_FULL;
|
|
wakeup(zone);
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Frees a single item to any zone.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to
|
|
* item The item we're freeing
|
|
* udata User supplied data for the dtor
|
|
* skip Skip dtors and finis
|
|
*/
|
|
static void
|
|
zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
|
|
{
|
|
|
|
#ifdef INVARIANTS
|
|
if (skip == SKIP_NONE) {
|
|
if (zone->uz_flags & UMA_ZONE_MALLOC)
|
|
uma_dbg_free(zone, udata, item);
|
|
else
|
|
uma_dbg_free(zone, NULL, item);
|
|
}
|
|
#endif
|
|
if (skip < SKIP_DTOR && zone->uz_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
if (skip < SKIP_FINI && zone->uz_fini)
|
|
zone->uz_fini(item, zone->uz_size);
|
|
|
|
atomic_add_long(&zone->uz_frees, 1);
|
|
zone->uz_release(zone->uz_arg, &item, 1);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_set_max(uma_zone_t zone, int nitems)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
if (keg == NULL)
|
|
return (0);
|
|
KEG_LOCK(keg);
|
|
keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
|
|
if (keg->uk_maxpages * keg->uk_ipers < nitems)
|
|
keg->uk_maxpages += keg->uk_ppera;
|
|
nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
|
|
KEG_UNLOCK(keg);
|
|
|
|
return (nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_get_max(uma_zone_t zone)
|
|
{
|
|
int nitems;
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
if (keg == NULL)
|
|
return (0);
|
|
KEG_LOCK(keg);
|
|
nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
|
|
KEG_UNLOCK(keg);
|
|
|
|
return (nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_warning(uma_zone_t zone, const char *warning)
|
|
{
|
|
|
|
ZONE_LOCK(zone);
|
|
zone->uz_warning = warning;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
|
|
{
|
|
|
|
ZONE_LOCK(zone);
|
|
TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_get_cur(uma_zone_t zone)
|
|
{
|
|
int64_t nitems;
|
|
u_int i;
|
|
|
|
ZONE_LOCK(zone);
|
|
nitems = zone->uz_allocs - zone->uz_frees;
|
|
CPU_FOREACH(i) {
|
|
/*
|
|
* See the comment in sysctl_vm_zone_stats() regarding the
|
|
* safety of accessing the per-cpu caches. With the zone lock
|
|
* held, it is safe, but can potentially result in stale data.
|
|
*/
|
|
nitems += zone->uz_cpu[i].uc_allocs -
|
|
zone->uz_cpu[i].uc_frees;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
|
|
return (nitems < 0 ? 0 : nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_init(uma_zone_t zone, uma_init uminit)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
|
|
KEG_LOCK(keg);
|
|
KASSERT(keg->uk_pages == 0,
|
|
("uma_zone_set_init on non-empty keg"));
|
|
keg->uk_init = uminit;
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
|
|
KEG_LOCK(keg);
|
|
KASSERT(keg->uk_pages == 0,
|
|
("uma_zone_set_fini on non-empty keg"));
|
|
keg->uk_fini = fini;
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
|
|
{
|
|
|
|
ZONE_LOCK(zone);
|
|
KASSERT(zone_first_keg(zone)->uk_pages == 0,
|
|
("uma_zone_set_zinit on non-empty keg"));
|
|
zone->uz_init = zinit;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
|
|
{
|
|
|
|
ZONE_LOCK(zone);
|
|
KASSERT(zone_first_keg(zone)->uk_pages == 0,
|
|
("uma_zone_set_zfini on non-empty keg"));
|
|
zone->uz_fini = zfini;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
/* XXX uk_freef is not actually used with the zone locked */
|
|
void
|
|
uma_zone_set_freef(uma_zone_t zone, uma_free freef)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
|
|
KEG_LOCK(keg);
|
|
keg->uk_freef = freef;
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
/* XXX uk_allocf is not actually used with the zone locked */
|
|
void
|
|
uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
KEG_LOCK(keg);
|
|
keg->uk_allocf = allocf;
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_reserve(uma_zone_t zone, int items)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
if (keg == NULL)
|
|
return;
|
|
KEG_LOCK(keg);
|
|
keg->uk_reserve = items;
|
|
KEG_UNLOCK(keg);
|
|
|
|
return;
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_reserve_kva(uma_zone_t zone, int count)
|
|
{
|
|
uma_keg_t keg;
|
|
vm_offset_t kva;
|
|
u_int pages;
|
|
|
|
keg = zone_first_keg(zone);
|
|
if (keg == NULL)
|
|
return (0);
|
|
pages = count / keg->uk_ipers;
|
|
|
|
if (pages * keg->uk_ipers < count)
|
|
pages++;
|
|
pages *= keg->uk_ppera;
|
|
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
if (keg->uk_ppera > 1) {
|
|
#else
|
|
if (1) {
|
|
#endif
|
|
kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
|
|
if (kva == 0)
|
|
return (0);
|
|
} else
|
|
kva = 0;
|
|
KEG_LOCK(keg);
|
|
keg->uk_kva = kva;
|
|
keg->uk_offset = 0;
|
|
keg->uk_maxpages = pages;
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
|
|
#else
|
|
keg->uk_allocf = noobj_alloc;
|
|
#endif
|
|
keg->uk_flags |= UMA_ZONE_NOFREE;
|
|
KEG_UNLOCK(keg);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_prealloc(uma_zone_t zone, int items)
|
|
{
|
|
int slabs;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
if (keg == NULL)
|
|
return;
|
|
KEG_LOCK(keg);
|
|
slabs = items / keg->uk_ipers;
|
|
if (slabs * keg->uk_ipers < items)
|
|
slabs++;
|
|
while (slabs > 0) {
|
|
slab = keg_alloc_slab(keg, zone, M_WAITOK);
|
|
if (slab == NULL)
|
|
break;
|
|
MPASS(slab->us_keg == keg);
|
|
LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
|
|
slabs--;
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
static void
|
|
uma_reclaim_locked(bool kmem_danger)
|
|
{
|
|
|
|
CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
|
|
sx_assert(&uma_drain_lock, SA_XLOCKED);
|
|
bucket_enable();
|
|
zone_foreach(zone_drain);
|
|
if (vm_page_count_min() || kmem_danger) {
|
|
cache_drain_safe(NULL);
|
|
zone_foreach(zone_drain);
|
|
}
|
|
/*
|
|
* Some slabs may have been freed but this zone will be visited early
|
|
* we visit again so that we can free pages that are empty once other
|
|
* zones are drained. We have to do the same for buckets.
|
|
*/
|
|
zone_drain(slabzone);
|
|
bucket_zone_drain();
|
|
}
|
|
|
|
void
|
|
uma_reclaim(void)
|
|
{
|
|
|
|
sx_xlock(&uma_drain_lock);
|
|
uma_reclaim_locked(false);
|
|
sx_xunlock(&uma_drain_lock);
|
|
}
|
|
|
|
static int uma_reclaim_needed;
|
|
|
|
void
|
|
uma_reclaim_wakeup(void)
|
|
{
|
|
|
|
uma_reclaim_needed = 1;
|
|
wakeup(&uma_reclaim_needed);
|
|
}
|
|
|
|
void
|
|
uma_reclaim_worker(void *arg __unused)
|
|
{
|
|
|
|
sx_xlock(&uma_drain_lock);
|
|
for (;;) {
|
|
sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
|
|
"umarcl", 0);
|
|
if (uma_reclaim_needed) {
|
|
uma_reclaim_needed = 0;
|
|
sx_xunlock(&uma_drain_lock);
|
|
EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
|
|
sx_xlock(&uma_drain_lock);
|
|
uma_reclaim_locked(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_exhausted(uma_zone_t zone)
|
|
{
|
|
int full;
|
|
|
|
ZONE_LOCK(zone);
|
|
full = (zone->uz_flags & UMA_ZFLAG_FULL);
|
|
ZONE_UNLOCK(zone);
|
|
return (full);
|
|
}
|
|
|
|
int
|
|
uma_zone_exhausted_nolock(uma_zone_t zone)
|
|
{
|
|
return (zone->uz_flags & UMA_ZFLAG_FULL);
|
|
}
|
|
|
|
void *
|
|
uma_large_malloc(vm_size_t size, int wait)
|
|
{
|
|
void *mem;
|
|
uma_slab_t slab;
|
|
uint8_t flags;
|
|
|
|
slab = zone_alloc_item(slabzone, NULL, wait);
|
|
if (slab == NULL)
|
|
return (NULL);
|
|
mem = page_alloc(NULL, size, &flags, wait);
|
|
if (mem) {
|
|
vsetslab((vm_offset_t)mem, slab);
|
|
slab->us_data = mem;
|
|
slab->us_flags = flags | UMA_SLAB_MALLOC;
|
|
slab->us_size = size;
|
|
} else {
|
|
zone_free_item(slabzone, slab, NULL, SKIP_NONE);
|
|
}
|
|
|
|
return (mem);
|
|
}
|
|
|
|
void
|
|
uma_large_free(uma_slab_t slab)
|
|
{
|
|
|
|
page_free(slab->us_data, slab->us_size, slab->us_flags);
|
|
zone_free_item(slabzone, slab, NULL, SKIP_NONE);
|
|
}
|
|
|
|
static void
|
|
uma_zero_item(void *item, uma_zone_t zone)
|
|
{
|
|
int i;
|
|
|
|
if (zone->uz_flags & UMA_ZONE_PCPU) {
|
|
CPU_FOREACH(i)
|
|
bzero(zpcpu_get_cpu(item, i), zone->uz_size);
|
|
} else
|
|
bzero(item, zone->uz_size);
|
|
}
|
|
|
|
void
|
|
uma_print_stats(void)
|
|
{
|
|
zone_foreach(uma_print_zone);
|
|
}
|
|
|
|
static void
|
|
slab_print(uma_slab_t slab)
|
|
{
|
|
printf("slab: keg %p, data %p, freecount %d\n",
|
|
slab->us_keg, slab->us_data, slab->us_freecount);
|
|
}
|
|
|
|
static void
|
|
cache_print(uma_cache_t cache)
|
|
{
|
|
printf("alloc: %p(%d), free: %p(%d)\n",
|
|
cache->uc_allocbucket,
|
|
cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
|
|
cache->uc_freebucket,
|
|
cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
|
|
}
|
|
|
|
static void
|
|
uma_print_keg(uma_keg_t keg)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
|
|
"out %d free %d limit %d\n",
|
|
keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
|
|
keg->uk_ipers, keg->uk_ppera,
|
|
(keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
|
|
keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
|
|
printf("Part slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
|
|
slab_print(slab);
|
|
printf("Free slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
|
|
slab_print(slab);
|
|
printf("Full slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
|
|
slab_print(slab);
|
|
}
|
|
|
|
void
|
|
uma_print_zone(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_klink_t kl;
|
|
int i;
|
|
|
|
printf("zone: %s(%p) size %d flags %#x\n",
|
|
zone->uz_name, zone, zone->uz_size, zone->uz_flags);
|
|
LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
|
|
uma_print_keg(kl->kl_keg);
|
|
CPU_FOREACH(i) {
|
|
cache = &zone->uz_cpu[i];
|
|
printf("CPU %d Cache:\n", i);
|
|
cache_print(cache);
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Generate statistics across both the zone and its per-cpu cache's. Return
|
|
* desired statistics if the pointer is non-NULL for that statistic.
|
|
*
|
|
* Note: does not update the zone statistics, as it can't safely clear the
|
|
* per-CPU cache statistic.
|
|
*
|
|
* XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
|
|
* safe from off-CPU; we should modify the caches to track this information
|
|
* directly so that we don't have to.
|
|
*/
|
|
static void
|
|
uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
|
|
uint64_t *freesp, uint64_t *sleepsp)
|
|
{
|
|
uma_cache_t cache;
|
|
uint64_t allocs, frees, sleeps;
|
|
int cachefree, cpu;
|
|
|
|
allocs = frees = sleeps = 0;
|
|
cachefree = 0;
|
|
CPU_FOREACH(cpu) {
|
|
cache = &z->uz_cpu[cpu];
|
|
if (cache->uc_allocbucket != NULL)
|
|
cachefree += cache->uc_allocbucket->ub_cnt;
|
|
if (cache->uc_freebucket != NULL)
|
|
cachefree += cache->uc_freebucket->ub_cnt;
|
|
allocs += cache->uc_allocs;
|
|
frees += cache->uc_frees;
|
|
}
|
|
allocs += z->uz_allocs;
|
|
frees += z->uz_frees;
|
|
sleeps += z->uz_sleeps;
|
|
if (cachefreep != NULL)
|
|
*cachefreep = cachefree;
|
|
if (allocsp != NULL)
|
|
*allocsp = allocs;
|
|
if (freesp != NULL)
|
|
*freesp = frees;
|
|
if (sleepsp != NULL)
|
|
*sleepsp = sleeps;
|
|
}
|
|
#endif /* DDB */
|
|
|
|
static int
|
|
sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
int count;
|
|
|
|
count = 0;
|
|
rw_rlock(&uma_rwlock);
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link)
|
|
count++;
|
|
}
|
|
rw_runlock(&uma_rwlock);
|
|
return (sysctl_handle_int(oidp, &count, 0, req));
|
|
}
|
|
|
|
static int
|
|
sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct uma_stream_header ush;
|
|
struct uma_type_header uth;
|
|
struct uma_percpu_stat ups;
|
|
uma_bucket_t bucket;
|
|
struct sbuf sbuf;
|
|
uma_cache_t cache;
|
|
uma_klink_t kl;
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
uma_keg_t k;
|
|
int count, error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
|
|
|
|
count = 0;
|
|
rw_rlock(&uma_rwlock);
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link)
|
|
count++;
|
|
}
|
|
|
|
/*
|
|
* Insert stream header.
|
|
*/
|
|
bzero(&ush, sizeof(ush));
|
|
ush.ush_version = UMA_STREAM_VERSION;
|
|
ush.ush_maxcpus = (mp_maxid + 1);
|
|
ush.ush_count = count;
|
|
(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
|
|
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link) {
|
|
bzero(&uth, sizeof(uth));
|
|
ZONE_LOCK(z);
|
|
strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
|
|
uth.uth_align = kz->uk_align;
|
|
uth.uth_size = kz->uk_size;
|
|
uth.uth_rsize = kz->uk_rsize;
|
|
LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
|
|
k = kl->kl_keg;
|
|
uth.uth_maxpages += k->uk_maxpages;
|
|
uth.uth_pages += k->uk_pages;
|
|
uth.uth_keg_free += k->uk_free;
|
|
uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
|
|
* k->uk_ipers;
|
|
}
|
|
|
|
/*
|
|
* A zone is secondary is it is not the first entry
|
|
* on the keg's zone list.
|
|
*/
|
|
if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
|
|
(LIST_FIRST(&kz->uk_zones) != z))
|
|
uth.uth_zone_flags = UTH_ZONE_SECONDARY;
|
|
|
|
LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
|
|
uth.uth_zone_free += bucket->ub_cnt;
|
|
uth.uth_allocs = z->uz_allocs;
|
|
uth.uth_frees = z->uz_frees;
|
|
uth.uth_fails = z->uz_fails;
|
|
uth.uth_sleeps = z->uz_sleeps;
|
|
(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
|
|
/*
|
|
* While it is not normally safe to access the cache
|
|
* bucket pointers while not on the CPU that owns the
|
|
* cache, we only allow the pointers to be exchanged
|
|
* without the zone lock held, not invalidated, so
|
|
* accept the possible race associated with bucket
|
|
* exchange during monitoring.
|
|
*/
|
|
for (i = 0; i < (mp_maxid + 1); i++) {
|
|
bzero(&ups, sizeof(ups));
|
|
if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
|
|
goto skip;
|
|
if (CPU_ABSENT(i))
|
|
goto skip;
|
|
cache = &z->uz_cpu[i];
|
|
if (cache->uc_allocbucket != NULL)
|
|
ups.ups_cache_free +=
|
|
cache->uc_allocbucket->ub_cnt;
|
|
if (cache->uc_freebucket != NULL)
|
|
ups.ups_cache_free +=
|
|
cache->uc_freebucket->ub_cnt;
|
|
ups.ups_allocs = cache->uc_allocs;
|
|
ups.ups_frees = cache->uc_frees;
|
|
skip:
|
|
(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
|
|
}
|
|
ZONE_UNLOCK(z);
|
|
}
|
|
}
|
|
rw_runlock(&uma_rwlock);
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uma_zone_t zone = *(uma_zone_t *)arg1;
|
|
int error, max;
|
|
|
|
max = uma_zone_get_max(zone);
|
|
error = sysctl_handle_int(oidp, &max, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
uma_zone_set_max(zone, max);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uma_zone_t zone = *(uma_zone_t *)arg1;
|
|
int cur;
|
|
|
|
cur = uma_zone_get_cur(zone);
|
|
return (sysctl_handle_int(oidp, &cur, 0, req));
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
static uma_slab_t
|
|
uma_dbg_getslab(uma_zone_t zone, void *item)
|
|
{
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
uint8_t *mem;
|
|
|
|
mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
|
|
if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
|
|
slab = vtoslab((vm_offset_t)mem);
|
|
} else {
|
|
/*
|
|
* It is safe to return the slab here even though the
|
|
* zone is unlocked because the item's allocation state
|
|
* essentially holds a reference.
|
|
*/
|
|
ZONE_LOCK(zone);
|
|
keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
slab = hash_sfind(&keg->uk_hash, mem);
|
|
else
|
|
slab = (uma_slab_t)(mem + keg->uk_pgoff);
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* Set up the slab's freei data such that uma_dbg_free can function.
|
|
*
|
|
*/
|
|
static void
|
|
uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
|
|
{
|
|
uma_keg_t keg;
|
|
int freei;
|
|
|
|
if (zone_first_keg(zone) == NULL)
|
|
return;
|
|
if (slab == NULL) {
|
|
slab = uma_dbg_getslab(zone, item);
|
|
if (slab == NULL)
|
|
panic("uma: item %p did not belong to zone %s\n",
|
|
item, zone->uz_name);
|
|
}
|
|
keg = slab->us_keg;
|
|
freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
|
|
|
|
if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
|
|
panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
|
|
item, zone, zone->uz_name, slab, freei);
|
|
BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Verifies freed addresses. Checks for alignment, valid slab membership
|
|
* and duplicate frees.
|
|
*
|
|
*/
|
|
static void
|
|
uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
|
|
{
|
|
uma_keg_t keg;
|
|
int freei;
|
|
|
|
if (zone_first_keg(zone) == NULL)
|
|
return;
|
|
if (slab == NULL) {
|
|
slab = uma_dbg_getslab(zone, item);
|
|
if (slab == NULL)
|
|
panic("uma: Freed item %p did not belong to zone %s\n",
|
|
item, zone->uz_name);
|
|
}
|
|
keg = slab->us_keg;
|
|
freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
|
|
|
|
if (freei >= keg->uk_ipers)
|
|
panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
|
|
item, zone, zone->uz_name, slab, freei);
|
|
|
|
if (((freei * keg->uk_rsize) + slab->us_data) != item)
|
|
panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
|
|
item, zone, zone->uz_name, slab, freei);
|
|
|
|
if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
|
|
panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
|
|
item, zone, zone->uz_name, slab, freei);
|
|
|
|
BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
|
|
}
|
|
#endif /* INVARIANTS */
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(uma, db_show_uma)
|
|
{
|
|
uint64_t allocs, frees, sleeps;
|
|
uma_bucket_t bucket;
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
int cachefree;
|
|
|
|
db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
|
|
"Free", "Requests", "Sleeps", "Bucket");
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link) {
|
|
if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
|
|
allocs = z->uz_allocs;
|
|
frees = z->uz_frees;
|
|
sleeps = z->uz_sleeps;
|
|
cachefree = 0;
|
|
} else
|
|
uma_zone_sumstat(z, &cachefree, &allocs,
|
|
&frees, &sleeps);
|
|
if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
|
|
(LIST_FIRST(&kz->uk_zones) != z)))
|
|
cachefree += kz->uk_free;
|
|
LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
|
|
cachefree += bucket->ub_cnt;
|
|
db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
|
|
z->uz_name, (uintmax_t)kz->uk_size,
|
|
(intmax_t)(allocs - frees), cachefree,
|
|
(uintmax_t)allocs, sleeps, z->uz_count);
|
|
if (db_pager_quit)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(umacache, db_show_umacache)
|
|
{
|
|
uint64_t allocs, frees;
|
|
uma_bucket_t bucket;
|
|
uma_zone_t z;
|
|
int cachefree;
|
|
|
|
db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
|
|
"Requests", "Bucket");
|
|
LIST_FOREACH(z, &uma_cachezones, uz_link) {
|
|
uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
|
|
LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
|
|
cachefree += bucket->ub_cnt;
|
|
db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
|
|
z->uz_name, (uintmax_t)z->uz_size,
|
|
(intmax_t)(allocs - frees), cachefree,
|
|
(uintmax_t)allocs, z->uz_count);
|
|
if (db_pager_quit)
|
|
return;
|
|
}
|
|
}
|
|
#endif /* DDB */
|