freebsd-nq/sys/dev/aic7xxx/aic79xx_inline.h
Justin T. Gibbs 22dbd4c64c aic79xx.c:
Allow 500us between pauses in ahd_pause_and_flushwork().
	The maximum we will wait is now 500ms.

	In the same routine, remove any attempt to clear ENSELO.
	Let the firmware do it once the current selection has
	completed.  This avoids some race conditions having to
	do with non-packetized completions and the auto-clearing
	of ENSELO on packetized completions.

	Also avoid attempts to clear critical sections when
	interrups are pending.  We are going to loop again
	anyway, so clearing critical sections is a waste of
	time.  It also may not be possible to clear a critical
	section if the source of the interrupt was a SEQINT.

aic79xx_pci.c:
	Use the Generic 9005 mask when looking for generic 7901B
	parts.  This allows the driver to attach to 7901B parts
	on motherboards using a non-Adaptec subvendor ID.

aic79xx_inline.h:
	Test for the SCBRAM_RD_BUG against the bugs
	field, not the flags field in the softc.

aic79xx.c:
	Cancel pending transactions on devices that
	respond with a selection timeout.  This decreases
	the duration of timeout recovery when a device
	disappears.

aic79xx.c:
	Don't bother forcing renegotiation on a selection
	timeout now that we use the device reset handler
	to abort any pending commands on the target.
	The device reset handler already takes us down
	to async narrow and forces a renegotiation.

	In the device reset handlers, only send a
	BDR sent async event if the status is not
	CAM_SEL_TIMEOUT.  This avoids sending this
	event in the selection timeout case

aic79xx.c:
	Modify the Core timeout handler to verify that another
	command has the potential to timeout before passing off
	a command timeout as due to some other command.  This
	safety measure is added in response to a timeout recovery
	failure on H2B where it appears that incoming reselection
	status was lost during a drive pull test.  In that case,
	the recovery handler continued to wait for the command
	that was active on the bus indefinetly.  While the root
	cause of the above issue is still being determined seems
	a prudent safeguard.

aic79xx_pci.c:
	Add a specific probe entry for the Dell OEM 39320(B).

aic79xx.c:
aic79xx.h:
aic79xx.reg:
aic79xx.seq:
	Modify the aic79xx firmware to never cross a cacheline or
	ADB boundary when DMA'ing completion entries to the host.
	In PCI mode, at least in 32/33 configurations, the SCB
	DMA engine may lose its place in the data-stream should
	the target force a retry on something other than an
	8byte aligned boundary. In PCI-X mode, we do this to
	avoid split transactions since many chipsets seem to be
	unable to format proper split completions to continue
	the data transfer.

	The above change allows us to drop our completion entries
	from 8 bytes to 4.  We were using 8 byte entries to ensure
	that PCI retries could only occur on an 8byte aligned
	boundary.  Now that the sequencer guarantees this by splitting
	up completions, we can safely drop the size to 4 bytes (2
	byte tag, one byte SG_RESID, one byte pad).

	Both the split-completion and PCI retry problems only show
	up under high tag load when interrupt coalescing is being
	especially effective.  The switch from a 2byte completion
	entry to an 8 byte entry to solve the PCI problem increased
	the chance of incurring a split in PCI-X mode when multiple
	transactions were completed at once.  Dropping the completion
	size to 4 bytes also means that we can complete more commands
	in a single DMA (128byte FIFO -> 32 commands instead of 16).

aic79xx.c:
	Modify the SCSIINT handler to defer clearing
	sequencer critical sections to the individual
	interrupt handlers.  This allows us to
	immediately disable any outgoing selections in
	the case of an unexpected busfree so we don't
	inadvertantly clear ENSELO *after* a new selection
	has started.  Doing so may cause the sequencer
	to miss a successful selection.

	In ahd_update_pending_scbs(), only clear ENSELO if
	the bus is currently busy and a selection is not
	already in progress or the sequencer has yet to
	handle a pending selection.  While we want to ensure
	that the selection for the SCB at the head of the
	selection queue is restarted so that any change in
	negotiation request can take effect, we can't clobber
	pending selection state without confusing the sequencer
	into missing a selection.
2004-05-11 20:46:05 +00:00

980 lines
29 KiB
C

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#57 $
*
* $FreeBSD$
*/
#ifndef _AIC79XX_INLINE_H_
#define _AIC79XX_INLINE_H_
/******************************** Debugging ***********************************/
static __inline char *ahd_name(struct ahd_softc *ahd);
static __inline char *
ahd_name(struct ahd_softc *ahd)
{
return (ahd->name);
}
/************************ Sequencer Execution Control *************************/
static __inline void ahd_known_modes(struct ahd_softc *ahd,
ahd_mode src, ahd_mode dst);
static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
ahd_mode src,
ahd_mode dst);
static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
ahd_mode_state state,
ahd_mode *src, ahd_mode *dst);
static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
ahd_mode dst);
static __inline void ahd_update_modes(struct ahd_softc *ahd);
static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file,
int line);
static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
static __inline void ahd_restore_modes(struct ahd_softc *ahd,
ahd_mode_state state);
static __inline int ahd_is_paused(struct ahd_softc *ahd);
static __inline void ahd_pause(struct ahd_softc *ahd);
static __inline void ahd_unpause(struct ahd_softc *ahd);
static __inline void
ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
ahd->src_mode = src;
ahd->dst_mode = dst;
ahd->saved_src_mode = src;
ahd->saved_dst_mode = dst;
}
static __inline ahd_mode_state
ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
}
static __inline void
ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
ahd_mode *src, ahd_mode *dst)
{
*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
}
static __inline void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
if (ahd->src_mode == src && ahd->dst_mode == dst)
return;
#ifdef AHD_DEBUG
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
panic("Setting mode prior to saving it.\n");
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
ahd_build_mode_state(ahd, src, dst));
#endif
ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
ahd->src_mode = src;
ahd->dst_mode = dst;
}
static __inline void
ahd_update_modes(struct ahd_softc *ahd)
{
ahd_mode_state mode_ptr;
ahd_mode src;
ahd_mode dst;
mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("Reading mode 0x%x\n", mode_ptr);
#endif
ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
ahd_known_modes(ahd, src, dst);
}
static __inline void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
|| (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
panic("%s:%s:%d: Mode assertion failed.\n",
ahd_name(ahd), file, line);
}
#endif
}
static __inline ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
ahd_update_modes(ahd);
return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}
static __inline void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
ahd_mode src;
ahd_mode dst;
ahd_extract_mode_state(ahd, state, &src, &dst);
ahd_set_modes(ahd, src, dst);
}
#define AHD_ASSERT_MODES(ahd, source, dest) \
ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahd_is_paused(struct ahd_softc *ahd)
{
return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahd_pause(struct ahd_softc *ahd)
{
ahd_outb(ahd, HCNTRL, ahd->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahd_is_paused(ahd) == 0)
;
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahd_unpause(struct ahd_softc *ahd)
{
/*
* Automatically restore our modes to those saved
* prior to the first change of the mode.
*/
if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
&& ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
ahd_reset_cmds_pending(ahd);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
}
if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
ahd_outb(ahd, HCNTRL, ahd->unpause);
ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}
/*********************** Scatter Gather List Handling *************************/
static __inline void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, bus_addr_t addr,
bus_size_t len, int last);
static __inline void ahd_setup_scb_common(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_data_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, bus_addr_t addr, bus_size_t len, int last)
{
scb->sg_count++;
if (sizeof(bus_addr_t) > 4
&& (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)sgptr;
sg->addr = aic_htole64(addr);
sg->len = aic_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
} else {
struct ahd_dma_seg *sg;
sg = (struct ahd_dma_seg *)sgptr;
sg->addr = aic_htole32(addr & 0xFFFFFFFF);
sg->len = aic_htole32(len | ((addr >> 8) & 0x7F000000)
| (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
}
}
static __inline void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
/* XXX Handle target mode SCBs. */
scb->crc_retry_count = 0;
if ((scb->flags & SCB_PACKETIZED) != 0) {
/* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
} else {
if (aic_get_transfer_length(scb) & 0x01)
scb->hscb->task_attribute = SCB_XFERLEN_ODD;
else
scb->hscb->task_attribute = 0;
}
if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
|| (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
aic_htole32(scb->sense_busaddr);
}
static __inline void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
/*
* Copy the first SG into the "current" data ponter area.
*/
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)scb->sg_list;
scb->hscb->dataptr = sg->addr;
scb->hscb->datacnt = sg->len;
} else {
struct ahd_dma_seg *sg;
uint32_t *dataptr_words;
sg = (struct ahd_dma_seg *)scb->sg_list;
dataptr_words = (uint32_t*)&scb->hscb->dataptr;
dataptr_words[0] = sg->addr;
dataptr_words[1] = 0;
if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
uint64_t high_addr;
high_addr = aic_le32toh(sg->len) & 0x7F000000;
scb->hscb->dataptr |= aic_htole64(high_addr << 8);
}
scb->hscb->datacnt = sg->len;
}
/*
* Note where to find the SG entries in bus space.
* We also set the full residual flag which the
* sequencer will clear as soon as a data transfer
* occurs.
*/
scb->hscb->sgptr = aic_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}
static __inline void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
scb->hscb->sgptr = aic_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
}
/************************** Memory mapping routines ***************************/
static __inline size_t ahd_sg_size(struct ahd_softc *ahd);
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd,
struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd,
struct scb *scb,
void *sg);
static __inline void ahd_sync_scb(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sglist(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sense(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd,
u_int index);
static __inline size_t
ahd_sg_size(struct ahd_softc *ahd)
{
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
return (sizeof(struct ahd_dma64_seg));
return (sizeof(struct ahd_dma_seg));
}
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
bus_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
return ((uint8_t *)scb->sg_list + sg_offset);
}
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
bus_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
- ahd_sg_size(ahd);
return (scb->sg_list_busaddr + sg_offset);
}
static __inline void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
aic_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
scb->hscb_map->dmamap,
/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
/*len*/sizeof(*scb->hscb), op);
}
static __inline void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
aic_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
scb->sg_map->dmamap,
/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}
static __inline void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
aic_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
scb->sense_map->dmamap,
/*offset*/scb->sense_busaddr,
/*len*/AHD_SENSE_BUFSIZE, op);
}
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
return (((uint8_t *)&ahd->targetcmds[index])
- (uint8_t *)ahd->qoutfifo);
}
/*********************** Miscelaneous Support Functions ***********************/
static __inline void ahd_complete_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_update_residual(struct ahd_softc *ahd,
struct scb *scb);
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd,
char channel, u_int our_id,
u_int remote_id,
struct ahd_tmode_tstate **tstate);
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outw(struct ahd_softc *ahd, u_int port,
u_int value);
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outl(struct ahd_softc *ahd, u_int port,
uint32_t value);
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outq(struct ahd_softc *ahd, u_int port,
uint64_t value);
static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd);
static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd,
struct scb *scb);
static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd,
struct scb *scb);
static __inline void
ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
{
uint32_t sgptr;
sgptr = aic_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_STATUS_VALID) != 0)
ahd_handle_scb_status(ahd, scb);
else
ahd_done(ahd, scb);
}
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline void
ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
{
uint32_t sgptr;
sgptr = aic_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_STATUS_VALID) != 0)
ahd_calc_residual(ahd, scb);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
u_int remote_id, struct ahd_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahd->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
#define AHD_COPY_COL_IDX(dst, src) \
do { \
dst->hscb->scsiid = src->hscb->scsiid; \
dst->hscb->lun = src->hscb->lun; \
} while (0)
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
/*
* Read high byte first as some registers increment
* or have other side effects when the low byte is
* read.
*/
return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
}
static __inline void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
/*
* Write low byte first to accomodate registers
* such as PRGMCNT where the order maters.
*/
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24));
}
static __inline void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
ahd_outb(ahd, port, (value) & 0xFF);
ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24)
| (((uint64_t)ahd_inb(ahd, port+4)) << 32)
| (((uint64_t)ahd_inb(ahd, port+5)) << 40)
| (((uint64_t)ahd_inb(ahd, port+6)) << 48)
| (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}
static __inline void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}
static __inline u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}
static __inline void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}
static __inline u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}
static __inline void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}
static __inline u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
return (ahd_inb(ahd, HESCB_QOFF));
}
static __inline void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outb(ahd, HESCB_QOFF, value);
}
static __inline u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
u_int oldvalue;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
oldvalue = ahd_inw(ahd, SNSCB_QOFF);
ahd_outw(ahd, SNSCB_QOFF, oldvalue);
return (oldvalue);
}
static __inline void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outw(ahd, SNSCB_QOFF, value);
}
static __inline u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SESCB_QOFF));
}
static __inline void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SESCB_QOFF, value);
}
static __inline u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}
static __inline void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}
static __inline u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
u_int value;
/*
* Workaround PCI-X Rev A. hardware bug.
* After a host read of SCB memory, the chip
* may become confused into thinking prefetch
* was required. This starts the discard timer
* running and can cause an unexpected discard
* timer interrupt. The work around is to read
* a normal register prior to the exhaustion of
* the discard timer. The mode pointer register
* has no side effects and so serves well for
* this purpose.
*
* Razor #528
*/
value = ahd_inb(ahd, offset);
if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
ahd_inb(ahd, MODE_PTR);
return (value);
}
static __inline u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inb_scbram(ahd, offset)
| (ahd_inb_scbram(ahd, offset+1) << 8));
}
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inw_scbram(ahd, offset)
| (ahd_inw_scbram(ahd, offset+2) << 16));
}
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inl_scbram(ahd, offset)
| ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}
static __inline struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
struct scb* scb;
if (tag >= AHD_SCB_MAX)
return (NULL);
scb = ahd->scb_data.scbindex[tag];
if (scb != NULL)
ahd_sync_scb(ahd, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static __inline void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *q_hscb;
struct map_node *q_hscb_map;
uint32_t saved_hscb_busaddr;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB (by address) to download,
* and we can't disappoint it. To achieve this, the next
* HSCB to download is saved off in ahd->next_queued_hscb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahd->next_queued_hscb;
q_hscb_map = ahd->next_queued_hscb_map;
saved_hscb_busaddr = q_hscb->hscb_busaddr;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
q_hscb->hscb_busaddr = saved_hscb_busaddr;
q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
/* Now swap HSCB pointers. */
ahd->next_queued_hscb = scb->hscb;
ahd->next_queued_hscb_map = scb->hscb_map;
scb->hscb = q_hscb;
scb->hscb_map = q_hscb_map;
/* Now define the mapping from tag to SCB in the scbindex */
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
ahd_swap_with_next_hscb(ahd, scb);
if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
panic("Attempt to queue invalid SCB tag %x\n",
SCB_GET_TAG(scb));
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
if (scb->sg_count != 0)
ahd_setup_data_scb(ahd, scb);
else
ahd_setup_noxfer_scb(ahd, scb);
ahd_setup_scb_common(ahd, scb);
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
uint64_t host_dataptr;
host_dataptr = aic_le64toh(scb->hscb->dataptr);
printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
ahd_name(ahd),
SCB_GET_TAG(scb), aic_le32toh(scb->hscb->hscb_busaddr),
(u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
(u_int)(host_dataptr & 0xFFFFFFFF),
aic_le32toh(scb->hscb->datacnt));
}
#endif
/* Tell the adapter about the newly queued SCB */
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
{
return (scb->sense_data);
}
static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
{
return (scb->sense_busaddr);
}
/************************** Interrupt Processing ******************************/
static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
static __inline int ahd_intr(struct ahd_softc *ahd);
static __inline void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/0,
/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
}
static __inline void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
aic_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, 0),
sizeof(struct target_cmd) * AHD_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
static __inline u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
u_int retval;
retval = 0;
aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
== ahd->qoutfifonext_valid_tag)
retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0
&& (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
aic_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
retval |= AHD_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline int
ahd_intr(struct ahd_softc *ahd)
{
u_int intstat;
if ((ahd->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
&& (ahd_check_cmdcmpltqueues(ahd) != 0))
intstat = CMDCMPLT;
else
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0)
return (0);
if (intstat & CMDCMPLT) {
ahd_outb(ahd, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
if (ahd_is_paused(ahd)) {
/*
* Potentially lost SEQINT.
* If SEQINTCODE is non-zero,
* simulate the SEQINT.
*/
if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
intstat |= SEQINT;
}
} else {
ahd_flush_device_writes(ahd);
}
ahd_run_qoutfifo(ahd);
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0)
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & HWERRINT) {
ahd_handle_hwerrint(ahd);
} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
ahd->bus_intr(ahd);
} else {
if ((intstat & SEQINT) != 0)
ahd_handle_seqint(ahd, intstat);
if ((intstat & SCSIINT) != 0)
ahd_handle_scsiint(ahd, intstat);
}
return (1);
}
#endif /* _AIC79XX_INLINE_H_ */