1966 lines
67 KiB
C++
1966 lines
67 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "EhFrame.h"
|
|
#include "LinkerScript.h"
|
|
#include "Strings.h"
|
|
#include "SymbolTable.h"
|
|
#include "Target.h"
|
|
#include "lld/Core/Parallel.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
template <class ELFT>
|
|
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
|
|
uintX_t Flags)
|
|
: Name(Name) {
|
|
memset(&Header, 0, sizeof(Elf_Shdr));
|
|
Header.sh_type = Type;
|
|
Header.sh_flags = Flags;
|
|
Header.sh_addralign = 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) {
|
|
*Shdr = Header;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GotPltSection<ELFT>::GotPltSection()
|
|
: OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
|
|
this->Header.sh_addralign = Target->GotPltEntrySize;
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
|
|
Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
|
|
Entries.push_back(&Sym);
|
|
}
|
|
|
|
template <class ELFT> bool GotPltSection<ELFT>::empty() const {
|
|
return Entries.empty();
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::finalize() {
|
|
this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) *
|
|
Target->GotPltEntrySize;
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Target->writeGotPltHeader(Buf);
|
|
Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
|
|
for (const SymbolBody *B : Entries) {
|
|
Target->writeGotPlt(Buf, *B);
|
|
Buf += sizeof(uintX_t);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
GotSection<ELFT>::GotSection()
|
|
: OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
|
|
if (Config->EMachine == EM_MIPS)
|
|
this->Header.sh_flags |= SHF_MIPS_GPREL;
|
|
this->Header.sh_addralign = Target->GotEntrySize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
|
|
Sym.GotIndex = Entries.size();
|
|
Entries.push_back(&Sym);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend,
|
|
RelExpr Expr) {
|
|
// For "true" local symbols which can be referenced from the same module
|
|
// only compiler creates two instructions for address loading:
|
|
//
|
|
// lw $8, 0($gp) # R_MIPS_GOT16
|
|
// addi $8, $8, 0 # R_MIPS_LO16
|
|
//
|
|
// The first instruction loads high 16 bits of the symbol address while
|
|
// the second adds an offset. That allows to reduce number of required
|
|
// GOT entries because only one global offset table entry is necessary
|
|
// for every 64 KBytes of local data. So for local symbols we need to
|
|
// allocate number of GOT entries to hold all required "page" addresses.
|
|
//
|
|
// All global symbols (hidden and regular) considered by compiler uniformly.
|
|
// It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
|
|
// to load address of the symbol. So for each such symbol we need to
|
|
// allocate dedicated GOT entry to store its address.
|
|
//
|
|
// If a symbol is preemptible we need help of dynamic linker to get its
|
|
// final address. The corresponding GOT entries are allocated in the
|
|
// "global" part of GOT. Entries for non preemptible global symbol allocated
|
|
// in the "local" part of GOT.
|
|
//
|
|
// See "Global Offset Table" in Chapter 5:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
|
|
// At this point we do not know final symbol value so to reduce number
|
|
// of allocated GOT entries do the following trick. Save all output
|
|
// sections referenced by GOT relocations. Then later in the `finalize`
|
|
// method calculate number of "pages" required to cover all saved output
|
|
// section and allocate appropriate number of GOT entries.
|
|
auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec;
|
|
MipsOutSections.insert(OutSec);
|
|
return;
|
|
}
|
|
if (Sym.isTls()) {
|
|
// GOT entries created for MIPS TLS relocations behave like
|
|
// almost GOT entries from other ABIs. They go to the end
|
|
// of the global offset table.
|
|
Sym.GotIndex = Entries.size();
|
|
Entries.push_back(&Sym);
|
|
return;
|
|
}
|
|
auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) {
|
|
if (S.isInGot() && !A)
|
|
return;
|
|
size_t NewIndex = Items.size();
|
|
if (!MipsGotMap.insert({{&S, A}, NewIndex}).second)
|
|
return;
|
|
Items.emplace_back(&S, A);
|
|
if (!A)
|
|
S.GotIndex = NewIndex;
|
|
};
|
|
if (Sym.isPreemptible()) {
|
|
// Ignore addends for preemptible symbols. They got single GOT entry anyway.
|
|
AddEntry(Sym, 0, MipsGlobal);
|
|
Sym.IsInGlobalMipsGot = true;
|
|
} else
|
|
AddEntry(Sym, Addend, MipsLocal);
|
|
}
|
|
|
|
template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
|
|
if (Sym.GlobalDynIndex != -1U)
|
|
return false;
|
|
Sym.GlobalDynIndex = Entries.size();
|
|
// Global Dynamic TLS entries take two GOT slots.
|
|
Entries.push_back(nullptr);
|
|
Entries.push_back(&Sym);
|
|
return true;
|
|
}
|
|
|
|
// Reserves TLS entries for a TLS module ID and a TLS block offset.
|
|
// In total it takes two GOT slots.
|
|
template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
|
|
if (TlsIndexOff != uint32_t(-1))
|
|
return false;
|
|
TlsIndexOff = Entries.size() * sizeof(uintX_t);
|
|
Entries.push_back(nullptr);
|
|
Entries.push_back(nullptr);
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) {
|
|
// Initialize the entry by the %hi(EntryValue) expression
|
|
// but without right-shifting.
|
|
EntryValue = (EntryValue + 0x8000) & ~0xffff;
|
|
// Take into account MIPS GOT header.
|
|
// See comment in the GotSection::writeTo.
|
|
size_t NewIndex = MipsLocalGotPos.size() + 2;
|
|
auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
|
|
assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries);
|
|
return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const {
|
|
uintX_t Off = MipsPageEntries;
|
|
if (B.isTls())
|
|
Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex;
|
|
else if (B.IsInGlobalMipsGot)
|
|
Off += MipsLocal.size() + B.GotIndex;
|
|
else if (B.isInGot())
|
|
Off += B.GotIndex;
|
|
else {
|
|
auto It = MipsGotMap.find({&B, Addend});
|
|
assert(It != MipsGotMap.end());
|
|
Off += It->second;
|
|
}
|
|
return Off * sizeof(uintX_t) - MipsGPOffset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() {
|
|
return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) *
|
|
sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
|
|
return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
|
|
return B.GlobalDynIndex * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
|
|
return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first;
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
|
|
return MipsPageEntries + MipsLocal.size();
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::finalize() {
|
|
size_t EntriesNum = Entries.size();
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// Take into account MIPS GOT header.
|
|
// See comment in the GotSection::writeTo.
|
|
MipsPageEntries += 2;
|
|
for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) {
|
|
// Calculate an upper bound of MIPS GOT entries required to store page
|
|
// addresses of local symbols. We assume the worst case - each 64kb
|
|
// page of the output section has at least one GOT relocation against it.
|
|
// Add 0x8000 to the section's size because the page address stored
|
|
// in the GOT entry is calculated as (value + 0x8000) & ~0xffff.
|
|
MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff;
|
|
}
|
|
EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size();
|
|
}
|
|
this->Header.sh_size = EntriesNum * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *&Buf) {
|
|
// Set the MSB of the second GOT slot. This is not required by any
|
|
// MIPS ABI documentation, though.
|
|
//
|
|
// There is a comment in glibc saying that "The MSB of got[1] of a
|
|
// gnu object is set to identify gnu objects," and in GNU gold it
|
|
// says "the second entry will be used by some runtime loaders".
|
|
// But how this field is being used is unclear.
|
|
//
|
|
// We are not really willing to mimic other linkers behaviors
|
|
// without understanding why they do that, but because all files
|
|
// generated by GNU tools have this special GOT value, and because
|
|
// we've been doing this for years, it is probably a safe bet to
|
|
// keep doing this for now. We really need to revisit this to see
|
|
// if we had to do this.
|
|
auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
|
|
P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
|
|
// Write 'page address' entries to the local part of the GOT.
|
|
for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) {
|
|
uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
|
|
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
|
|
}
|
|
Buf += MipsPageEntries * sizeof(uintX_t);
|
|
auto AddEntry = [&](const MipsGotEntry &SA) {
|
|
uint8_t *Entry = Buf;
|
|
Buf += sizeof(uintX_t);
|
|
const SymbolBody* Body = SA.first;
|
|
uintX_t VA = Body->template getVA<ELFT>(SA.second);
|
|
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
|
|
};
|
|
std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry);
|
|
std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry);
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
if (Config->EMachine == EM_MIPS)
|
|
writeMipsGot(Buf);
|
|
for (const SymbolBody *B : Entries) {
|
|
uint8_t *Entry = Buf;
|
|
Buf += sizeof(uintX_t);
|
|
if (!B)
|
|
continue;
|
|
if (B->isPreemptible())
|
|
continue; // The dynamic linker will take care of it.
|
|
uintX_t VA = B->getVA<ELFT>();
|
|
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
PltSection<ELFT>::PltSection()
|
|
: OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
|
|
this->Header.sh_addralign = 16;
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// At beginning of PLT, we have code to call the dynamic linker
|
|
// to resolve dynsyms at runtime. Write such code.
|
|
Target->writePltHeader(Buf);
|
|
size_t Off = Target->PltHeaderSize;
|
|
|
|
for (auto &I : Entries) {
|
|
const SymbolBody *B = I.first;
|
|
unsigned RelOff = I.second;
|
|
uint64_t Got = B->getGotPltVA<ELFT>();
|
|
uint64_t Plt = this->getVA() + Off;
|
|
Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
|
|
Off += Target->PltEntrySize;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
|
|
Sym.PltIndex = Entries.size();
|
|
unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset();
|
|
Entries.push_back(std::make_pair(&Sym, RelOff));
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::finalize() {
|
|
this->Header.sh_size =
|
|
Target->PltHeaderSize + Entries.size() * Target->PltEntrySize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
|
|
: OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL,
|
|
SHF_ALLOC),
|
|
Sort(Sort) {
|
|
this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
this->Header.sh_addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
|
|
Relocs.push_back(Reloc);
|
|
}
|
|
|
|
template <class ELFT, class RelTy>
|
|
static bool compRelocations(const RelTy &A, const RelTy &B) {
|
|
return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
|
|
}
|
|
|
|
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
uint8_t *BufBegin = Buf;
|
|
for (const DynamicReloc<ELFT> &Rel : Relocs) {
|
|
auto *P = reinterpret_cast<Elf_Rela *>(Buf);
|
|
Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
|
|
if (Config->Rela)
|
|
P->r_addend = Rel.getAddend();
|
|
P->r_offset = Rel.getOffset();
|
|
if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got)
|
|
// Dynamic relocation against MIPS GOT section make deal TLS entries
|
|
// allocated in the end of the GOT. We need to adjust the offset to take
|
|
// in account 'local' and 'global' GOT entries.
|
|
P->r_offset += Out<ELFT>::Got->getMipsTlsOffset();
|
|
P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL);
|
|
}
|
|
|
|
if (Sort) {
|
|
if (Config->Rela)
|
|
std::stable_sort((Elf_Rela *)BufBegin,
|
|
(Elf_Rela *)BufBegin + Relocs.size(),
|
|
compRelocations<ELFT, Elf_Rela>);
|
|
else
|
|
std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
|
|
compRelocations<ELFT, Elf_Rel>);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
|
|
return this->Header.sh_entsize * Relocs.size();
|
|
}
|
|
|
|
template <class ELFT> void RelocationSection<ELFT>::finalize() {
|
|
this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
|
|
: Out<ELFT>::DynSymTab->SectionIndex;
|
|
this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InterpSection<ELFT>::InterpSection()
|
|
: OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
|
|
this->Header.sh_size = Config->DynamicLinker.size() + 1;
|
|
}
|
|
|
|
template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
StringRef S = Config->DynamicLinker;
|
|
memcpy(Buf, S.data(), S.size());
|
|
}
|
|
|
|
template <class ELFT>
|
|
HashTableSection<ELFT>::HashTableSection()
|
|
: OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
|
|
this->Header.sh_entsize = sizeof(Elf_Word);
|
|
this->Header.sh_addralign = sizeof(Elf_Word);
|
|
}
|
|
|
|
static uint32_t hashSysv(StringRef Name) {
|
|
uint32_t H = 0;
|
|
for (char C : Name) {
|
|
H = (H << 4) + C;
|
|
uint32_t G = H & 0xf0000000;
|
|
if (G)
|
|
H ^= G >> 24;
|
|
H &= ~G;
|
|
}
|
|
return H;
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::finalize() {
|
|
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
|
|
unsigned NumEntries = 2; // nbucket and nchain.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
|
|
|
|
// Create as many buckets as there are symbols.
|
|
// FIXME: This is simplistic. We can try to optimize it, but implementing
|
|
// support for SHT_GNU_HASH is probably even more profitable.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
|
|
this->Header.sh_size = NumEntries * sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NumSymbols; // nbucket
|
|
*P++ = NumSymbols; // nchain
|
|
|
|
Elf_Word *Buckets = P;
|
|
Elf_Word *Chains = P + NumSymbols;
|
|
|
|
for (const std::pair<SymbolBody *, unsigned> &P :
|
|
Out<ELFT>::DynSymTab->getSymbols()) {
|
|
SymbolBody *Body = P.first;
|
|
StringRef Name = Body->getName();
|
|
unsigned I = Body->DynsymIndex;
|
|
uint32_t Hash = hashSysv(Name) % NumSymbols;
|
|
Chains[I] = Buckets[Hash];
|
|
Buckets[Hash] = I;
|
|
}
|
|
}
|
|
|
|
static uint32_t hashGnu(StringRef Name) {
|
|
uint32_t H = 5381;
|
|
for (uint8_t C : Name)
|
|
H = (H << 5) + H + C;
|
|
return H;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GnuHashTableSection<ELFT>::GnuHashTableSection()
|
|
: OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
|
|
this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
|
|
this->Header.sh_addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 0;
|
|
|
|
// These values are prime numbers which are not greater than 2^(N-1) + 1.
|
|
// In result, for any particular NumHashed we return a prime number
|
|
// which is not greater than NumHashed.
|
|
static const unsigned Primes[] = {
|
|
1, 1, 3, 3, 7, 13, 31, 61, 127, 251,
|
|
509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
|
|
|
|
return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
|
|
array_lengthof(Primes) - 1)];
|
|
}
|
|
|
|
// Bloom filter estimation: at least 8 bits for each hashed symbol.
|
|
// GNU Hash table requirement: it should be a power of 2,
|
|
// the minimum value is 1, even for an empty table.
|
|
// Expected results for a 32-bit target:
|
|
// calcMaskWords(0..4) = 1
|
|
// calcMaskWords(5..8) = 2
|
|
// calcMaskWords(9..16) = 4
|
|
// For a 64-bit target:
|
|
// calcMaskWords(0..8) = 1
|
|
// calcMaskWords(9..16) = 2
|
|
// calcMaskWords(17..32) = 4
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 1;
|
|
return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
|
|
unsigned NumHashed = Symbols.size();
|
|
NBuckets = calcNBuckets(NumHashed);
|
|
MaskWords = calcMaskWords(NumHashed);
|
|
// Second hash shift estimation: just predefined values.
|
|
Shift2 = ELFT::Is64Bits ? 6 : 5;
|
|
|
|
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
this->Header.sh_size = sizeof(Elf_Word) * 4 // Header
|
|
+ sizeof(Elf_Off) * MaskWords // Bloom Filter
|
|
+ sizeof(Elf_Word) * NBuckets // Hash Buckets
|
|
+ sizeof(Elf_Word) * NumHashed; // Hash Values
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
writeHeader(Buf);
|
|
if (Symbols.empty())
|
|
return;
|
|
writeBloomFilter(Buf);
|
|
writeHashTable(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NBuckets;
|
|
*P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
|
|
*P++ = MaskWords;
|
|
*P++ = Shift2;
|
|
Buf = reinterpret_cast<uint8_t *>(P);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
|
|
unsigned C = sizeof(Elf_Off) * 8;
|
|
|
|
auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
|
|
for (const SymbolData &Sym : Symbols) {
|
|
size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
|
|
uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
|
|
(uintX_t(1) << ((Sym.Hash >> Shift2) % C));
|
|
Masks[Pos] |= V;
|
|
}
|
|
Buf += sizeof(Elf_Off) * MaskWords;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
|
|
Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
|
|
Elf_Word *Values = Buckets + NBuckets;
|
|
|
|
int PrevBucket = -1;
|
|
int I = 0;
|
|
for (const SymbolData &Sym : Symbols) {
|
|
int Bucket = Sym.Hash % NBuckets;
|
|
assert(PrevBucket <= Bucket);
|
|
if (Bucket != PrevBucket) {
|
|
Buckets[Bucket] = Sym.Body->DynsymIndex;
|
|
PrevBucket = Bucket;
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
Values[I] = Sym.Hash & ~1;
|
|
++I;
|
|
}
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
|
|
// Add symbols to this symbol hash table. Note that this function
|
|
// destructively sort a given vector -- which is needed because
|
|
// GNU-style hash table places some sorting requirements.
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::addSymbols(
|
|
std::vector<std::pair<SymbolBody *, size_t>> &V) {
|
|
// Ideally this will just be 'auto' but GCC 6.1 is not able
|
|
// to deduce it correctly.
|
|
std::vector<std::pair<SymbolBody *, size_t>>::iterator Mid =
|
|
std::stable_partition(V.begin(), V.end(),
|
|
[](std::pair<SymbolBody *, size_t> &P) {
|
|
return P.first->isUndefined();
|
|
});
|
|
if (Mid == V.end())
|
|
return;
|
|
for (auto I = Mid, E = V.end(); I != E; ++I) {
|
|
SymbolBody *B = I->first;
|
|
size_t StrOff = I->second;
|
|
Symbols.push_back({B, StrOff, hashGnu(B->getName())});
|
|
}
|
|
|
|
unsigned NBuckets = calcNBuckets(Symbols.size());
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[&](const SymbolData &L, const SymbolData &R) {
|
|
return L.Hash % NBuckets < R.Hash % NBuckets;
|
|
});
|
|
|
|
V.erase(Mid, V.end());
|
|
for (const SymbolData &Sym : Symbols)
|
|
V.push_back({Sym.Body, Sym.STName});
|
|
}
|
|
|
|
// Returns the number of version definition entries. Because the first entry
|
|
// is for the version definition itself, it is the number of versioned symbols
|
|
// plus one. Note that we don't support multiple versions yet.
|
|
static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
|
|
|
|
template <class ELFT>
|
|
DynamicSection<ELFT>::DynamicSection()
|
|
: OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) {
|
|
Elf_Shdr &Header = this->Header;
|
|
Header.sh_addralign = sizeof(uintX_t);
|
|
Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
|
|
|
|
// .dynamic section is not writable on MIPS.
|
|
// See "Special Section" in Chapter 4 in the following document:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (Config->EMachine == EM_MIPS)
|
|
Header.sh_flags = SHF_ALLOC;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::finalize() {
|
|
if (this->Header.sh_size)
|
|
return; // Already finalized.
|
|
|
|
Elf_Shdr &Header = this->Header;
|
|
Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
|
|
|
|
auto Add = [=](Entry E) { Entries.push_back(E); };
|
|
|
|
// Add strings. We know that these are the last strings to be added to
|
|
// DynStrTab and doing this here allows this function to set DT_STRSZ.
|
|
if (!Config->RPath.empty())
|
|
Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
|
|
Out<ELFT>::DynStrTab->addString(Config->RPath)});
|
|
for (const std::unique_ptr<SharedFile<ELFT>> &F :
|
|
Symtab<ELFT>::X->getSharedFiles())
|
|
if (F->isNeeded())
|
|
Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
|
|
if (!Config->SoName.empty())
|
|
Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
|
|
|
|
Out<ELFT>::DynStrTab->finalize();
|
|
|
|
if (Out<ELFT>::RelaDyn->hasRelocs()) {
|
|
bool IsRela = Config->Rela;
|
|
Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
|
|
Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
|
|
Add({IsRela ? DT_RELAENT : DT_RELENT,
|
|
uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
|
|
}
|
|
if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
|
|
Add({DT_JMPREL, Out<ELFT>::RelaPlt});
|
|
Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
|
|
Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
|
|
Out<ELFT>::GotPlt});
|
|
Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
|
|
}
|
|
|
|
Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
|
|
Add({DT_SYMENT, sizeof(Elf_Sym)});
|
|
Add({DT_STRTAB, Out<ELFT>::DynStrTab});
|
|
Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
|
|
if (Out<ELFT>::GnuHashTab)
|
|
Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
|
|
if (Out<ELFT>::HashTab)
|
|
Add({DT_HASH, Out<ELFT>::HashTab});
|
|
|
|
if (PreInitArraySec) {
|
|
Add({DT_PREINIT_ARRAY, PreInitArraySec});
|
|
Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
|
|
}
|
|
if (InitArraySec) {
|
|
Add({DT_INIT_ARRAY, InitArraySec});
|
|
Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
|
|
}
|
|
if (FiniArraySec) {
|
|
Add({DT_FINI_ARRAY, FiniArraySec});
|
|
Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
|
|
}
|
|
|
|
if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init))
|
|
Add({DT_INIT, B});
|
|
if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini))
|
|
Add({DT_FINI, B});
|
|
|
|
uint32_t DtFlags = 0;
|
|
uint32_t DtFlags1 = 0;
|
|
if (Config->Bsymbolic)
|
|
DtFlags |= DF_SYMBOLIC;
|
|
if (Config->ZNodelete)
|
|
DtFlags1 |= DF_1_NODELETE;
|
|
if (Config->ZNow) {
|
|
DtFlags |= DF_BIND_NOW;
|
|
DtFlags1 |= DF_1_NOW;
|
|
}
|
|
if (Config->ZOrigin) {
|
|
DtFlags |= DF_ORIGIN;
|
|
DtFlags1 |= DF_1_ORIGIN;
|
|
}
|
|
|
|
if (DtFlags)
|
|
Add({DT_FLAGS, DtFlags});
|
|
if (DtFlags1)
|
|
Add({DT_FLAGS_1, DtFlags1});
|
|
|
|
if (!Config->Entry.empty())
|
|
Add({DT_DEBUG, (uint64_t)0});
|
|
|
|
bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
|
|
if (HasVerNeed || Out<ELFT>::VerDef)
|
|
Add({DT_VERSYM, Out<ELFT>::VerSym});
|
|
if (Out<ELFT>::VerDef) {
|
|
Add({DT_VERDEF, Out<ELFT>::VerDef});
|
|
Add({DT_VERDEFNUM, getVerDefNum()});
|
|
}
|
|
if (HasVerNeed) {
|
|
Add({DT_VERNEED, Out<ELFT>::VerNeed});
|
|
Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()});
|
|
}
|
|
|
|
if (Config->EMachine == EM_MIPS) {
|
|
Add({DT_MIPS_RLD_VERSION, 1});
|
|
Add({DT_MIPS_FLAGS, RHF_NOTPOT});
|
|
Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase});
|
|
Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
|
|
Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
|
|
if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
|
|
Add({DT_MIPS_GOTSYM, B->DynsymIndex});
|
|
else
|
|
Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
|
|
Add({DT_PLTGOT, Out<ELFT>::Got});
|
|
if (Out<ELFT>::MipsRldMap)
|
|
Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
|
|
}
|
|
|
|
// +1 for DT_NULL
|
|
Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
|
|
|
|
for (const Entry &E : Entries) {
|
|
P->d_tag = E.Tag;
|
|
switch (E.Kind) {
|
|
case Entry::SecAddr:
|
|
P->d_un.d_ptr = E.OutSec->getVA();
|
|
break;
|
|
case Entry::SymAddr:
|
|
P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
|
|
break;
|
|
case Entry::PlainInt:
|
|
P->d_un.d_val = E.Val;
|
|
break;
|
|
}
|
|
++P;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhFrameHeader<ELFT>::EhFrameHeader()
|
|
: OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {}
|
|
|
|
// .eh_frame_hdr contains a binary search table of pointers to FDEs.
|
|
// Each entry of the search table consists of two values,
|
|
// the starting PC from where FDEs covers, and the FDE's address.
|
|
// It is sorted by PC.
|
|
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
// Sort the FDE list by their PC and uniqueify. Usually there is only
|
|
// one FDE for a PC (i.e. function), but if ICF merges two functions
|
|
// into one, there can be more than one FDEs pointing to the address.
|
|
auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
|
|
std::stable_sort(Fdes.begin(), Fdes.end(), Less);
|
|
auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
|
|
Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());
|
|
|
|
Buf[0] = 1;
|
|
Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
|
|
Buf[2] = DW_EH_PE_udata4;
|
|
Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
|
|
write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4);
|
|
write32<E>(Buf + 8, Fdes.size());
|
|
Buf += 12;
|
|
|
|
uintX_t VA = this->getVA();
|
|
for (FdeData &Fde : Fdes) {
|
|
write32<E>(Buf, Fde.Pc - VA);
|
|
write32<E>(Buf + 4, Fde.FdeVA - VA);
|
|
Buf += 8;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void EhFrameHeader<ELFT>::finalize() {
|
|
// .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
|
|
this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
|
|
Fdes.push_back({Pc, FdeVA});
|
|
}
|
|
|
|
template <class ELFT>
|
|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
|
|
: OutputSectionBase<ELFT>(Name, Type, Flags) {
|
|
if (Type == SHT_RELA)
|
|
this->Header.sh_entsize = sizeof(Elf_Rela);
|
|
else if (Type == SHT_REL)
|
|
this->Header.sh_entsize = sizeof(Elf_Rel);
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::finalize() {
|
|
uint32_t Type = this->Header.sh_type;
|
|
if (Type != SHT_RELA && Type != SHT_REL)
|
|
return;
|
|
this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex;
|
|
// sh_info for SHT_REL[A] sections should contain the section header index of
|
|
// the section to which the relocation applies.
|
|
InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
|
|
this->Header.sh_info = S->OutSec->SectionIndex;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
assert(C->Live);
|
|
auto *S = cast<InputSection<ELFT>>(C);
|
|
Sections.push_back(S);
|
|
S->OutSec = this;
|
|
this->updateAlignment(S->Alignment);
|
|
}
|
|
|
|
// If an input string is in the form of "foo.N" where N is a number,
|
|
// return N. Otherwise, returns 65536, which is one greater than the
|
|
// lowest priority.
|
|
static int getPriority(StringRef S) {
|
|
size_t Pos = S.rfind('.');
|
|
if (Pos == StringRef::npos)
|
|
return 65536;
|
|
int V;
|
|
if (S.substr(Pos + 1).getAsInteger(10, V))
|
|
return 65536;
|
|
return V;
|
|
}
|
|
|
|
// This function is called after we sort input sections
|
|
// and scan relocations to setup sections' offsets.
|
|
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
|
|
uintX_t Off = this->Header.sh_size;
|
|
for (InputSection<ELFT> *S : Sections) {
|
|
Off = alignTo(Off, S->Alignment);
|
|
S->OutSecOff = Off;
|
|
Off += S->getSize();
|
|
}
|
|
this->Header.sh_size = Off;
|
|
}
|
|
|
|
// Sorts input sections by section name suffixes, so that .foo.N comes
|
|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
|
|
// We want to keep the original order if the priorities are the same
|
|
// because the compiler keeps the original initialization order in a
|
|
// translation unit and we need to respect that.
|
|
// For more detail, read the section of the GCC's manual about init_priority.
|
|
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
|
|
// Sort sections by priority.
|
|
typedef std::pair<int, InputSection<ELFT> *> Pair;
|
|
auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
|
|
|
|
std::vector<Pair> V;
|
|
for (InputSection<ELFT> *S : Sections)
|
|
V.push_back({getPriority(S->getSectionName()), S});
|
|
std::stable_sort(V.begin(), V.end(), Comp);
|
|
Sections.clear();
|
|
for (Pair &P : V)
|
|
Sections.push_back(P.second);
|
|
}
|
|
|
|
// Returns true if S matches /Filename.?\.o$/.
|
|
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
|
|
if (!S.endswith(".o"))
|
|
return false;
|
|
S = S.drop_back(2);
|
|
if (S.endswith(Filename))
|
|
return true;
|
|
return !S.empty() && S.drop_back().endswith(Filename);
|
|
}
|
|
|
|
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
|
|
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
|
|
|
|
// .ctors and .dtors are sorted by this priority from highest to lowest.
|
|
//
|
|
// 1. The section was contained in crtbegin (crtbegin contains
|
|
// some sentinel value in its .ctors and .dtors so that the runtime
|
|
// can find the beginning of the sections.)
|
|
//
|
|
// 2. The section has an optional priority value in the form of ".ctors.N"
|
|
// or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
|
|
// they are compared as string rather than number.
|
|
//
|
|
// 3. The section is just ".ctors" or ".dtors".
|
|
//
|
|
// 4. The section was contained in crtend, which contains an end marker.
|
|
//
|
|
// In an ideal world, we don't need this function because .init_array and
|
|
// .ctors are duplicate features (and .init_array is newer.) However, there
|
|
// are too many real-world use cases of .ctors, so we had no choice to
|
|
// support that with this rather ad-hoc semantics.
|
|
template <class ELFT>
|
|
static bool compCtors(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
bool BeginA = isCrtbegin(A->getFile()->getName());
|
|
bool BeginB = isCrtbegin(B->getFile()->getName());
|
|
if (BeginA != BeginB)
|
|
return BeginA;
|
|
bool EndA = isCrtend(A->getFile()->getName());
|
|
bool EndB = isCrtend(B->getFile()->getName());
|
|
if (EndA != EndB)
|
|
return EndB;
|
|
StringRef X = A->getSectionName();
|
|
StringRef Y = B->getSectionName();
|
|
assert(X.startswith(".ctors") || X.startswith(".dtors"));
|
|
assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
|
|
X = X.substr(6);
|
|
Y = Y.substr(6);
|
|
if (X.empty() && Y.empty())
|
|
return false;
|
|
return X < Y;
|
|
}
|
|
|
|
// Sorts input sections by the special rules for .ctors and .dtors.
|
|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
|
|
// Read the comment above.
|
|
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
|
|
std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
|
|
}
|
|
|
|
static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
|
|
size_t I = 0;
|
|
for (; I + A.size() < Size; I += A.size())
|
|
memcpy(Buf + I, A.data(), A.size());
|
|
memcpy(Buf + I, A.data(), Size - I);
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
|
|
if (!Filler.empty())
|
|
fill(Buf, this->getSize(), Filler);
|
|
if (Config->Threads) {
|
|
parallel_for_each(Sections.begin(), Sections.end(),
|
|
[=](InputSection<ELFT> *C) { C->writeTo(Buf); });
|
|
} else {
|
|
for (InputSection<ELFT> *C : Sections)
|
|
C->writeTo(Buf);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhOutputSection<ELFT>::EhOutputSection()
|
|
: OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}
|
|
|
|
// Returns the first relocation that points to a region
|
|
// between Begin and Begin+Size.
|
|
template <class IntTy, class RelTy>
|
|
static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef<RelTy> &Rels) {
|
|
for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
|
|
if (I->r_offset < Begin)
|
|
continue;
|
|
|
|
// Truncate Rels for fast access. That means we expect that the
|
|
// relocations are sorted and we are looking up symbols in
|
|
// sequential order. It is naturally satisfied for .eh_frame.
|
|
Rels = Rels.slice(I - Rels.begin());
|
|
if (I->r_offset < Begin + Size)
|
|
return I;
|
|
return nullptr;
|
|
}
|
|
Rels = ArrayRef<RelTy>();
|
|
return nullptr;
|
|
}
|
|
|
|
// Search for an existing CIE record or create a new one.
|
|
// CIE records from input object files are uniquified by their contents
|
|
// and where their relocations point to.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
CieRecord *EhOutputSection<ELFT>::addCie(SectionPiece &Piece,
|
|
EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> &Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
if (read32<E>(Piece.data().data() + 4) != 0)
|
|
fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName());
|
|
|
|
SymbolBody *Personality = nullptr;
|
|
if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels))
|
|
Personality = &Sec->getFile()->getRelocTargetSym(*Rel);
|
|
|
|
// Search for an existing CIE by CIE contents/relocation target pair.
|
|
CieRecord *Cie = &CieMap[{Piece.data(), Personality}];
|
|
|
|
// If not found, create a new one.
|
|
if (Cie->Piece == nullptr) {
|
|
Cie->Piece = &Piece;
|
|
Cies.push_back(Cie);
|
|
}
|
|
return Cie;
|
|
}
|
|
|
|
// There is one FDE per function. Returns true if a given FDE
|
|
// points to a live function.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool EhOutputSection<ELFT>::isFdeLive(SectionPiece &Piece,
|
|
EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> &Rels) {
|
|
const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels);
|
|
if (!Rel)
|
|
fatal("FDE doesn't reference another section");
|
|
SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel);
|
|
auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
|
|
if (!D || !D->Section)
|
|
return false;
|
|
InputSectionBase<ELFT> *Target = D->Section->Repl;
|
|
return Target && Target->Live;
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. In general, there
|
|
// is one CIE record per input object file which is followed by
|
|
// a list of FDEs. This function searches an existing CIE or create a new
|
|
// one and associates FDEs to the CIE.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
DenseMap<size_t, CieRecord *> OffsetToCie;
|
|
for (SectionPiece &Piece : Sec->Pieces) {
|
|
// The empty record is the end marker.
|
|
if (Piece.size() == 4)
|
|
return;
|
|
|
|
size_t Offset = Piece.InputOff;
|
|
uint32_t ID = read32<E>(Piece.data().data() + 4);
|
|
if (ID == 0) {
|
|
OffsetToCie[Offset] = addCie(Piece, Sec, Rels);
|
|
continue;
|
|
}
|
|
|
|
uint32_t CieOffset = Offset + 4 - ID;
|
|
CieRecord *Cie = OffsetToCie[CieOffset];
|
|
if (!Cie)
|
|
fatal("invalid CIE reference");
|
|
|
|
if (!isFdeLive(Piece, Sec, Rels))
|
|
continue;
|
|
Cie->FdePieces.push_back(&Piece);
|
|
NumFdes++;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *Sec = cast<EhInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
Sections.push_back(Sec);
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. This function
|
|
// splits it into pieces so that we can call
|
|
// SplitInputSection::getSectionPiece on the section.
|
|
Sec->split();
|
|
if (Sec->Pieces.empty())
|
|
return;
|
|
|
|
if (const Elf_Shdr *RelSec = Sec->RelocSection) {
|
|
ELFFile<ELFT> &Obj = Sec->getFile()->getObj();
|
|
if (RelSec->sh_type == SHT_RELA)
|
|
addSectionAux(Sec, Obj.relas(RelSec));
|
|
else
|
|
addSectionAux(Sec, Obj.rels(RelSec));
|
|
return;
|
|
}
|
|
addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
|
|
memcpy(Buf, D.data(), D.size());
|
|
|
|
// Fix the size field. -4 since size does not include the size field itself.
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::finalize() {
|
|
if (this->Header.sh_size)
|
|
return; // Already finalized.
|
|
|
|
size_t Off = 0;
|
|
for (CieRecord *Cie : Cies) {
|
|
Cie->Piece->OutputOff = Off;
|
|
Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));
|
|
|
|
for (SectionPiece *Fde : Cie->FdePieces) {
|
|
Fde->OutputOff = Off;
|
|
Off += alignTo(Fde->size(), sizeof(uintX_t));
|
|
}
|
|
}
|
|
this->Header.sh_size = Off;
|
|
}
|
|
|
|
template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
switch (Size) {
|
|
case DW_EH_PE_udata2:
|
|
return read16<E>(Buf);
|
|
case DW_EH_PE_udata4:
|
|
return read32<E>(Buf);
|
|
case DW_EH_PE_udata8:
|
|
return read64<E>(Buf);
|
|
case DW_EH_PE_absptr:
|
|
if (ELFT::Is64Bits)
|
|
return read64<E>(Buf);
|
|
return read32<E>(Buf);
|
|
}
|
|
fatal("unknown FDE size encoding");
|
|
}
|
|
|
|
// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
|
|
// We need it to create .eh_frame_hdr section.
|
|
template <class ELFT>
|
|
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
|
|
uint8_t Enc) {
|
|
// The starting address to which this FDE applies is
|
|
// stored at FDE + 8 byte.
|
|
size_t Off = FdeOff + 8;
|
|
uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
|
|
if ((Enc & 0x70) == DW_EH_PE_absptr)
|
|
return Addr;
|
|
if ((Enc & 0x70) == DW_EH_PE_pcrel)
|
|
return Addr + this->getVA() + Off;
|
|
fatal("unknown FDE size relative encoding");
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
for (CieRecord *Cie : Cies) {
|
|
size_t CieOffset = Cie->Piece->OutputOff;
|
|
writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());
|
|
|
|
for (SectionPiece *Fde : Cie->FdePieces) {
|
|
size_t Off = Fde->OutputOff;
|
|
writeCieFde<ELFT>(Buf + Off, Fde->data());
|
|
|
|
// FDE's second word should have the offset to an associated CIE.
|
|
// Write it.
|
|
write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
|
|
}
|
|
}
|
|
|
|
for (EhInputSection<ELFT> *S : Sections)
|
|
S->relocate(Buf, nullptr);
|
|
|
|
// Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
|
|
// to get a FDE from an address to which FDE is applied. So here
|
|
// we obtain two addresses and pass them to EhFrameHdr object.
|
|
if (Out<ELFT>::EhFrameHdr) {
|
|
for (CieRecord *Cie : Cies) {
|
|
uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data());
|
|
for (SectionPiece *Fde : Cie->FdePieces) {
|
|
uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
|
|
uintX_t FdeVA = this->getVA() + Fde->OutputOff;
|
|
Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags, uintX_t Alignment)
|
|
: OutputSectionBase<ELFT>(Name, Type, Flags),
|
|
Builder(StringTableBuilder::RAW, Alignment) {}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
if (shouldTailMerge()) {
|
|
StringRef Data = Builder.data();
|
|
memcpy(Buf, Data.data(), Data.size());
|
|
return;
|
|
}
|
|
for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) {
|
|
StringRef Data = P.first.Val;
|
|
memcpy(Buf + P.second, Data.data(), Data.size());
|
|
}
|
|
}
|
|
|
|
static StringRef toStringRef(ArrayRef<uint8_t> A) {
|
|
return {(const char *)A.data(), A.size()};
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *Sec = cast<MergeInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize;
|
|
Sections.push_back(Sec);
|
|
|
|
bool IsString = this->Header.sh_flags & SHF_STRINGS;
|
|
|
|
for (SectionPiece &Piece : Sec->Pieces) {
|
|
if (!Piece.Live)
|
|
continue;
|
|
uintX_t OutputOffset = Builder.add(toStringRef(Piece.data()));
|
|
if (!IsString || !shouldTailMerge())
|
|
Piece.OutputOff = OutputOffset;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
|
|
return Builder.getOffset(Val);
|
|
}
|
|
|
|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
|
|
return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
|
|
if (shouldTailMerge())
|
|
Builder.finalize();
|
|
this->Header.sh_size = Builder.getSize();
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() {
|
|
for (MergeInputSection<ELFT> *Sec : Sections)
|
|
Sec->finalizePieces();
|
|
}
|
|
|
|
template <class ELFT>
|
|
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
|
|
: OutputSectionBase<ELFT>(Name, SHT_STRTAB,
|
|
Dynamic ? (uintX_t)SHF_ALLOC : 0),
|
|
Dynamic(Dynamic) {}
|
|
|
|
// Adds a string to the string table. If HashIt is true we hash and check for
|
|
// duplicates. It is optional because the name of global symbols are already
|
|
// uniqued and hashing them again has a big cost for a small value: uniquing
|
|
// them with some other string that happens to be the same.
|
|
template <class ELFT>
|
|
unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
|
|
if (HashIt) {
|
|
auto R = StringMap.insert(std::make_pair(S, Size));
|
|
if (!R.second)
|
|
return R.first->second;
|
|
}
|
|
unsigned Ret = Size;
|
|
Size += S.size() + 1;
|
|
Strings.push_back(S);
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// ELF string tables start with NUL byte, so advance the pointer by one.
|
|
++Buf;
|
|
for (StringRef S : Strings) {
|
|
memcpy(Buf, S.data(), S.size());
|
|
Buf += S.size() + 1;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename ELFT::uint DynamicReloc<ELFT>::getOffset() const {
|
|
if (OutputSec)
|
|
return OutputSec->getVA() + OffsetInSec;
|
|
return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename ELFT::uint DynamicReloc<ELFT>::getAddend() const {
|
|
if (UseSymVA)
|
|
return Sym->getVA<ELFT>(Addend);
|
|
return Addend;
|
|
}
|
|
|
|
template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const {
|
|
if (Sym && !UseSymVA)
|
|
return Sym->DynsymIndex;
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolTableSection<ELFT>::SymbolTableSection(
|
|
StringTableSection<ELFT> &StrTabSec)
|
|
: OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
|
|
StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
|
|
StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
|
|
StrTabSec(StrTabSec) {
|
|
this->Header.sh_entsize = sizeof(Elf_Sym);
|
|
this->Header.sh_addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
// Orders symbols according to their positions in the GOT,
|
|
// in compliance with MIPS ABI rules.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L,
|
|
const std::pair<SymbolBody *, unsigned> &R) {
|
|
// Sort entries related to non-local preemptible symbols by GOT indexes.
|
|
// All other entries go to the first part of GOT in arbitrary order.
|
|
bool LIsInLocalGot = !L.first->IsInGlobalMipsGot;
|
|
bool RIsInLocalGot = !R.first->IsInGlobalMipsGot;
|
|
if (LIsInLocalGot || RIsInLocalGot)
|
|
return !RIsInLocalGot;
|
|
return L.first->GotIndex < R.first->GotIndex;
|
|
}
|
|
|
|
static uint8_t getSymbolBinding(SymbolBody *Body) {
|
|
Symbol *S = Body->symbol();
|
|
uint8_t Visibility = S->Visibility;
|
|
if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
|
|
return STB_LOCAL;
|
|
if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
|
|
return STB_GLOBAL;
|
|
return S->Binding;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
|
|
if (this->Header.sh_size)
|
|
return; // Already finalized.
|
|
|
|
this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
|
|
this->Header.sh_link = StrTabSec.SectionIndex;
|
|
this->Header.sh_info = NumLocals + 1;
|
|
|
|
if (Config->Relocatable) {
|
|
size_t I = NumLocals;
|
|
for (const std::pair<SymbolBody *, size_t> &P : Symbols)
|
|
P.first->DynsymIndex = ++I;
|
|
return;
|
|
}
|
|
|
|
if (!StrTabSec.isDynamic()) {
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[](const std::pair<SymbolBody *, unsigned> &L,
|
|
const std::pair<SymbolBody *, unsigned> &R) {
|
|
return getSymbolBinding(L.first) == STB_LOCAL &&
|
|
getSymbolBinding(R.first) != STB_LOCAL;
|
|
});
|
|
return;
|
|
}
|
|
if (Out<ELFT>::GnuHashTab)
|
|
// NB: It also sorts Symbols to meet the GNU hash table requirements.
|
|
Out<ELFT>::GnuHashTab->addSymbols(Symbols);
|
|
else if (Config->EMachine == EM_MIPS)
|
|
std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
|
|
size_t I = 0;
|
|
for (const std::pair<SymbolBody *, size_t> &P : Symbols)
|
|
P.first->DynsymIndex = ++I;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
|
|
Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Buf += sizeof(Elf_Sym);
|
|
|
|
// All symbols with STB_LOCAL binding precede the weak and global symbols.
|
|
// .dynsym only contains global symbols.
|
|
if (!Config->DiscardAll && !StrTabSec.isDynamic())
|
|
writeLocalSymbols(Buf);
|
|
|
|
writeGlobalSymbols(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
|
|
// Iterate over all input object files to copy their local symbols
|
|
// to the output symbol table pointed by Buf.
|
|
for (const std::unique_ptr<ObjectFile<ELFT>> &File :
|
|
Symtab<ELFT>::X->getObjectFiles()) {
|
|
for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
|
|
File->KeptLocalSyms) {
|
|
const DefinedRegular<ELFT> &Body = *P.first;
|
|
InputSectionBase<ELFT> *Section = Body.Section;
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
|
|
if (!Section) {
|
|
ESym->st_shndx = SHN_ABS;
|
|
ESym->st_value = Body.Value;
|
|
} else {
|
|
const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
ESym->st_value = OutSec->getVA() + Section->getOffset(Body);
|
|
}
|
|
ESym->st_name = P.second;
|
|
ESym->st_size = Body.template getSize<ELFT>();
|
|
ESym->setBindingAndType(STB_LOCAL, Body.Type);
|
|
Buf += sizeof(*ESym);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
|
|
// Write the internal symbol table contents to the output symbol table
|
|
// pointed by Buf.
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
for (const std::pair<SymbolBody *, size_t> &P : Symbols) {
|
|
SymbolBody *Body = P.first;
|
|
size_t StrOff = P.second;
|
|
|
|
uint8_t Type = Body->Type;
|
|
uintX_t Size = Body->getSize<ELFT>();
|
|
|
|
ESym->setBindingAndType(getSymbolBinding(Body), Type);
|
|
ESym->st_size = Size;
|
|
ESym->st_name = StrOff;
|
|
ESym->setVisibility(Body->symbol()->Visibility);
|
|
ESym->st_value = Body->getVA<ELFT>();
|
|
|
|
if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body))
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
else if (isa<DefinedRegular<ELFT>>(Body))
|
|
ESym->st_shndx = SHN_ABS;
|
|
|
|
// On MIPS we need to mark symbol which has a PLT entry and requires pointer
|
|
// equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker
|
|
// distinguish such symbols and MIPS lazy-binding stubs.
|
|
// https://sourceware.org/ml/binutils/2008-07/txt00000.txt
|
|
if (Config->EMachine == EM_MIPS && Body->isInPlt() &&
|
|
Body->NeedsCopyOrPltAddr)
|
|
ESym->st_other |= STO_MIPS_PLT;
|
|
++ESym;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
const OutputSectionBase<ELFT> *
|
|
SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
|
|
switch (Sym->kind()) {
|
|
case SymbolBody::DefinedSyntheticKind:
|
|
return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
|
|
case SymbolBody::DefinedRegularKind: {
|
|
auto &D = cast<DefinedRegular<ELFT>>(*Sym);
|
|
if (D.Section)
|
|
return D.Section->OutSec;
|
|
break;
|
|
}
|
|
case SymbolBody::DefinedCommonKind:
|
|
return Out<ELFT>::Bss;
|
|
case SymbolBody::SharedKind:
|
|
if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
|
|
return Out<ELFT>::Bss;
|
|
break;
|
|
case SymbolBody::UndefinedKind:
|
|
case SymbolBody::LazyArchiveKind:
|
|
case SymbolBody::LazyObjectKind:
|
|
break;
|
|
case SymbolBody::DefinedBitcodeKind:
|
|
llvm_unreachable("should have been replaced");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionDefinitionSection<ELFT>::VersionDefinitionSection()
|
|
: OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) {
|
|
this->Header.sh_addralign = sizeof(uint32_t);
|
|
}
|
|
|
|
static StringRef getFileDefName() {
|
|
if (!Config->SoName.empty())
|
|
return Config->SoName;
|
|
return Config->OutputFile;
|
|
}
|
|
|
|
template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
|
|
FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName());
|
|
for (VersionDefinition &V : Config->VersionDefinitions)
|
|
V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name);
|
|
|
|
this->Header.sh_size =
|
|
(sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
|
|
this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
|
|
|
|
// sh_info should be set to the number of definitions. This fact is missed in
|
|
// documentation, but confirmed by binutils community:
|
|
// https://sourceware.org/ml/binutils/2014-11/msg00355.html
|
|
this->Header.sh_info = getVerDefNum();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
|
|
StringRef Name, size_t NameOff) {
|
|
auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
|
|
Verdef->vd_version = 1;
|
|
Verdef->vd_cnt = 1;
|
|
Verdef->vd_aux = sizeof(Elf_Verdef);
|
|
Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
|
|
Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
|
|
Verdef->vd_ndx = Index;
|
|
Verdef->vd_hash = hashSysv(Name);
|
|
|
|
auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
|
|
Verdaux->vda_name = NameOff;
|
|
Verdaux->vda_next = 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
|
|
|
|
for (VersionDefinition &V : Config->VersionDefinitions) {
|
|
Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
|
|
writeOne(Buf, V.Id, V.Name, V.NameOff);
|
|
}
|
|
|
|
// Need to terminate the last version definition.
|
|
Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
|
|
Verdef->vd_next = 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionTableSection<ELFT>::VersionTableSection()
|
|
: OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
|
|
this->Header.sh_addralign = sizeof(uint16_t);
|
|
}
|
|
|
|
template <class ELFT> void VersionTableSection<ELFT>::finalize() {
|
|
this->Header.sh_size =
|
|
sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
|
|
this->Header.sh_entsize = sizeof(Elf_Versym);
|
|
// At the moment of june 2016 GNU docs does not mention that sh_link field
|
|
// should be set, but Sun docs do. Also readelf relies on this field.
|
|
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
}
|
|
|
|
template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
|
|
for (const std::pair<SymbolBody *, size_t> &P :
|
|
Out<ELFT>::DynSymTab->getSymbols()) {
|
|
OutVersym->vs_index = P.first->symbol()->VersionId;
|
|
++OutVersym;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionNeedSection<ELFT>::VersionNeedSection()
|
|
: OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
|
|
this->Header.sh_addralign = sizeof(uint32_t);
|
|
|
|
// Identifiers in verneed section start at 2 because 0 and 1 are reserved
|
|
// for VER_NDX_LOCAL and VER_NDX_GLOBAL.
|
|
// First identifiers are reserved by verdef section if it exist.
|
|
NextIndex = getVerDefNum() + 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
|
|
if (!SS->Verdef) {
|
|
SS->symbol()->VersionId = VER_NDX_GLOBAL;
|
|
return;
|
|
}
|
|
SharedFile<ELFT> *F = SS->file();
|
|
// If we don't already know that we need an Elf_Verneed for this DSO, prepare
|
|
// to create one by adding it to our needed list and creating a dynstr entry
|
|
// for the soname.
|
|
if (F->VerdefMap.empty())
|
|
Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())});
|
|
typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
|
|
// If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
|
|
// prepare to create one by allocating a version identifier and creating a
|
|
// dynstr entry for the version name.
|
|
if (NV.Index == 0) {
|
|
NV.StrTab = Out<ELFT>::DynStrTab->addString(
|
|
SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
|
|
NV.Index = NextIndex++;
|
|
}
|
|
SS->symbol()->VersionId = NV.Index;
|
|
}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
|
|
auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
|
|
auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
|
|
|
|
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
|
|
// Create an Elf_Verneed for this DSO.
|
|
Verneed->vn_version = 1;
|
|
Verneed->vn_cnt = P.first->VerdefMap.size();
|
|
Verneed->vn_file = P.second;
|
|
Verneed->vn_aux =
|
|
reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
|
|
Verneed->vn_next = sizeof(Elf_Verneed);
|
|
++Verneed;
|
|
|
|
// Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
|
|
// VerdefMap, which will only contain references to needed version
|
|
// definitions. Each Elf_Vernaux is based on the information contained in
|
|
// the Elf_Verdef in the source DSO. This loop iterates over a std::map of
|
|
// pointers, but is deterministic because the pointers refer to Elf_Verdef
|
|
// data structures within a single input file.
|
|
for (auto &NV : P.first->VerdefMap) {
|
|
Vernaux->vna_hash = NV.first->vd_hash;
|
|
Vernaux->vna_flags = 0;
|
|
Vernaux->vna_other = NV.second.Index;
|
|
Vernaux->vna_name = NV.second.StrTab;
|
|
Vernaux->vna_next = sizeof(Elf_Vernaux);
|
|
++Vernaux;
|
|
}
|
|
|
|
Vernaux[-1].vna_next = 0;
|
|
}
|
|
Verneed[-1].vn_next = 0;
|
|
}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
|
|
this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
|
|
this->Header.sh_info = Needed.size();
|
|
unsigned Size = Needed.size() * sizeof(Elf_Verneed);
|
|
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
|
|
Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
|
|
this->Header.sh_size = Size;
|
|
}
|
|
|
|
template <class ELFT>
|
|
BuildIdSection<ELFT>::BuildIdSection(size_t HashSize)
|
|
: OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC),
|
|
HashSize(HashSize) {
|
|
// 16 bytes for the note section header.
|
|
this->Header.sh_size = 16 + HashSize;
|
|
}
|
|
|
|
template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, 4); // Name size
|
|
write32<E>(Buf + 4, HashSize); // Content size
|
|
write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
|
|
memcpy(Buf + 12, "GNU", 4); // Name string
|
|
HashBuf = Buf + 16;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
// 64-bit FNV-1 hash
|
|
uint64_t Hash = 0xcbf29ce484222325;
|
|
for (ArrayRef<uint8_t> Buf : Bufs) {
|
|
for (uint8_t B : Buf) {
|
|
Hash *= 0x100000001b3;
|
|
Hash ^= B;
|
|
}
|
|
}
|
|
write64<E>(this->HashBuf, Hash);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
|
|
MD5 Hash;
|
|
for (ArrayRef<uint8_t> Buf : Bufs)
|
|
Hash.update(Buf);
|
|
MD5::MD5Result Res;
|
|
Hash.final(Res);
|
|
memcpy(this->HashBuf, Res, 16);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
|
|
SHA1 Hash;
|
|
for (ArrayRef<uint8_t> Buf : Bufs)
|
|
Hash.update(Buf);
|
|
memcpy(this->HashBuf, Hash.final().data(), 20);
|
|
}
|
|
|
|
template <class ELFT>
|
|
BuildIdHexstring<ELFT>::BuildIdHexstring()
|
|
: BuildIdSection<ELFT>(Config->BuildIdVector.size()) {}
|
|
|
|
template <class ELFT>
|
|
void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
|
|
memcpy(this->HashBuf, Config->BuildIdVector.data(),
|
|
Config->BuildIdVector.size());
|
|
}
|
|
|
|
template <class ELFT>
|
|
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
|
|
: OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
|
|
this->Header.sh_addralign = 4;
|
|
this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
|
|
this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
|
|
R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
|
|
R->ri_gprmask = GprMask;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
// Copy input object file's .reginfo gprmask to output.
|
|
auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
|
|
GprMask |= S->Reginfo->ri_gprmask;
|
|
S->OutSec = this;
|
|
}
|
|
|
|
template <class ELFT>
|
|
MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection()
|
|
: OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS,
|
|
SHF_ALLOC | SHF_MIPS_NOSTRIP) {
|
|
this->Header.sh_addralign = 8;
|
|
this->Header.sh_entsize = 1;
|
|
this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf);
|
|
Opt->kind = ODK_REGINFO;
|
|
Opt->size = this->Header.sh_size;
|
|
Opt->section = 0;
|
|
Opt->info = 0;
|
|
auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt));
|
|
Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
|
|
Reg->ri_gprmask = GprMask;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *S = cast<MipsOptionsInputSection<ELFT>>(C);
|
|
if (S->Reginfo)
|
|
GprMask |= S->Reginfo->ri_gprmask;
|
|
S->OutSec = this;
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::pair<OutputSectionBase<ELFT> *, bool>
|
|
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
|
|
OutputSectionBase<ELFT> *&Sec = Map[Key];
|
|
if (Sec)
|
|
return {Sec, false};
|
|
|
|
switch (C->SectionKind) {
|
|
case InputSectionBase<ELFT>::Regular:
|
|
Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
|
|
break;
|
|
case InputSectionBase<ELFT>::EHFrame:
|
|
return {Out<ELFT>::EhFrame, false};
|
|
case InputSectionBase<ELFT>::Merge:
|
|
Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags,
|
|
Key.Alignment);
|
|
break;
|
|
case InputSectionBase<ELFT>::MipsReginfo:
|
|
Sec = new MipsReginfoOutputSection<ELFT>();
|
|
break;
|
|
case InputSectionBase<ELFT>::MipsOptions:
|
|
Sec = new MipsOptionsOutputSection<ELFT>();
|
|
break;
|
|
}
|
|
return {Sec, true};
|
|
}
|
|
|
|
template <class ELFT>
|
|
OutputSectionBase<ELFT> *OutputSectionFactory<ELFT>::lookup(StringRef Name,
|
|
uint32_t Type,
|
|
uintX_t Flags) {
|
|
return Map.lookup({Name, Type, Flags, 0});
|
|
}
|
|
|
|
template <class ELFT>
|
|
SectionKey<ELFT::Is64Bits>
|
|
OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
const Elf_Shdr *H = C->getSectionHdr();
|
|
uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED;
|
|
|
|
// For SHF_MERGE we create different output sections for each alignment.
|
|
// This makes each output section simple and keeps a single level mapping from
|
|
// input to output.
|
|
uintX_t Alignment = 0;
|
|
if (isa<MergeInputSection<ELFT>>(C))
|
|
Alignment = std::max(H->sh_addralign, H->sh_entsize);
|
|
|
|
uint32_t Type = H->sh_type;
|
|
return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
|
|
0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
unsigned
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
|
|
return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
|
|
const Key &RHS) {
|
|
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
|
|
LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
|
|
LHS.Alignment == RHS.Alignment;
|
|
}
|
|
|
|
namespace llvm {
|
|
template struct DenseMapInfo<SectionKey<true>>;
|
|
template struct DenseMapInfo<SectionKey<false>>;
|
|
}
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
template class OutputSectionBase<ELF32LE>;
|
|
template class OutputSectionBase<ELF32BE>;
|
|
template class OutputSectionBase<ELF64LE>;
|
|
template class OutputSectionBase<ELF64BE>;
|
|
|
|
template class EhFrameHeader<ELF32LE>;
|
|
template class EhFrameHeader<ELF32BE>;
|
|
template class EhFrameHeader<ELF64LE>;
|
|
template class EhFrameHeader<ELF64BE>;
|
|
|
|
template class GotPltSection<ELF32LE>;
|
|
template class GotPltSection<ELF32BE>;
|
|
template class GotPltSection<ELF64LE>;
|
|
template class GotPltSection<ELF64BE>;
|
|
|
|
template class GotSection<ELF32LE>;
|
|
template class GotSection<ELF32BE>;
|
|
template class GotSection<ELF64LE>;
|
|
template class GotSection<ELF64BE>;
|
|
|
|
template class PltSection<ELF32LE>;
|
|
template class PltSection<ELF32BE>;
|
|
template class PltSection<ELF64LE>;
|
|
template class PltSection<ELF64BE>;
|
|
|
|
template class RelocationSection<ELF32LE>;
|
|
template class RelocationSection<ELF32BE>;
|
|
template class RelocationSection<ELF64LE>;
|
|
template class RelocationSection<ELF64BE>;
|
|
|
|
template class InterpSection<ELF32LE>;
|
|
template class InterpSection<ELF32BE>;
|
|
template class InterpSection<ELF64LE>;
|
|
template class InterpSection<ELF64BE>;
|
|
|
|
template class GnuHashTableSection<ELF32LE>;
|
|
template class GnuHashTableSection<ELF32BE>;
|
|
template class GnuHashTableSection<ELF64LE>;
|
|
template class GnuHashTableSection<ELF64BE>;
|
|
|
|
template class HashTableSection<ELF32LE>;
|
|
template class HashTableSection<ELF32BE>;
|
|
template class HashTableSection<ELF64LE>;
|
|
template class HashTableSection<ELF64BE>;
|
|
|
|
template class DynamicSection<ELF32LE>;
|
|
template class DynamicSection<ELF32BE>;
|
|
template class DynamicSection<ELF64LE>;
|
|
template class DynamicSection<ELF64BE>;
|
|
|
|
template class OutputSection<ELF32LE>;
|
|
template class OutputSection<ELF32BE>;
|
|
template class OutputSection<ELF64LE>;
|
|
template class OutputSection<ELF64BE>;
|
|
|
|
template class EhOutputSection<ELF32LE>;
|
|
template class EhOutputSection<ELF32BE>;
|
|
template class EhOutputSection<ELF64LE>;
|
|
template class EhOutputSection<ELF64BE>;
|
|
|
|
template class MipsReginfoOutputSection<ELF32LE>;
|
|
template class MipsReginfoOutputSection<ELF32BE>;
|
|
template class MipsReginfoOutputSection<ELF64LE>;
|
|
template class MipsReginfoOutputSection<ELF64BE>;
|
|
|
|
template class MipsOptionsOutputSection<ELF32LE>;
|
|
template class MipsOptionsOutputSection<ELF32BE>;
|
|
template class MipsOptionsOutputSection<ELF64LE>;
|
|
template class MipsOptionsOutputSection<ELF64BE>;
|
|
|
|
template class MergeOutputSection<ELF32LE>;
|
|
template class MergeOutputSection<ELF32BE>;
|
|
template class MergeOutputSection<ELF64LE>;
|
|
template class MergeOutputSection<ELF64BE>;
|
|
|
|
template class StringTableSection<ELF32LE>;
|
|
template class StringTableSection<ELF32BE>;
|
|
template class StringTableSection<ELF64LE>;
|
|
template class StringTableSection<ELF64BE>;
|
|
|
|
template class SymbolTableSection<ELF32LE>;
|
|
template class SymbolTableSection<ELF32BE>;
|
|
template class SymbolTableSection<ELF64LE>;
|
|
template class SymbolTableSection<ELF64BE>;
|
|
|
|
template class VersionTableSection<ELF32LE>;
|
|
template class VersionTableSection<ELF32BE>;
|
|
template class VersionTableSection<ELF64LE>;
|
|
template class VersionTableSection<ELF64BE>;
|
|
|
|
template class VersionNeedSection<ELF32LE>;
|
|
template class VersionNeedSection<ELF32BE>;
|
|
template class VersionNeedSection<ELF64LE>;
|
|
template class VersionNeedSection<ELF64BE>;
|
|
|
|
template class VersionDefinitionSection<ELF32LE>;
|
|
template class VersionDefinitionSection<ELF32BE>;
|
|
template class VersionDefinitionSection<ELF64LE>;
|
|
template class VersionDefinitionSection<ELF64BE>;
|
|
|
|
template class BuildIdSection<ELF32LE>;
|
|
template class BuildIdSection<ELF32BE>;
|
|
template class BuildIdSection<ELF64LE>;
|
|
template class BuildIdSection<ELF64BE>;
|
|
|
|
template class BuildIdFnv1<ELF32LE>;
|
|
template class BuildIdFnv1<ELF32BE>;
|
|
template class BuildIdFnv1<ELF64LE>;
|
|
template class BuildIdFnv1<ELF64BE>;
|
|
|
|
template class BuildIdMd5<ELF32LE>;
|
|
template class BuildIdMd5<ELF32BE>;
|
|
template class BuildIdMd5<ELF64LE>;
|
|
template class BuildIdMd5<ELF64BE>;
|
|
|
|
template class BuildIdSha1<ELF32LE>;
|
|
template class BuildIdSha1<ELF32BE>;
|
|
template class BuildIdSha1<ELF64LE>;
|
|
template class BuildIdSha1<ELF64BE>;
|
|
|
|
template class BuildIdHexstring<ELF32LE>;
|
|
template class BuildIdHexstring<ELF32BE>;
|
|
template class BuildIdHexstring<ELF64LE>;
|
|
template class BuildIdHexstring<ELF64BE>;
|
|
|
|
template class OutputSectionFactory<ELF32LE>;
|
|
template class OutputSectionFactory<ELF32BE>;
|
|
template class OutputSectionFactory<ELF64LE>;
|
|
template class OutputSectionFactory<ELF64BE>;
|
|
}
|
|
}
|