freebsd-nq/contrib/binutils/gas/config/tc-ia64.c
David E. O'Brien da03bc7002 Import of Binutils from the FSF 2.15 branch (just post-.0 release).
These bits are taken from the FSF anoncvs repo on 23-May-2004 04:41:00 UTC.
2004-06-16 05:45:41 +00:00

11116 lines
276 KiB
C

/* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/*
TODO:
- optional operands
- directives:
.eb
.estate
.lb
.popsection
.previous
.psr
.pushsection
- labels are wrong if automatic alignment is introduced
(e.g., checkout the second real10 definition in test-data.s)
- DV-related stuff:
<reg>.safe_across_calls and any other DV-related directives I don't
have documentation for.
verify mod-sched-brs reads/writes are checked/marked (and other
notes)
*/
#include "as.h"
#include "safe-ctype.h"
#include "dwarf2dbg.h"
#include "subsegs.h"
#include "opcode/ia64.h"
#include "elf/ia64.h"
#define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define NUM_SLOTS 4
#define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
#define CURR_SLOT md.slot[md.curr_slot]
#define O_pseudo_fixup (O_max + 1)
enum special_section
{
/* IA-64 ABI section pseudo-ops. */
SPECIAL_SECTION_BSS = 0,
SPECIAL_SECTION_SBSS,
SPECIAL_SECTION_SDATA,
SPECIAL_SECTION_RODATA,
SPECIAL_SECTION_COMMENT,
SPECIAL_SECTION_UNWIND,
SPECIAL_SECTION_UNWIND_INFO,
/* HPUX specific section pseudo-ops. */
SPECIAL_SECTION_INIT_ARRAY,
SPECIAL_SECTION_FINI_ARRAY,
};
enum reloc_func
{
FUNC_DTP_MODULE,
FUNC_DTP_RELATIVE,
FUNC_FPTR_RELATIVE,
FUNC_GP_RELATIVE,
FUNC_LT_RELATIVE,
FUNC_LT_RELATIVE_X,
FUNC_PC_RELATIVE,
FUNC_PLT_RELATIVE,
FUNC_SEC_RELATIVE,
FUNC_SEG_RELATIVE,
FUNC_TP_RELATIVE,
FUNC_LTV_RELATIVE,
FUNC_LT_FPTR_RELATIVE,
FUNC_LT_DTP_MODULE,
FUNC_LT_DTP_RELATIVE,
FUNC_LT_TP_RELATIVE,
FUNC_IPLT_RELOC,
};
enum reg_symbol
{
REG_GR = 0,
REG_FR = (REG_GR + 128),
REG_AR = (REG_FR + 128),
REG_CR = (REG_AR + 128),
REG_P = (REG_CR + 128),
REG_BR = (REG_P + 64),
REG_IP = (REG_BR + 8),
REG_CFM,
REG_PR,
REG_PR_ROT,
REG_PSR,
REG_PSR_L,
REG_PSR_UM,
/* The following are pseudo-registers for use by gas only. */
IND_CPUID,
IND_DBR,
IND_DTR,
IND_ITR,
IND_IBR,
IND_MEM,
IND_MSR,
IND_PKR,
IND_PMC,
IND_PMD,
IND_RR,
/* The following pseudo-registers are used for unwind directives only: */
REG_PSP,
REG_PRIUNAT,
REG_NUM
};
enum dynreg_type
{
DYNREG_GR = 0, /* dynamic general purpose register */
DYNREG_FR, /* dynamic floating point register */
DYNREG_PR, /* dynamic predicate register */
DYNREG_NUM_TYPES
};
enum operand_match_result
{
OPERAND_MATCH,
OPERAND_OUT_OF_RANGE,
OPERAND_MISMATCH
};
/* On the ia64, we can't know the address of a text label until the
instructions are packed into a bundle. To handle this, we keep
track of the list of labels that appear in front of each
instruction. */
struct label_fix
{
struct label_fix *next;
struct symbol *sym;
};
extern int target_big_endian;
void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
static void ia64_float_to_chars_bigendian
PARAMS ((char *, LITTLENUM_TYPE *, int));
static void ia64_float_to_chars_littleendian
PARAMS ((char *, LITTLENUM_TYPE *, int));
static void (*ia64_float_to_chars)
PARAMS ((char *, LITTLENUM_TYPE *, int));
static struct hash_control *alias_hash;
static struct hash_control *alias_name_hash;
static struct hash_control *secalias_hash;
static struct hash_control *secalias_name_hash;
/* Characters which always start a comment. */
const char comment_chars[] = "";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = "#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* ia64-specific option processing: */
const char *md_shortopts = "m:N:x::";
struct option md_longopts[] =
{
#define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
{"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
#define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
{"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
};
size_t md_longopts_size = sizeof (md_longopts);
static struct
{
struct hash_control *pseudo_hash; /* pseudo opcode hash table */
struct hash_control *reg_hash; /* register name hash table */
struct hash_control *dynreg_hash; /* dynamic register hash table */
struct hash_control *const_hash; /* constant hash table */
struct hash_control *entry_hash; /* code entry hint hash table */
symbolS *regsym[REG_NUM];
/* If X_op is != O_absent, the registername for the instruction's
qualifying predicate. If NULL, p0 is assumed for instructions
that are predicatable. */
expressionS qp;
unsigned int
manual_bundling : 1,
debug_dv: 1,
detect_dv: 1,
explicit_mode : 1, /* which mode we're in */
default_explicit_mode : 1, /* which mode is the default */
mode_explicitly_set : 1, /* was the current mode explicitly set? */
auto_align : 1,
keep_pending_output : 1;
/* Each bundle consists of up to three instructions. We keep
track of four most recent instructions so we can correctly set
the end_of_insn_group for the last instruction in a bundle. */
int curr_slot;
int num_slots_in_use;
struct slot
{
unsigned int
end_of_insn_group : 1,
manual_bundling_on : 1,
manual_bundling_off : 1;
signed char user_template; /* user-selected template, if any */
unsigned char qp_regno; /* qualifying predicate */
/* This duplicates a good fraction of "struct fix" but we
can't use a "struct fix" instead since we can't call
fix_new_exp() until we know the address of the instruction. */
int num_fixups;
struct insn_fix
{
bfd_reloc_code_real_type code;
enum ia64_opnd opnd; /* type of operand in need of fix */
unsigned int is_pcrel : 1; /* is operand pc-relative? */
expressionS expr; /* the value to be inserted */
}
fixup[2]; /* at most two fixups per insn */
struct ia64_opcode *idesc;
struct label_fix *label_fixups;
struct label_fix *tag_fixups;
struct unw_rec_list *unwind_record; /* Unwind directive. */
expressionS opnd[6];
char *src_file;
unsigned int src_line;
struct dwarf2_line_info debug_line;
}
slot[NUM_SLOTS];
segT last_text_seg;
struct dynreg
{
struct dynreg *next; /* next dynamic register */
const char *name;
unsigned short base; /* the base register number */
unsigned short num_regs; /* # of registers in this set */
}
*dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
flagword flags; /* ELF-header flags */
struct mem_offset {
unsigned hint:1; /* is this hint currently valid? */
bfd_vma offset; /* mem.offset offset */
bfd_vma base; /* mem.offset base */
} mem_offset;
int path; /* number of alt. entry points seen */
const char **entry_labels; /* labels of all alternate paths in
the current DV-checking block. */
int maxpaths; /* size currently allocated for
entry_labels */
/* Support for hardware errata workarounds. */
/* Record data about the last three insn groups. */
struct group
{
/* B-step workaround.
For each predicate register, this is set if the corresponding insn
group conditionally sets this register with one of the affected
instructions. */
int p_reg_set[64];
/* B-step workaround.
For each general register, this is set if the corresponding insn
a) is conditional one one of the predicate registers for which
P_REG_SET is 1 in the corresponding entry of the previous group,
b) sets this general register with one of the affected
instructions. */
int g_reg_set_conditionally[128];
} last_groups[3];
int group_idx;
int pointer_size; /* size in bytes of a pointer */
int pointer_size_shift; /* shift size of a pointer for alignment */
}
md;
/* application registers: */
#define AR_K0 0
#define AR_K7 7
#define AR_RSC 16
#define AR_BSP 17
#define AR_BSPSTORE 18
#define AR_RNAT 19
#define AR_UNAT 36
#define AR_FPSR 40
#define AR_ITC 44
#define AR_PFS 64
#define AR_LC 65
static const struct
{
const char *name;
int regnum;
}
ar[] =
{
{"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
{"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
{"ar.rsc", 16}, {"ar.bsp", 17},
{"ar.bspstore", 18}, {"ar.rnat", 19},
{"ar.fcr", 21}, {"ar.eflag", 24},
{"ar.csd", 25}, {"ar.ssd", 26},
{"ar.cflg", 27}, {"ar.fsr", 28},
{"ar.fir", 29}, {"ar.fdr", 30},
{"ar.ccv", 32}, {"ar.unat", 36},
{"ar.fpsr", 40}, {"ar.itc", 44},
{"ar.pfs", 64}, {"ar.lc", 65},
{"ar.ec", 66},
};
#define CR_IPSR 16
#define CR_ISR 17
#define CR_IIP 19
#define CR_IFA 20
#define CR_ITIR 21
#define CR_IIPA 22
#define CR_IFS 23
#define CR_IIM 24
#define CR_IHA 25
#define CR_IVR 65
#define CR_TPR 66
#define CR_EOI 67
#define CR_IRR0 68
#define CR_IRR3 71
#define CR_LRR0 80
#define CR_LRR1 81
/* control registers: */
static const struct
{
const char *name;
int regnum;
}
cr[] =
{
{"cr.dcr", 0},
{"cr.itm", 1},
{"cr.iva", 2},
{"cr.pta", 8},
{"cr.gpta", 9},
{"cr.ipsr", 16},
{"cr.isr", 17},
{"cr.iip", 19},
{"cr.ifa", 20},
{"cr.itir", 21},
{"cr.iipa", 22},
{"cr.ifs", 23},
{"cr.iim", 24},
{"cr.iha", 25},
{"cr.lid", 64},
{"cr.ivr", 65},
{"cr.tpr", 66},
{"cr.eoi", 67},
{"cr.irr0", 68},
{"cr.irr1", 69},
{"cr.irr2", 70},
{"cr.irr3", 71},
{"cr.itv", 72},
{"cr.pmv", 73},
{"cr.cmcv", 74},
{"cr.lrr0", 80},
{"cr.lrr1", 81}
};
#define PSR_MFL 4
#define PSR_IC 13
#define PSR_DFL 18
#define PSR_CPL 32
static const struct const_desc
{
const char *name;
valueT value;
}
const_bits[] =
{
/* PSR constant masks: */
/* 0: reserved */
{"psr.be", ((valueT) 1) << 1},
{"psr.up", ((valueT) 1) << 2},
{"psr.ac", ((valueT) 1) << 3},
{"psr.mfl", ((valueT) 1) << 4},
{"psr.mfh", ((valueT) 1) << 5},
/* 6-12: reserved */
{"psr.ic", ((valueT) 1) << 13},
{"psr.i", ((valueT) 1) << 14},
{"psr.pk", ((valueT) 1) << 15},
/* 16: reserved */
{"psr.dt", ((valueT) 1) << 17},
{"psr.dfl", ((valueT) 1) << 18},
{"psr.dfh", ((valueT) 1) << 19},
{"psr.sp", ((valueT) 1) << 20},
{"psr.pp", ((valueT) 1) << 21},
{"psr.di", ((valueT) 1) << 22},
{"psr.si", ((valueT) 1) << 23},
{"psr.db", ((valueT) 1) << 24},
{"psr.lp", ((valueT) 1) << 25},
{"psr.tb", ((valueT) 1) << 26},
{"psr.rt", ((valueT) 1) << 27},
/* 28-31: reserved */
/* 32-33: cpl (current privilege level) */
{"psr.is", ((valueT) 1) << 34},
{"psr.mc", ((valueT) 1) << 35},
{"psr.it", ((valueT) 1) << 36},
{"psr.id", ((valueT) 1) << 37},
{"psr.da", ((valueT) 1) << 38},
{"psr.dd", ((valueT) 1) << 39},
{"psr.ss", ((valueT) 1) << 40},
/* 41-42: ri (restart instruction) */
{"psr.ed", ((valueT) 1) << 43},
{"psr.bn", ((valueT) 1) << 44},
};
/* indirect register-sets/memory: */
static const struct
{
const char *name;
int regnum;
}
indirect_reg[] =
{
{ "CPUID", IND_CPUID },
{ "cpuid", IND_CPUID },
{ "dbr", IND_DBR },
{ "dtr", IND_DTR },
{ "itr", IND_ITR },
{ "ibr", IND_IBR },
{ "msr", IND_MSR },
{ "pkr", IND_PKR },
{ "pmc", IND_PMC },
{ "pmd", IND_PMD },
{ "rr", IND_RR },
};
/* Pseudo functions used to indicate relocation types (these functions
start with an at sign (@). */
static struct
{
const char *name;
enum pseudo_type
{
PSEUDO_FUNC_NONE,
PSEUDO_FUNC_RELOC,
PSEUDO_FUNC_CONST,
PSEUDO_FUNC_REG,
PSEUDO_FUNC_FLOAT
}
type;
union
{
unsigned long ival;
symbolS *sym;
}
u;
}
pseudo_func[] =
{
/* reloc pseudo functions (these must come first!): */
{ "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
{ "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
{ "fptr", PSEUDO_FUNC_RELOC, { 0 } },
{ "gprel", PSEUDO_FUNC_RELOC, { 0 } },
{ "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
{ "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
{ "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
{ "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
{ "secrel", PSEUDO_FUNC_RELOC, { 0 } },
{ "segrel", PSEUDO_FUNC_RELOC, { 0 } },
{ "tprel", PSEUDO_FUNC_RELOC, { 0 } },
{ "ltv", PSEUDO_FUNC_RELOC, { 0 } },
{ "", 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
{ "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
{ "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
{ "", 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
{ "iplt", PSEUDO_FUNC_RELOC, { 0 } },
/* mbtype4 constants: */
{ "alt", PSEUDO_FUNC_CONST, { 0xa } },
{ "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
{ "mix", PSEUDO_FUNC_CONST, { 0x8 } },
{ "rev", PSEUDO_FUNC_CONST, { 0xb } },
{ "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
/* fclass constants: */
{ "nat", PSEUDO_FUNC_CONST, { 0x100 } },
{ "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
{ "snan", PSEUDO_FUNC_CONST, { 0x040 } },
{ "pos", PSEUDO_FUNC_CONST, { 0x001 } },
{ "neg", PSEUDO_FUNC_CONST, { 0x002 } },
{ "zero", PSEUDO_FUNC_CONST, { 0x004 } },
{ "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
{ "norm", PSEUDO_FUNC_CONST, { 0x010 } },
{ "inf", PSEUDO_FUNC_CONST, { 0x020 } },
{ "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
/* hint constants: */
{ "pause", PSEUDO_FUNC_CONST, { 0x0 } },
/* unwind-related constants: */
{ "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
{ "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
{ "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
{ "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
{ "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
{ "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
{ "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
/* unwind-related registers: */
{ "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
};
/* 41-bit nop opcodes (one per unit): */
static const bfd_vma nop[IA64_NUM_UNITS] =
{
0x0000000000LL, /* NIL => break 0 */
0x0008000000LL, /* I-unit nop */
0x0008000000LL, /* M-unit nop */
0x4000000000LL, /* B-unit nop */
0x0008000000LL, /* F-unit nop */
0x0008000000LL, /* L-"unit" nop */
0x0008000000LL, /* X-unit nop */
};
/* Can't be `const' as it's passed to input routines (which have the
habit of setting temporary sentinels. */
static char special_section_name[][20] =
{
{".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
{".IA_64.unwind"}, {".IA_64.unwind_info"},
{".init_array"}, {".fini_array"}
};
static char *special_linkonce_name[] =
{
".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
};
/* The best template for a particular sequence of up to three
instructions: */
#define N IA64_NUM_TYPES
static unsigned char best_template[N][N][N];
#undef N
/* Resource dependencies currently in effect */
static struct rsrc {
int depind; /* dependency index */
const struct ia64_dependency *dependency; /* actual dependency */
unsigned specific:1, /* is this a specific bit/regno? */
link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
int index; /* specific regno/bit within dependency */
int note; /* optional qualifying note (0 if none) */
#define STATE_NONE 0
#define STATE_STOP 1
#define STATE_SRLZ 2
int insn_srlz; /* current insn serialization state */
int data_srlz; /* current data serialization state */
int qp_regno; /* qualifying predicate for this usage */
char *file; /* what file marked this dependency */
unsigned int line; /* what line marked this dependency */
struct mem_offset mem_offset; /* optional memory offset hint */
enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
int path; /* corresponding code entry index */
} *regdeps = NULL;
static int regdepslen = 0;
static int regdepstotlen = 0;
static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
static const char *dv_sem[] = { "none", "implied", "impliedf",
"data", "instr", "specific", "stop", "other" };
static const char *dv_cmp_type[] = { "none", "OR", "AND" };
/* Current state of PR mutexation */
static struct qpmutex {
valueT prmask;
int path;
} *qp_mutexes = NULL; /* QP mutex bitmasks */
static int qp_mutexeslen = 0;
static int qp_mutexestotlen = 0;
static valueT qp_safe_across_calls = 0;
/* Current state of PR implications */
static struct qp_imply {
unsigned p1:6;
unsigned p2:6;
unsigned p2_branched:1;
int path;
} *qp_implies = NULL;
static int qp_implieslen = 0;
static int qp_impliestotlen = 0;
/* Keep track of static GR values so that indirect register usage can
sometimes be tracked. */
static struct gr {
unsigned known:1;
int path;
valueT value;
} gr_values[128] = {{ 1, 0, 0 }};
/* Remember the alignment frag. */
static fragS *align_frag;
/* These are the routines required to output the various types of
unwind records. */
/* A slot_number is a frag address plus the slot index (0-2). We use the
frag address here so that if there is a section switch in the middle of
a function, then instructions emitted to a different section are not
counted. Since there may be more than one frag for a function, this
means we also need to keep track of which frag this address belongs to
so we can compute inter-frag distances. This also nicely solves the
problem with nops emitted for align directives, which can't easily be
counted, but can easily be derived from frag sizes. */
typedef struct unw_rec_list {
unwind_record r;
unsigned long slot_number;
fragS *slot_frag;
unsigned long next_slot_number;
fragS *next_slot_frag;
struct unw_rec_list *next;
} unw_rec_list;
#define SLOT_NUM_NOT_SET (unsigned)-1
/* Linked list of saved prologue counts. A very poor
implementation of a map from label numbers to prologue counts. */
typedef struct label_prologue_count
{
struct label_prologue_count *next;
unsigned long label_number;
unsigned int prologue_count;
} label_prologue_count;
static struct
{
/* Maintain a list of unwind entries for the current function. */
unw_rec_list *list;
unw_rec_list *tail;
/* Any unwind entires that should be attached to the current slot
that an insn is being constructed for. */
unw_rec_list *current_entry;
/* These are used to create the unwind table entry for this function. */
symbolS *proc_start;
symbolS *proc_end;
symbolS *info; /* pointer to unwind info */
symbolS *personality_routine;
segT saved_text_seg;
subsegT saved_text_subseg;
unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
/* TRUE if processing unwind directives in a prologue region. */
int prologue;
int prologue_mask;
unsigned int prologue_count; /* number of .prologues seen so far */
/* Prologue counts at previous .label_state directives. */
struct label_prologue_count * saved_prologue_counts;
} unwind;
typedef void (*vbyte_func) PARAMS ((int, char *, char *));
/* Forward declarations: */
static int ar_is_in_integer_unit PARAMS ((int regnum));
static void set_section PARAMS ((char *name));
static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
unsigned int, unsigned int));
static void dot_align (int);
static void dot_radix PARAMS ((int));
static void dot_special_section PARAMS ((int));
static void dot_proc PARAMS ((int));
static void dot_fframe PARAMS ((int));
static void dot_vframe PARAMS ((int));
static void dot_vframesp PARAMS ((int));
static void dot_vframepsp PARAMS ((int));
static void dot_save PARAMS ((int));
static void dot_restore PARAMS ((int));
static void dot_restorereg PARAMS ((int));
static void dot_restorereg_p PARAMS ((int));
static void dot_handlerdata PARAMS ((int));
static void dot_unwentry PARAMS ((int));
static void dot_altrp PARAMS ((int));
static void dot_savemem PARAMS ((int));
static void dot_saveg PARAMS ((int));
static void dot_savef PARAMS ((int));
static void dot_saveb PARAMS ((int));
static void dot_savegf PARAMS ((int));
static void dot_spill PARAMS ((int));
static void dot_spillreg PARAMS ((int));
static void dot_spillmem PARAMS ((int));
static void dot_spillreg_p PARAMS ((int));
static void dot_spillmem_p PARAMS ((int));
static void dot_label_state PARAMS ((int));
static void dot_copy_state PARAMS ((int));
static void dot_unwabi PARAMS ((int));
static void dot_personality PARAMS ((int));
static void dot_body PARAMS ((int));
static void dot_prologue PARAMS ((int));
static void dot_endp PARAMS ((int));
static void dot_template PARAMS ((int));
static void dot_regstk PARAMS ((int));
static void dot_rot PARAMS ((int));
static void dot_byteorder PARAMS ((int));
static void dot_psr PARAMS ((int));
static void dot_alias PARAMS ((int));
static void dot_ln PARAMS ((int));
static char *parse_section_name PARAMS ((void));
static void dot_xdata PARAMS ((int));
static void stmt_float_cons PARAMS ((int));
static void stmt_cons_ua PARAMS ((int));
static void dot_xfloat_cons PARAMS ((int));
static void dot_xstringer PARAMS ((int));
static void dot_xdata_ua PARAMS ((int));
static void dot_xfloat_cons_ua PARAMS ((int));
static void print_prmask PARAMS ((valueT mask));
static void dot_pred_rel PARAMS ((int));
static void dot_reg_val PARAMS ((int));
static void dot_dv_mode PARAMS ((int));
static void dot_entry PARAMS ((int));
static void dot_mem_offset PARAMS ((int));
static void add_unwind_entry PARAMS((unw_rec_list *ptr));
static symbolS *declare_register PARAMS ((const char *name, int regnum));
static void declare_register_set PARAMS ((const char *, int, int));
static unsigned int operand_width PARAMS ((enum ia64_opnd));
static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
int index,
expressionS *e));
static int parse_operand PARAMS ((expressionS *e));
static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
static int errata_nop_necessary_p PARAMS ((struct slot *, enum ia64_unit));
static void build_insn PARAMS ((struct slot *, bfd_vma *));
static void emit_one_bundle PARAMS ((void));
static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
bfd_reloc_code_real_type r_type));
static void insn_group_break PARAMS ((int, int, int));
static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
struct rsrc *, int depind, int path));
static void add_qp_mutex PARAMS((valueT mask));
static void add_qp_imply PARAMS((int p1, int p2));
static void clear_qp_branch_flag PARAMS((valueT mask));
static void clear_qp_mutex PARAMS((valueT mask));
static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
static int has_suffix_p PARAMS((const char *, const char *));
static void clear_register_values PARAMS ((void));
static void print_dependency PARAMS ((const char *action, int depind));
static void instruction_serialization PARAMS ((void));
static void data_serialization PARAMS ((void));
static void remove_marked_resource PARAMS ((struct rsrc *));
static int is_conditional_branch PARAMS ((struct ia64_opcode *));
static int is_taken_branch PARAMS ((struct ia64_opcode *));
static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
static int depends_on PARAMS ((int, struct ia64_opcode *));
static int specify_resource PARAMS ((const struct ia64_dependency *,
struct ia64_opcode *, int, struct rsrc [], int, int));
static int check_dv PARAMS((struct ia64_opcode *idesc));
static void check_dependencies PARAMS((struct ia64_opcode *));
static void mark_resources PARAMS((struct ia64_opcode *));
static void update_dependencies PARAMS((struct ia64_opcode *));
static void note_register_values PARAMS((struct ia64_opcode *));
static int qp_mutex PARAMS ((int, int, int));
static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
static void output_vbyte_mem PARAMS ((int, char *, char *));
static void count_output PARAMS ((int, char *, char *));
static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
static void output_P1_format PARAMS ((vbyte_func, int));
static void output_P2_format PARAMS ((vbyte_func, int, int));
static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
static void output_P9_format PARAMS ((vbyte_func, int, int));
static void output_P10_format PARAMS ((vbyte_func, int, int));
static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
static char format_ab_reg PARAMS ((int, int));
static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
unsigned long));
static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
unsigned long));
static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
static unw_rec_list *output_endp PARAMS ((void));
static unw_rec_list *output_prologue PARAMS ((void));
static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
static unw_rec_list *output_body PARAMS ((void));
static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
static unw_rec_list *output_mem_stack_v PARAMS ((void));
static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
static unw_rec_list *output_rp_when PARAMS ((void));
static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
static unw_rec_list *output_rp_br PARAMS ((unsigned int));
static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
static unw_rec_list *output_pfs_when PARAMS ((void));
static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
static unw_rec_list *output_preds_when PARAMS ((void));
static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
static unw_rec_list *output_br_mem PARAMS ((unsigned int));
static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
static unw_rec_list *output_spill_base PARAMS ((unsigned int));
static unw_rec_list *output_unat_when PARAMS ((void));
static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
static unw_rec_list *output_lc_when PARAMS ((void));
static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
static unw_rec_list *output_fpsr_when PARAMS ((void));
static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
static unw_rec_list *output_priunat_when_gr PARAMS ((void));
static unw_rec_list *output_priunat_when_mem PARAMS ((void));
static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
static unw_rec_list *output_bsp_when PARAMS ((void));
static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
static unw_rec_list *output_bspstore_when PARAMS ((void));
static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
static unw_rec_list *output_rnat_when PARAMS ((void));
static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
static unw_rec_list *output_epilogue PARAMS ((unsigned long));
static unw_rec_list *output_label_state PARAMS ((unsigned long));
static unw_rec_list *output_copy_state PARAMS ((unsigned long));
static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
unsigned int));
static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
unsigned int));
static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
unsigned int));
static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
unsigned int, unsigned int));
static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
static int calc_record_size PARAMS ((unw_rec_list *));
static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
static unsigned long slot_index PARAMS ((unsigned long, fragS *,
unsigned long, fragS *,
int));
static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
static void fixup_unw_records PARAMS ((unw_rec_list *, int));
static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
static void generate_unwind_image PARAMS ((const char *));
static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
static void save_prologue_count PARAMS ((unsigned long, unsigned int));
static void free_saved_prologue_counts PARAMS ((void));
/* Build the unwind section name by appending the (possibly stripped)
text section NAME to the unwind PREFIX. The resulting string
pointer is assigned to RESULT. The string is allocated on the
stack, so this must be a macro... */
#define make_unw_section_name(special, text_name, result) \
{ \
const char *_prefix = special_section_name[special]; \
const char *_suffix = text_name; \
size_t _prefix_len, _suffix_len; \
char *_result; \
if (strncmp (text_name, ".gnu.linkonce.t.", \
sizeof (".gnu.linkonce.t.") - 1) == 0) \
{ \
_prefix = special_linkonce_name[special - SPECIAL_SECTION_UNWIND]; \
_suffix += sizeof (".gnu.linkonce.t.") - 1; \
} \
_prefix_len = strlen (_prefix), _suffix_len = strlen (_suffix); \
_result = alloca (_prefix_len + _suffix_len + 1); \
memcpy (_result, _prefix, _prefix_len); \
memcpy (_result + _prefix_len, _suffix, _suffix_len); \
_result[_prefix_len + _suffix_len] = '\0'; \
result = _result; \
} \
while (0)
/* Determine if application register REGNUM resides in the integer
unit (as opposed to the memory unit). */
static int
ar_is_in_integer_unit (reg)
int reg;
{
reg -= REG_AR;
return (reg == 64 /* pfs */
|| reg == 65 /* lc */
|| reg == 66 /* ec */
/* ??? ias accepts and puts these in the integer unit. */
|| (reg >= 112 && reg <= 127));
}
/* Switch to section NAME and create section if necessary. It's
rather ugly that we have to manipulate input_line_pointer but I
don't see any other way to accomplish the same thing without
changing obj-elf.c (which may be the Right Thing, in the end). */
static void
set_section (name)
char *name;
{
char *saved_input_line_pointer;
saved_input_line_pointer = input_line_pointer;
input_line_pointer = name;
obj_elf_section (0);
input_line_pointer = saved_input_line_pointer;
}
/* Map 's' to SHF_IA_64_SHORT. */
int
ia64_elf_section_letter (letter, ptr_msg)
int letter;
char **ptr_msg;
{
if (letter == 's')
return SHF_IA_64_SHORT;
else if (letter == 'o')
return SHF_LINK_ORDER;
*ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
return -1;
}
/* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
flagword
ia64_elf_section_flags (flags, attr, type)
flagword flags;
int attr, type ATTRIBUTE_UNUSED;
{
if (attr & SHF_IA_64_SHORT)
flags |= SEC_SMALL_DATA;
return flags;
}
int
ia64_elf_section_type (str, len)
const char *str;
size_t len;
{
#define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
if (STREQ (ELF_STRING_ia64_unwind_info))
return SHT_PROGBITS;
if (STREQ (ELF_STRING_ia64_unwind_info_once))
return SHT_PROGBITS;
if (STREQ (ELF_STRING_ia64_unwind))
return SHT_IA_64_UNWIND;
if (STREQ (ELF_STRING_ia64_unwind_once))
return SHT_IA_64_UNWIND;
if (STREQ ("unwind"))
return SHT_IA_64_UNWIND;
if (STREQ ("init_array"))
return SHT_INIT_ARRAY;
if (STREQ ("fini_array"))
return SHT_FINI_ARRAY;
return -1;
#undef STREQ
}
static unsigned int
set_regstack (ins, locs, outs, rots)
unsigned int ins, locs, outs, rots;
{
/* Size of frame. */
unsigned int sof;
sof = ins + locs + outs;
if (sof > 96)
{
as_bad ("Size of frame exceeds maximum of 96 registers");
return 0;
}
if (rots > sof)
{
as_warn ("Size of rotating registers exceeds frame size");
return 0;
}
md.in.base = REG_GR + 32;
md.loc.base = md.in.base + ins;
md.out.base = md.loc.base + locs;
md.in.num_regs = ins;
md.loc.num_regs = locs;
md.out.num_regs = outs;
md.rot.num_regs = rots;
return sof;
}
void
ia64_flush_insns ()
{
struct label_fix *lfix;
segT saved_seg;
subsegT saved_subseg;
unw_rec_list *ptr;
if (!md.last_text_seg)
return;
saved_seg = now_seg;
saved_subseg = now_subseg;
subseg_set (md.last_text_seg, 0);
while (md.num_slots_in_use > 0)
emit_one_bundle (); /* force out queued instructions */
/* In case there are labels following the last instruction, resolve
those now: */
for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
{
S_SET_VALUE (lfix->sym, frag_now_fix ());
symbol_set_frag (lfix->sym, frag_now);
}
CURR_SLOT.label_fixups = 0;
for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
{
S_SET_VALUE (lfix->sym, frag_now_fix ());
symbol_set_frag (lfix->sym, frag_now);
}
CURR_SLOT.tag_fixups = 0;
/* In case there are unwind directives following the last instruction,
resolve those now. We only handle prologue, body, and endp directives
here. Give an error for others. */
for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
{
switch (ptr->r.type)
{
case prologue:
case prologue_gr:
case body:
case endp:
ptr->slot_number = (unsigned long) frag_more (0);
ptr->slot_frag = frag_now;
break;
/* Allow any record which doesn't have a "t" field (i.e.,
doesn't relate to a particular instruction). */
case unwabi:
case br_gr:
case copy_state:
case fr_mem:
case frgr_mem:
case gr_gr:
case gr_mem:
case label_state:
case rp_br:
case spill_base:
case spill_mask:
/* nothing */
break;
default:
as_bad (_("Unwind directive not followed by an instruction."));
break;
}
}
unwind.current_entry = NULL;
subseg_set (saved_seg, saved_subseg);
if (md.qp.X_op == O_register)
as_bad ("qualifying predicate not followed by instruction");
}
static void
ia64_do_align (int nbytes)
{
char *saved_input_line_pointer = input_line_pointer;
input_line_pointer = "";
s_align_bytes (nbytes);
input_line_pointer = saved_input_line_pointer;
}
void
ia64_cons_align (nbytes)
int nbytes;
{
if (md.auto_align)
{
char *saved_input_line_pointer = input_line_pointer;
input_line_pointer = "";
s_align_bytes (nbytes);
input_line_pointer = saved_input_line_pointer;
}
}
/* Output COUNT bytes to a memory location. */
static unsigned char *vbyte_mem_ptr = NULL;
void
output_vbyte_mem (count, ptr, comment)
int count;
char *ptr;
char *comment ATTRIBUTE_UNUSED;
{
int x;
if (vbyte_mem_ptr == NULL)
abort ();
if (count == 0)
return;
for (x = 0; x < count; x++)
*(vbyte_mem_ptr++) = ptr[x];
}
/* Count the number of bytes required for records. */
static int vbyte_count = 0;
void
count_output (count, ptr, comment)
int count;
char *ptr ATTRIBUTE_UNUSED;
char *comment ATTRIBUTE_UNUSED;
{
vbyte_count += count;
}
static void
output_R1_format (f, rtype, rlen)
vbyte_func f;
unw_record_type rtype;
int rlen;
{
int r = 0;
char byte;
if (rlen > 0x1f)
{
output_R3_format (f, rtype, rlen);
return;
}
if (rtype == body)
r = 1;
else if (rtype != prologue)
as_bad ("record type is not valid");
byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
(*f) (1, &byte, NULL);
}
static void
output_R2_format (f, mask, grsave, rlen)
vbyte_func f;
int mask, grsave;
unsigned long rlen;
{
char bytes[20];
int count = 2;
mask = (mask & 0x0f);
grsave = (grsave & 0x7f);
bytes[0] = (UNW_R2 | (mask >> 1));
bytes[1] = (((mask & 0x01) << 7) | grsave);
count += output_leb128 (bytes + 2, rlen, 0);
(*f) (count, bytes, NULL);
}
static void
output_R3_format (f, rtype, rlen)
vbyte_func f;
unw_record_type rtype;
unsigned long rlen;
{
int r = 0, count;
char bytes[20];
if (rlen <= 0x1f)
{
output_R1_format (f, rtype, rlen);
return;
}
if (rtype == body)
r = 1;
else if (rtype != prologue)
as_bad ("record type is not valid");
bytes[0] = (UNW_R3 | r);
count = output_leb128 (bytes + 1, rlen, 0);
(*f) (count + 1, bytes, NULL);
}
static void
output_P1_format (f, brmask)
vbyte_func f;
int brmask;
{
char byte;
byte = UNW_P1 | (brmask & 0x1f);
(*f) (1, &byte, NULL);
}
static void
output_P2_format (f, brmask, gr)
vbyte_func f;
int brmask;
int gr;
{
char bytes[2];
brmask = (brmask & 0x1f);
bytes[0] = UNW_P2 | (brmask >> 1);
bytes[1] = (((brmask & 1) << 7) | gr);
(*f) (2, bytes, NULL);
}
static void
output_P3_format (f, rtype, reg)
vbyte_func f;
unw_record_type rtype;
int reg;
{
char bytes[2];
int r = 0;
reg = (reg & 0x7f);
switch (rtype)
{
case psp_gr:
r = 0;
break;
case rp_gr:
r = 1;
break;
case pfs_gr:
r = 2;
break;
case preds_gr:
r = 3;
break;
case unat_gr:
r = 4;
break;
case lc_gr:
r = 5;
break;
case rp_br:
r = 6;
break;
case rnat_gr:
r = 7;
break;
case bsp_gr:
r = 8;
break;
case bspstore_gr:
r = 9;
break;
case fpsr_gr:
r = 10;
break;
case priunat_gr:
r = 11;
break;
default:
as_bad ("Invalid record type for P3 format.");
}
bytes[0] = (UNW_P3 | (r >> 1));
bytes[1] = (((r & 1) << 7) | reg);
(*f) (2, bytes, NULL);
}
static void
output_P4_format (f, imask, imask_size)
vbyte_func f;
unsigned char *imask;
unsigned long imask_size;
{
imask[0] = UNW_P4;
(*f) (imask_size, imask, NULL);
}
static void
output_P5_format (f, grmask, frmask)
vbyte_func f;
int grmask;
unsigned long frmask;
{
char bytes[4];
grmask = (grmask & 0x0f);
bytes[0] = UNW_P5;
bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
bytes[2] = ((frmask & 0x0000ff00) >> 8);
bytes[3] = (frmask & 0x000000ff);
(*f) (4, bytes, NULL);
}
static void
output_P6_format (f, rtype, rmask)
vbyte_func f;
unw_record_type rtype;
int rmask;
{
char byte;
int r = 0;
if (rtype == gr_mem)
r = 1;
else if (rtype != fr_mem)
as_bad ("Invalid record type for format P6");
byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
(*f) (1, &byte, NULL);
}
static void
output_P7_format (f, rtype, w1, w2)
vbyte_func f;
unw_record_type rtype;
unsigned long w1;
unsigned long w2;
{
char bytes[20];
int count = 1;
int r = 0;
count += output_leb128 (bytes + 1, w1, 0);
switch (rtype)
{
case mem_stack_f:
r = 0;
count += output_leb128 (bytes + count, w2 >> 4, 0);
break;
case mem_stack_v:
r = 1;
break;
case spill_base:
r = 2;
break;
case psp_sprel:
r = 3;
break;
case rp_when:
r = 4;
break;
case rp_psprel:
r = 5;
break;
case pfs_when:
r = 6;
break;
case pfs_psprel:
r = 7;
break;
case preds_when:
r = 8;
break;
case preds_psprel:
r = 9;
break;
case lc_when:
r = 10;
break;
case lc_psprel:
r = 11;
break;
case unat_when:
r = 12;
break;
case unat_psprel:
r = 13;
break;
case fpsr_when:
r = 14;
break;
case fpsr_psprel:
r = 15;
break;
default:
break;
}
bytes[0] = (UNW_P7 | r);
(*f) (count, bytes, NULL);
}
static void
output_P8_format (f, rtype, t)
vbyte_func f;
unw_record_type rtype;
unsigned long t;
{
char bytes[20];
int r = 0;
int count = 2;
bytes[0] = UNW_P8;
switch (rtype)
{
case rp_sprel:
r = 1;
break;
case pfs_sprel:
r = 2;
break;
case preds_sprel:
r = 3;
break;
case lc_sprel:
r = 4;
break;
case unat_sprel:
r = 5;
break;
case fpsr_sprel:
r = 6;
break;
case bsp_when:
r = 7;
break;
case bsp_psprel:
r = 8;
break;
case bsp_sprel:
r = 9;
break;
case bspstore_when:
r = 10;
break;
case bspstore_psprel:
r = 11;
break;
case bspstore_sprel:
r = 12;
break;
case rnat_when:
r = 13;
break;
case rnat_psprel:
r = 14;
break;
case rnat_sprel:
r = 15;
break;
case priunat_when_gr:
r = 16;
break;
case priunat_psprel:
r = 17;
break;
case priunat_sprel:
r = 18;
break;
case priunat_when_mem:
r = 19;
break;
default:
break;
}
bytes[1] = r;
count += output_leb128 (bytes + 2, t, 0);
(*f) (count, bytes, NULL);
}
static void
output_P9_format (f, grmask, gr)
vbyte_func f;
int grmask;
int gr;
{
char bytes[3];
bytes[0] = UNW_P9;
bytes[1] = (grmask & 0x0f);
bytes[2] = (gr & 0x7f);
(*f) (3, bytes, NULL);
}
static void
output_P10_format (f, abi, context)
vbyte_func f;
int abi;
int context;
{
char bytes[3];
bytes[0] = UNW_P10;
bytes[1] = (abi & 0xff);
bytes[2] = (context & 0xff);
(*f) (3, bytes, NULL);
}
static void
output_B1_format (f, rtype, label)
vbyte_func f;
unw_record_type rtype;
unsigned long label;
{
char byte;
int r = 0;
if (label > 0x1f)
{
output_B4_format (f, rtype, label);
return;
}
if (rtype == copy_state)
r = 1;
else if (rtype != label_state)
as_bad ("Invalid record type for format B1");
byte = (UNW_B1 | (r << 5) | (label & 0x1f));
(*f) (1, &byte, NULL);
}
static void
output_B2_format (f, ecount, t)
vbyte_func f;
unsigned long ecount;
unsigned long t;
{
char bytes[20];
int count = 1;
if (ecount > 0x1f)
{
output_B3_format (f, ecount, t);
return;
}
bytes[0] = (UNW_B2 | (ecount & 0x1f));
count += output_leb128 (bytes + 1, t, 0);
(*f) (count, bytes, NULL);
}
static void
output_B3_format (f, ecount, t)
vbyte_func f;
unsigned long ecount;
unsigned long t;
{
char bytes[20];
int count = 1;
if (ecount <= 0x1f)
{
output_B2_format (f, ecount, t);
return;
}
bytes[0] = UNW_B3;
count += output_leb128 (bytes + 1, t, 0);
count += output_leb128 (bytes + count, ecount, 0);
(*f) (count, bytes, NULL);
}
static void
output_B4_format (f, rtype, label)
vbyte_func f;
unw_record_type rtype;
unsigned long label;
{
char bytes[20];
int r = 0;
int count = 1;
if (label <= 0x1f)
{
output_B1_format (f, rtype, label);
return;
}
if (rtype == copy_state)
r = 1;
else if (rtype != label_state)
as_bad ("Invalid record type for format B1");
bytes[0] = (UNW_B4 | (r << 3));
count += output_leb128 (bytes + 1, label, 0);
(*f) (count, bytes, NULL);
}
static char
format_ab_reg (ab, reg)
int ab;
int reg;
{
int ret;
ab = (ab & 3);
reg = (reg & 0x1f);
ret = (ab << 5) | reg;
return ret;
}
static void
output_X1_format (f, rtype, ab, reg, t, w1)
vbyte_func f;
unw_record_type rtype;
int ab, reg;
unsigned long t;
unsigned long w1;
{
char bytes[20];
int r = 0;
int count = 2;
bytes[0] = UNW_X1;
if (rtype == spill_sprel)
r = 1;
else if (rtype != spill_psprel)
as_bad ("Invalid record type for format X1");
bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
count += output_leb128 (bytes + 2, t, 0);
count += output_leb128 (bytes + count, w1, 0);
(*f) (count, bytes, NULL);
}
static void
output_X2_format (f, ab, reg, x, y, treg, t)
vbyte_func f;
int ab, reg;
int x, y, treg;
unsigned long t;
{
char bytes[20];
int count = 3;
bytes[0] = UNW_X2;
bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
count += output_leb128 (bytes + 3, t, 0);
(*f) (count, bytes, NULL);
}
static void
output_X3_format (f, rtype, qp, ab, reg, t, w1)
vbyte_func f;
unw_record_type rtype;
int qp;
int ab, reg;
unsigned long t;
unsigned long w1;
{
char bytes[20];
int r = 0;
int count = 3;
bytes[0] = UNW_X3;
if (rtype == spill_sprel_p)
r = 1;
else if (rtype != spill_psprel_p)
as_bad ("Invalid record type for format X3");
bytes[1] = ((r << 7) | (qp & 0x3f));
bytes[2] = format_ab_reg (ab, reg);
count += output_leb128 (bytes + 3, t, 0);
count += output_leb128 (bytes + count, w1, 0);
(*f) (count, bytes, NULL);
}
static void
output_X4_format (f, qp, ab, reg, x, y, treg, t)
vbyte_func f;
int qp;
int ab, reg;
int x, y, treg;
unsigned long t;
{
char bytes[20];
int count = 4;
bytes[0] = UNW_X4;
bytes[1] = (qp & 0x3f);
bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
count += output_leb128 (bytes + 4, t, 0);
(*f) (count, bytes, NULL);
}
/* This function allocates a record list structure, and initializes fields. */
static unw_rec_list *
alloc_record (unw_record_type t)
{
unw_rec_list *ptr;
ptr = xmalloc (sizeof (*ptr));
ptr->next = NULL;
ptr->slot_number = SLOT_NUM_NOT_SET;
ptr->r.type = t;
ptr->next_slot_number = 0;
ptr->next_slot_frag = 0;
return ptr;
}
/* Dummy unwind record used for calculating the length of the last prologue or
body region. */
static unw_rec_list *
output_endp ()
{
unw_rec_list *ptr = alloc_record (endp);
return ptr;
}
static unw_rec_list *
output_prologue ()
{
unw_rec_list *ptr = alloc_record (prologue);
memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
return ptr;
}
static unw_rec_list *
output_prologue_gr (saved_mask, reg)
unsigned int saved_mask;
unsigned int reg;
{
unw_rec_list *ptr = alloc_record (prologue_gr);
memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
ptr->r.record.r.grmask = saved_mask;
ptr->r.record.r.grsave = reg;
return ptr;
}
static unw_rec_list *
output_body ()
{
unw_rec_list *ptr = alloc_record (body);
return ptr;
}
static unw_rec_list *
output_mem_stack_f (size)
unsigned int size;
{
unw_rec_list *ptr = alloc_record (mem_stack_f);
ptr->r.record.p.size = size;
return ptr;
}
static unw_rec_list *
output_mem_stack_v ()
{
unw_rec_list *ptr = alloc_record (mem_stack_v);
return ptr;
}
static unw_rec_list *
output_psp_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (psp_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_psp_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (psp_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_rp_when ()
{
unw_rec_list *ptr = alloc_record (rp_when);
return ptr;
}
static unw_rec_list *
output_rp_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (rp_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_rp_br (br)
unsigned int br;
{
unw_rec_list *ptr = alloc_record (rp_br);
ptr->r.record.p.br = br;
return ptr;
}
static unw_rec_list *
output_rp_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (rp_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_rp_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (rp_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_pfs_when ()
{
unw_rec_list *ptr = alloc_record (pfs_when);
return ptr;
}
static unw_rec_list *
output_pfs_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (pfs_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_pfs_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (pfs_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_pfs_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (pfs_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_preds_when ()
{
unw_rec_list *ptr = alloc_record (preds_when);
return ptr;
}
static unw_rec_list *
output_preds_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (preds_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_preds_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (preds_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_preds_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (preds_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_fr_mem (mask)
unsigned int mask;
{
unw_rec_list *ptr = alloc_record (fr_mem);
ptr->r.record.p.rmask = mask;
return ptr;
}
static unw_rec_list *
output_frgr_mem (gr_mask, fr_mask)
unsigned int gr_mask;
unsigned int fr_mask;
{
unw_rec_list *ptr = alloc_record (frgr_mem);
ptr->r.record.p.grmask = gr_mask;
ptr->r.record.p.frmask = fr_mask;
return ptr;
}
static unw_rec_list *
output_gr_gr (mask, reg)
unsigned int mask;
unsigned int reg;
{
unw_rec_list *ptr = alloc_record (gr_gr);
ptr->r.record.p.grmask = mask;
ptr->r.record.p.gr = reg;
return ptr;
}
static unw_rec_list *
output_gr_mem (mask)
unsigned int mask;
{
unw_rec_list *ptr = alloc_record (gr_mem);
ptr->r.record.p.rmask = mask;
return ptr;
}
static unw_rec_list *
output_br_mem (unsigned int mask)
{
unw_rec_list *ptr = alloc_record (br_mem);
ptr->r.record.p.brmask = mask;
return ptr;
}
static unw_rec_list *
output_br_gr (save_mask, reg)
unsigned int save_mask;
unsigned int reg;
{
unw_rec_list *ptr = alloc_record (br_gr);
ptr->r.record.p.brmask = save_mask;
ptr->r.record.p.gr = reg;
return ptr;
}
static unw_rec_list *
output_spill_base (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (spill_base);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_unat_when ()
{
unw_rec_list *ptr = alloc_record (unat_when);
return ptr;
}
static unw_rec_list *
output_unat_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (unat_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_unat_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (unat_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_unat_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (unat_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_lc_when ()
{
unw_rec_list *ptr = alloc_record (lc_when);
return ptr;
}
static unw_rec_list *
output_lc_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (lc_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_lc_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (lc_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_lc_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (lc_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_fpsr_when ()
{
unw_rec_list *ptr = alloc_record (fpsr_when);
return ptr;
}
static unw_rec_list *
output_fpsr_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (fpsr_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_fpsr_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (fpsr_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_fpsr_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (fpsr_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_priunat_when_gr ()
{
unw_rec_list *ptr = alloc_record (priunat_when_gr);
return ptr;
}
static unw_rec_list *
output_priunat_when_mem ()
{
unw_rec_list *ptr = alloc_record (priunat_when_mem);
return ptr;
}
static unw_rec_list *
output_priunat_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (priunat_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_priunat_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (priunat_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_priunat_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (priunat_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_bsp_when ()
{
unw_rec_list *ptr = alloc_record (bsp_when);
return ptr;
}
static unw_rec_list *
output_bsp_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (bsp_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_bsp_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (bsp_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_bsp_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (bsp_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_bspstore_when ()
{
unw_rec_list *ptr = alloc_record (bspstore_when);
return ptr;
}
static unw_rec_list *
output_bspstore_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (bspstore_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_bspstore_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (bspstore_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_bspstore_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (bspstore_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_rnat_when ()
{
unw_rec_list *ptr = alloc_record (rnat_when);
return ptr;
}
static unw_rec_list *
output_rnat_gr (gr)
unsigned int gr;
{
unw_rec_list *ptr = alloc_record (rnat_gr);
ptr->r.record.p.gr = gr;
return ptr;
}
static unw_rec_list *
output_rnat_psprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (rnat_psprel);
ptr->r.record.p.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_rnat_sprel (offset)
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (rnat_sprel);
ptr->r.record.p.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_unwabi (abi, context)
unsigned long abi;
unsigned long context;
{
unw_rec_list *ptr = alloc_record (unwabi);
ptr->r.record.p.abi = abi;
ptr->r.record.p.context = context;
return ptr;
}
static unw_rec_list *
output_epilogue (unsigned long ecount)
{
unw_rec_list *ptr = alloc_record (epilogue);
ptr->r.record.b.ecount = ecount;
return ptr;
}
static unw_rec_list *
output_label_state (unsigned long label)
{
unw_rec_list *ptr = alloc_record (label_state);
ptr->r.record.b.label = label;
return ptr;
}
static unw_rec_list *
output_copy_state (unsigned long label)
{
unw_rec_list *ptr = alloc_record (copy_state);
ptr->r.record.b.label = label;
return ptr;
}
static unw_rec_list *
output_spill_psprel (ab, reg, offset)
unsigned int ab;
unsigned int reg;
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (spill_psprel);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.pspoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_spill_sprel (ab, reg, offset)
unsigned int ab;
unsigned int reg;
unsigned int offset;
{
unw_rec_list *ptr = alloc_record (spill_sprel);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.spoff = offset / 4;
return ptr;
}
static unw_rec_list *
output_spill_psprel_p (ab, reg, offset, predicate)
unsigned int ab;
unsigned int reg;
unsigned int offset;
unsigned int predicate;
{
unw_rec_list *ptr = alloc_record (spill_psprel_p);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.pspoff = offset / 4;
ptr->r.record.x.qp = predicate;
return ptr;
}
static unw_rec_list *
output_spill_sprel_p (ab, reg, offset, predicate)
unsigned int ab;
unsigned int reg;
unsigned int offset;
unsigned int predicate;
{
unw_rec_list *ptr = alloc_record (spill_sprel_p);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.spoff = offset / 4;
ptr->r.record.x.qp = predicate;
return ptr;
}
static unw_rec_list *
output_spill_reg (ab, reg, targ_reg, xy)
unsigned int ab;
unsigned int reg;
unsigned int targ_reg;
unsigned int xy;
{
unw_rec_list *ptr = alloc_record (spill_reg);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.treg = targ_reg;
ptr->r.record.x.xy = xy;
return ptr;
}
static unw_rec_list *
output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
unsigned int ab;
unsigned int reg;
unsigned int targ_reg;
unsigned int xy;
unsigned int predicate;
{
unw_rec_list *ptr = alloc_record (spill_reg_p);
ptr->r.record.x.ab = ab;
ptr->r.record.x.reg = reg;
ptr->r.record.x.treg = targ_reg;
ptr->r.record.x.xy = xy;
ptr->r.record.x.qp = predicate;
return ptr;
}
/* Given a unw_rec_list process the correct format with the
specified function. */
static void
process_one_record (ptr, f)
unw_rec_list *ptr;
vbyte_func f;
{
unsigned long fr_mask, gr_mask;
switch (ptr->r.type)
{
/* This is a dummy record that takes up no space in the output. */
case endp:
break;
case gr_mem:
case fr_mem:
case br_mem:
case frgr_mem:
/* These are taken care of by prologue/prologue_gr. */
break;
case prologue_gr:
case prologue:
if (ptr->r.type == prologue_gr)
output_R2_format (f, ptr->r.record.r.grmask,
ptr->r.record.r.grsave, ptr->r.record.r.rlen);
else
output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
/* Output descriptor(s) for union of register spills (if any). */
gr_mask = ptr->r.record.r.mask.gr_mem;
fr_mask = ptr->r.record.r.mask.fr_mem;
if (fr_mask)
{
if ((fr_mask & ~0xfUL) == 0)
output_P6_format (f, fr_mem, fr_mask);
else
{
output_P5_format (f, gr_mask, fr_mask);
gr_mask = 0;
}
}
if (gr_mask)
output_P6_format (f, gr_mem, gr_mask);
if (ptr->r.record.r.mask.br_mem)
output_P1_format (f, ptr->r.record.r.mask.br_mem);
/* output imask descriptor if necessary: */
if (ptr->r.record.r.mask.i)
output_P4_format (f, ptr->r.record.r.mask.i,
ptr->r.record.r.imask_size);
break;
case body:
output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
break;
case mem_stack_f:
case mem_stack_v:
output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
ptr->r.record.p.size);
break;
case psp_gr:
case rp_gr:
case pfs_gr:
case preds_gr:
case unat_gr:
case lc_gr:
case fpsr_gr:
case priunat_gr:
case bsp_gr:
case bspstore_gr:
case rnat_gr:
output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
break;
case rp_br:
output_P3_format (f, rp_br, ptr->r.record.p.br);
break;
case psp_sprel:
output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
break;
case rp_when:
case pfs_when:
case preds_when:
case unat_when:
case lc_when:
case fpsr_when:
output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
break;
case rp_psprel:
case pfs_psprel:
case preds_psprel:
case unat_psprel:
case lc_psprel:
case fpsr_psprel:
case spill_base:
output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
break;
case rp_sprel:
case pfs_sprel:
case preds_sprel:
case unat_sprel:
case lc_sprel:
case fpsr_sprel:
case priunat_sprel:
case bsp_sprel:
case bspstore_sprel:
case rnat_sprel:
output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
break;
case gr_gr:
output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
break;
case br_gr:
output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
break;
case spill_mask:
as_bad ("spill_mask record unimplemented.");
break;
case priunat_when_gr:
case priunat_when_mem:
case bsp_when:
case bspstore_when:
case rnat_when:
output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
break;
case priunat_psprel:
case bsp_psprel:
case bspstore_psprel:
case rnat_psprel:
output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
break;
case unwabi:
output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
break;
case epilogue:
output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
break;
case label_state:
case copy_state:
output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
break;
case spill_psprel:
output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
ptr->r.record.x.reg, ptr->r.record.x.t,
ptr->r.record.x.pspoff);
break;
case spill_sprel:
output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
ptr->r.record.x.reg, ptr->r.record.x.t,
ptr->r.record.x.spoff);
break;
case spill_reg:
output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
ptr->r.record.x.treg, ptr->r.record.x.t);
break;
case spill_psprel_p:
output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
ptr->r.record.x.ab, ptr->r.record.x.reg,
ptr->r.record.x.t, ptr->r.record.x.pspoff);
break;
case spill_sprel_p:
output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
ptr->r.record.x.ab, ptr->r.record.x.reg,
ptr->r.record.x.t, ptr->r.record.x.spoff);
break;
case spill_reg_p:
output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
ptr->r.record.x.xy, ptr->r.record.x.treg,
ptr->r.record.x.t);
break;
default:
as_bad ("record_type_not_valid");
break;
}
}
/* Given a unw_rec_list list, process all the records with
the specified function. */
static void
process_unw_records (list, f)
unw_rec_list *list;
vbyte_func f;
{
unw_rec_list *ptr;
for (ptr = list; ptr; ptr = ptr->next)
process_one_record (ptr, f);
}
/* Determine the size of a record list in bytes. */
static int
calc_record_size (list)
unw_rec_list *list;
{
vbyte_count = 0;
process_unw_records (list, count_output);
return vbyte_count;
}
/* Update IMASK bitmask to reflect the fact that one or more registers
of type TYPE are saved starting at instruction with index T. If N
bits are set in REGMASK, it is assumed that instructions T through
T+N-1 save these registers.
TYPE values:
0: no save
1: instruction saves next fp reg
2: instruction saves next general reg
3: instruction saves next branch reg */
static void
set_imask (region, regmask, t, type)
unw_rec_list *region;
unsigned long regmask;
unsigned long t;
unsigned int type;
{
unsigned char *imask;
unsigned long imask_size;
unsigned int i;
int pos;
imask = region->r.record.r.mask.i;
imask_size = region->r.record.r.imask_size;
if (!imask)
{
imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
imask = xmalloc (imask_size);
memset (imask, 0, imask_size);
region->r.record.r.imask_size = imask_size;
region->r.record.r.mask.i = imask;
}
i = (t / 4) + 1;
pos = 2 * (3 - t % 4);
while (regmask)
{
if (i >= imask_size)
{
as_bad ("Ignoring attempt to spill beyond end of region");
return;
}
imask[i] |= (type & 0x3) << pos;
regmask &= (regmask - 1);
pos -= 2;
if (pos < 0)
{
pos = 0;
++i;
}
}
}
/* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
for frag sizes. */
unsigned long
slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
unsigned long slot_addr;
fragS *slot_frag;
unsigned long first_addr;
fragS *first_frag;
int before_relax;
{
unsigned long index = 0;
/* First time we are called, the initial address and frag are invalid. */
if (first_addr == 0)
return 0;
/* If the two addresses are in different frags, then we need to add in
the remaining size of this frag, and then the entire size of intermediate
frags. */
while (slot_frag != first_frag)
{
unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
if (! before_relax)
{
/* We can get the final addresses only during and after
relaxation. */
if (first_frag->fr_next && first_frag->fr_next->fr_address)
index += 3 * ((first_frag->fr_next->fr_address
- first_frag->fr_address
- first_frag->fr_fix) >> 4);
}
else
/* We don't know what the final addresses will be. We try our
best to estimate. */
switch (first_frag->fr_type)
{
default:
break;
case rs_space:
as_fatal ("only constant space allocation is supported");
break;
case rs_align:
case rs_align_code:
case rs_align_test:
/* Take alignment into account. Assume the worst case
before relaxation. */
index += 3 * ((1 << first_frag->fr_offset) >> 4);
break;
case rs_org:
if (first_frag->fr_symbol)
{
as_fatal ("only constant offsets are supported");
break;
}
case rs_fill:
index += 3 * (first_frag->fr_offset >> 4);
break;
}
/* Add in the full size of the frag converted to instruction slots. */
index += 3 * (first_frag->fr_fix >> 4);
/* Subtract away the initial part before first_addr. */
index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
+ ((first_addr & 0x3) - (start_addr & 0x3)));
/* Move to the beginning of the next frag. */
first_frag = first_frag->fr_next;
first_addr = (unsigned long) &first_frag->fr_literal;
}
/* Add in the used part of the last frag. */
index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
+ ((slot_addr & 0x3) - (first_addr & 0x3)));
return index;
}
/* Optimize unwind record directives. */
static unw_rec_list *
optimize_unw_records (list)
unw_rec_list *list;
{
if (!list)
return NULL;
/* If the only unwind record is ".prologue" or ".prologue" followed
by ".body", then we can optimize the unwind directives away. */
if (list->r.type == prologue
&& (list->next->r.type == endp
|| (list->next->r.type == body && list->next->next->r.type == endp)))
return NULL;
return list;
}
/* Given a complete record list, process any records which have
unresolved fields, (ie length counts for a prologue). After
this has been run, all necessary information should be available
within each record to generate an image. */
static void
fixup_unw_records (list, before_relax)
unw_rec_list *list;
int before_relax;
{
unw_rec_list *ptr, *region = 0;
unsigned long first_addr = 0, rlen = 0, t;
fragS *first_frag = 0;
for (ptr = list; ptr; ptr = ptr->next)
{
if (ptr->slot_number == SLOT_NUM_NOT_SET)
as_bad (" Insn slot not set in unwind record.");
t = slot_index (ptr->slot_number, ptr->slot_frag,
first_addr, first_frag, before_relax);
switch (ptr->r.type)
{
case prologue:
case prologue_gr:
case body:
{
unw_rec_list *last;
int size;
unsigned long last_addr = 0;
fragS *last_frag = NULL;
first_addr = ptr->slot_number;
first_frag = ptr->slot_frag;
/* Find either the next body/prologue start, or the end of
the function, and determine the size of the region. */
for (last = ptr->next; last != NULL; last = last->next)
if (last->r.type == prologue || last->r.type == prologue_gr
|| last->r.type == body || last->r.type == endp)
{
last_addr = last->slot_number;
last_frag = last->slot_frag;
break;
}
size = slot_index (last_addr, last_frag, first_addr, first_frag,
before_relax);
rlen = ptr->r.record.r.rlen = size;
if (ptr->r.type == body)
/* End of region. */
region = 0;
else
region = ptr;
break;
}
case epilogue:
ptr->r.record.b.t = rlen - 1 - t;
break;
case mem_stack_f:
case mem_stack_v:
case rp_when:
case pfs_when:
case preds_when:
case unat_when:
case lc_when:
case fpsr_when:
case priunat_when_gr:
case priunat_when_mem:
case bsp_when:
case bspstore_when:
case rnat_when:
ptr->r.record.p.t = t;
break;
case spill_reg:
case spill_sprel:
case spill_psprel:
case spill_reg_p:
case spill_sprel_p:
case spill_psprel_p:
ptr->r.record.x.t = t;
break;
case frgr_mem:
if (!region)
{
as_bad ("frgr_mem record before region record!\n");
return;
}
region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
set_imask (region, ptr->r.record.p.frmask, t, 1);
set_imask (region, ptr->r.record.p.grmask, t, 2);
break;
case fr_mem:
if (!region)
{
as_bad ("fr_mem record before region record!\n");
return;
}
region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
set_imask (region, ptr->r.record.p.rmask, t, 1);
break;
case gr_mem:
if (!region)
{
as_bad ("gr_mem record before region record!\n");
return;
}
region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
set_imask (region, ptr->r.record.p.rmask, t, 2);
break;
case br_mem:
if (!region)
{
as_bad ("br_mem record before region record!\n");
return;
}
region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
set_imask (region, ptr->r.record.p.brmask, t, 3);
break;
case gr_gr:
if (!region)
{
as_bad ("gr_gr record before region record!\n");
return;
}
set_imask (region, ptr->r.record.p.grmask, t, 2);
break;
case br_gr:
if (!region)
{
as_bad ("br_gr record before region record!\n");
return;
}
set_imask (region, ptr->r.record.p.brmask, t, 3);
break;
default:
break;
}
}
}
/* Estimate the size of a frag before relaxing. We only have one type of frag
to handle here, which is the unwind info frag. */
int
ia64_estimate_size_before_relax (fragS *frag,
asection *segtype ATTRIBUTE_UNUSED)
{
unw_rec_list *list;
int len, size, pad;
/* ??? This code is identical to the first part of ia64_convert_frag. */
list = (unw_rec_list *) frag->fr_opcode;
fixup_unw_records (list, 0);
len = calc_record_size (list);
/* pad to pointer-size boundary. */
pad = len % md.pointer_size;
if (pad != 0)
len += md.pointer_size - pad;
/* Add 8 for the header + a pointer for the personality offset. */
size = len + 8 + md.pointer_size;
/* fr_var carries the max_chars that we created the fragment with.
We must, of course, have allocated enough memory earlier. */
assert (frag->fr_var >= size);
return frag->fr_fix + size;
}
/* This function converts a rs_machine_dependent variant frag into a
normal fill frag with the unwind image from the the record list. */
void
ia64_convert_frag (fragS *frag)
{
unw_rec_list *list;
int len, size, pad;
valueT flag_value;
/* ??? This code is identical to ia64_estimate_size_before_relax. */
list = (unw_rec_list *) frag->fr_opcode;
fixup_unw_records (list, 0);
len = calc_record_size (list);
/* pad to pointer-size boundary. */
pad = len % md.pointer_size;
if (pad != 0)
len += md.pointer_size - pad;
/* Add 8 for the header + a pointer for the personality offset. */
size = len + 8 + md.pointer_size;
/* fr_var carries the max_chars that we created the fragment with.
We must, of course, have allocated enough memory earlier. */
assert (frag->fr_var >= size);
/* Initialize the header area. fr_offset is initialized with
unwind.personality_routine. */
if (frag->fr_offset)
{
if (md.flags & EF_IA_64_ABI64)
flag_value = (bfd_vma) 3 << 32;
else
/* 32-bit unwind info block. */
flag_value = (bfd_vma) 0x1003 << 32;
}
else
flag_value = 0;
md_number_to_chars (frag->fr_literal,
(((bfd_vma) 1 << 48) /* Version. */
| flag_value /* U & E handler flags. */
| (len / md.pointer_size)), /* Length. */
8);
/* Skip the header. */
vbyte_mem_ptr = frag->fr_literal + 8;
process_unw_records (list, output_vbyte_mem);
/* Fill the padding bytes with zeros. */
if (pad != 0)
md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
md.pointer_size - pad);
frag->fr_fix += size;
frag->fr_type = rs_fill;
frag->fr_var = 0;
frag->fr_offset = 0;
}
static int
convert_expr_to_ab_reg (e, ab, regp)
expressionS *e;
unsigned int *ab;
unsigned int *regp;
{
unsigned int reg;
if (e->X_op != O_register)
return 0;
reg = e->X_add_number;
if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
{
*ab = 0;
*regp = reg - REG_GR;
}
else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
|| (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
{
*ab = 1;
*regp = reg - REG_FR;
}
else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
{
*ab = 2;
*regp = reg - REG_BR;
}
else
{
*ab = 3;
switch (reg)
{
case REG_PR: *regp = 0; break;
case REG_PSP: *regp = 1; break;
case REG_PRIUNAT: *regp = 2; break;
case REG_BR + 0: *regp = 3; break;
case REG_AR + AR_BSP: *regp = 4; break;
case REG_AR + AR_BSPSTORE: *regp = 5; break;
case REG_AR + AR_RNAT: *regp = 6; break;
case REG_AR + AR_UNAT: *regp = 7; break;
case REG_AR + AR_FPSR: *regp = 8; break;
case REG_AR + AR_PFS: *regp = 9; break;
case REG_AR + AR_LC: *regp = 10; break;
default:
return 0;
}
}
return 1;
}
static int
convert_expr_to_xy_reg (e, xy, regp)
expressionS *e;
unsigned int *xy;
unsigned int *regp;
{
unsigned int reg;
if (e->X_op != O_register)
return 0;
reg = e->X_add_number;
if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
{
*xy = 0;
*regp = reg - REG_GR;
}
else if (reg >= REG_FR && reg <= (REG_FR + 127))
{
*xy = 1;
*regp = reg - REG_FR;
}
else if (reg >= REG_BR && reg <= (REG_BR + 7))
{
*xy = 2;
*regp = reg - REG_BR;
}
else
return -1;
return 1;
}
static void
dot_align (int arg)
{
/* The current frag is an alignment frag. */
align_frag = frag_now;
s_align_bytes (arg);
}
static void
dot_radix (dummy)
int dummy ATTRIBUTE_UNUSED;
{
int radix;
SKIP_WHITESPACE ();
radix = *input_line_pointer++;
if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
{
as_bad ("Radix `%c' unsupported", *input_line_pointer);
ignore_rest_of_line ();
return;
}
}
/* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
static void
dot_special_section (which)
int which;
{
set_section ((char *) special_section_name[which]);
}
static void
add_unwind_entry (ptr)
unw_rec_list *ptr;
{
if (unwind.tail)
unwind.tail->next = ptr;
else
unwind.list = ptr;
unwind.tail = ptr;
/* The current entry can in fact be a chain of unwind entries. */
if (unwind.current_entry == NULL)
unwind.current_entry = ptr;
}
static void
dot_fframe (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
parse_operand (&e);
if (e.X_op != O_constant)
as_bad ("Operand to .fframe must be a constant");
else
add_unwind_entry (output_mem_stack_f (e.X_add_number));
}
static void
dot_vframe (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
unsigned reg;
parse_operand (&e);
reg = e.X_add_number - REG_GR;
if (e.X_op == O_register && reg < 128)
{
add_unwind_entry (output_mem_stack_v ());
if (! (unwind.prologue_mask & 2))
add_unwind_entry (output_psp_gr (reg));
}
else
as_bad ("First operand to .vframe must be a general register");
}
static void
dot_vframesp (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
parse_operand (&e);
if (e.X_op == O_constant)
{
add_unwind_entry (output_mem_stack_v ());
add_unwind_entry (output_psp_sprel (e.X_add_number));
}
else
as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
}
static void
dot_vframepsp (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
parse_operand (&e);
if (e.X_op == O_constant)
{
add_unwind_entry (output_mem_stack_v ());
add_unwind_entry (output_psp_sprel (e.X_add_number));
}
else
as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
}
static void
dot_save (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
int sep;
int reg1, reg2;
sep = parse_operand (&e1);
if (sep != ',')
as_bad ("No second operand to .save");
sep = parse_operand (&e2);
reg1 = e1.X_add_number;
reg2 = e2.X_add_number - REG_GR;
/* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
if (e1.X_op == O_register)
{
if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
{
switch (reg1)
{
case REG_AR + AR_BSP:
add_unwind_entry (output_bsp_when ());
add_unwind_entry (output_bsp_gr (reg2));
break;
case REG_AR + AR_BSPSTORE:
add_unwind_entry (output_bspstore_when ());
add_unwind_entry (output_bspstore_gr (reg2));
break;
case REG_AR + AR_RNAT:
add_unwind_entry (output_rnat_when ());
add_unwind_entry (output_rnat_gr (reg2));
break;
case REG_AR + AR_UNAT:
add_unwind_entry (output_unat_when ());
add_unwind_entry (output_unat_gr (reg2));
break;
case REG_AR + AR_FPSR:
add_unwind_entry (output_fpsr_when ());
add_unwind_entry (output_fpsr_gr (reg2));
break;
case REG_AR + AR_PFS:
add_unwind_entry (output_pfs_when ());
if (! (unwind.prologue_mask & 4))
add_unwind_entry (output_pfs_gr (reg2));
break;
case REG_AR + AR_LC:
add_unwind_entry (output_lc_when ());
add_unwind_entry (output_lc_gr (reg2));
break;
case REG_BR:
add_unwind_entry (output_rp_when ());
if (! (unwind.prologue_mask & 8))
add_unwind_entry (output_rp_gr (reg2));
break;
case REG_PR:
add_unwind_entry (output_preds_when ());
if (! (unwind.prologue_mask & 1))
add_unwind_entry (output_preds_gr (reg2));
break;
case REG_PRIUNAT:
add_unwind_entry (output_priunat_when_gr ());
add_unwind_entry (output_priunat_gr (reg2));
break;
default:
as_bad ("First operand not a valid register");
}
}
else
as_bad (" Second operand not a valid register");
}
else
as_bad ("First operand not a register");
}
static void
dot_restore (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
unsigned long ecount; /* # of _additional_ regions to pop */
int sep;
sep = parse_operand (&e1);
if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
{
as_bad ("First operand to .restore must be stack pointer (sp)");
return;
}
if (sep == ',')
{
parse_operand (&e2);
if (e2.X_op != O_constant || e2.X_add_number < 0)
{
as_bad ("Second operand to .restore must be a constant >= 0");
return;
}
ecount = e2.X_add_number;
}
else
ecount = unwind.prologue_count - 1;
if (ecount >= unwind.prologue_count)
{
as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
ecount + 1, unwind.prologue_count);
return;
}
add_unwind_entry (output_epilogue (ecount));
if (ecount < unwind.prologue_count)
unwind.prologue_count -= ecount + 1;
else
unwind.prologue_count = 0;
}
static void
dot_restorereg (dummy)
int dummy ATTRIBUTE_UNUSED;
{
unsigned int ab, reg;
expressionS e;
parse_operand (&e);
if (!convert_expr_to_ab_reg (&e, &ab, &reg))
{
as_bad ("First operand to .restorereg must be a preserved register");
return;
}
add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
}
static void
dot_restorereg_p (dummy)
int dummy ATTRIBUTE_UNUSED;
{
unsigned int qp, ab, reg;
expressionS e1, e2;
int sep;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("No second operand to .restorereg.p");
return;
}
parse_operand (&e2);
qp = e1.X_add_number - REG_P;
if (e1.X_op != O_register || qp > 63)
{
as_bad ("First operand to .restorereg.p must be a predicate");
return;
}
if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
{
as_bad ("Second operand to .restorereg.p must be a preserved register");
return;
}
add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
}
static void
generate_unwind_image (text_name)
const char *text_name;
{
int size, pad;
unw_rec_list *list;
/* Mark the end of the unwind info, so that we can compute the size of the
last unwind region. */
add_unwind_entry (output_endp ());
/* Force out pending instructions, to make sure all unwind records have
a valid slot_number field. */
ia64_flush_insns ();
/* Generate the unwind record. */
list = optimize_unw_records (unwind.list);
fixup_unw_records (list, 1);
size = calc_record_size (list);
if (size > 0 || unwind.force_unwind_entry)
{
unwind.force_unwind_entry = 0;
/* pad to pointer-size boundary. */
pad = size % md.pointer_size;
if (pad != 0)
size += md.pointer_size - pad;
/* Add 8 for the header + a pointer for the personality
offset. */
size += 8 + md.pointer_size;
}
/* If there are unwind records, switch sections, and output the info. */
if (size != 0)
{
char *sec_name;
expressionS exp;
bfd_reloc_code_real_type reloc;
make_unw_section_name (SPECIAL_SECTION_UNWIND_INFO, text_name, sec_name);
set_section (sec_name);
bfd_set_section_flags (stdoutput, now_seg,
SEC_LOAD | SEC_ALLOC | SEC_READONLY);
/* Make sure the section has 4 byte alignment for ILP32 and
8 byte alignment for LP64. */
frag_align (md.pointer_size_shift, 0, 0);
record_alignment (now_seg, md.pointer_size_shift);
/* Set expression which points to start of unwind descriptor area. */
unwind.info = expr_build_dot ();
frag_var (rs_machine_dependent, size, size, 0, 0,
(offsetT) unwind.personality_routine, (char *) list);
/* Add the personality address to the image. */
if (unwind.personality_routine != 0)
{
exp.X_op = O_symbol;
exp.X_add_symbol = unwind.personality_routine;
exp.X_add_number = 0;
if (md.flags & EF_IA_64_BE)
{
if (md.flags & EF_IA_64_ABI64)
reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
else
reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
}
else
{
if (md.flags & EF_IA_64_ABI64)
reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
else
reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
}
fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
md.pointer_size, &exp, 0, reloc);
unwind.personality_routine = 0;
}
}
free_saved_prologue_counts ();
unwind.list = unwind.tail = unwind.current_entry = NULL;
}
static void
dot_handlerdata (dummy)
int dummy ATTRIBUTE_UNUSED;
{
const char *text_name = segment_name (now_seg);
/* If text section name starts with ".text" (which it should),
strip this prefix off. */
if (strcmp (text_name, ".text") == 0)
text_name = "";
unwind.force_unwind_entry = 1;
/* Remember which segment we're in so we can switch back after .endp */
unwind.saved_text_seg = now_seg;
unwind.saved_text_subseg = now_subseg;
/* Generate unwind info into unwind-info section and then leave that
section as the currently active one so dataXX directives go into
the language specific data area of the unwind info block. */
generate_unwind_image (text_name);
demand_empty_rest_of_line ();
}
static void
dot_unwentry (dummy)
int dummy ATTRIBUTE_UNUSED;
{
unwind.force_unwind_entry = 1;
demand_empty_rest_of_line ();
}
static void
dot_altrp (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
unsigned reg;
parse_operand (&e);
reg = e.X_add_number - REG_BR;
if (e.X_op == O_register && reg < 8)
add_unwind_entry (output_rp_br (reg));
else
as_bad ("First operand not a valid branch register");
}
static void
dot_savemem (psprel)
int psprel;
{
expressionS e1, e2;
int sep;
int reg1, val;
sep = parse_operand (&e1);
if (sep != ',')
as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
sep = parse_operand (&e2);
reg1 = e1.X_add_number;
val = e2.X_add_number;
/* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
if (e1.X_op == O_register)
{
if (e2.X_op == O_constant)
{
switch (reg1)
{
case REG_AR + AR_BSP:
add_unwind_entry (output_bsp_when ());
add_unwind_entry ((psprel
? output_bsp_psprel
: output_bsp_sprel) (val));
break;
case REG_AR + AR_BSPSTORE:
add_unwind_entry (output_bspstore_when ());
add_unwind_entry ((psprel
? output_bspstore_psprel
: output_bspstore_sprel) (val));
break;
case REG_AR + AR_RNAT:
add_unwind_entry (output_rnat_when ());
add_unwind_entry ((psprel
? output_rnat_psprel
: output_rnat_sprel) (val));
break;
case REG_AR + AR_UNAT:
add_unwind_entry (output_unat_when ());
add_unwind_entry ((psprel
? output_unat_psprel
: output_unat_sprel) (val));
break;
case REG_AR + AR_FPSR:
add_unwind_entry (output_fpsr_when ());
add_unwind_entry ((psprel
? output_fpsr_psprel
: output_fpsr_sprel) (val));
break;
case REG_AR + AR_PFS:
add_unwind_entry (output_pfs_when ());
add_unwind_entry ((psprel
? output_pfs_psprel
: output_pfs_sprel) (val));
break;
case REG_AR + AR_LC:
add_unwind_entry (output_lc_when ());
add_unwind_entry ((psprel
? output_lc_psprel
: output_lc_sprel) (val));
break;
case REG_BR:
add_unwind_entry (output_rp_when ());
add_unwind_entry ((psprel
? output_rp_psprel
: output_rp_sprel) (val));
break;
case REG_PR:
add_unwind_entry (output_preds_when ());
add_unwind_entry ((psprel
? output_preds_psprel
: output_preds_sprel) (val));
break;
case REG_PRIUNAT:
add_unwind_entry (output_priunat_when_mem ());
add_unwind_entry ((psprel
? output_priunat_psprel
: output_priunat_sprel) (val));
break;
default:
as_bad ("First operand not a valid register");
}
}
else
as_bad (" Second operand not a valid constant");
}
else
as_bad ("First operand not a register");
}
static void
dot_saveg (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
int sep;
sep = parse_operand (&e1);
if (sep == ',')
parse_operand (&e2);
if (e1.X_op != O_constant)
as_bad ("First operand to .save.g must be a constant.");
else
{
int grmask = e1.X_add_number;
if (sep != ',')
add_unwind_entry (output_gr_mem (grmask));
else
{
int reg = e2.X_add_number - REG_GR;
if (e2.X_op == O_register && reg >= 0 && reg < 128)
add_unwind_entry (output_gr_gr (grmask, reg));
else
as_bad ("Second operand is an invalid register.");
}
}
}
static void
dot_savef (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1;
int sep;
sep = parse_operand (&e1);
if (e1.X_op != O_constant)
as_bad ("Operand to .save.f must be a constant.");
else
add_unwind_entry (output_fr_mem (e1.X_add_number));
}
static void
dot_saveb (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
unsigned int reg;
unsigned char sep;
int brmask;
sep = parse_operand (&e1);
if (e1.X_op != O_constant)
{
as_bad ("First operand to .save.b must be a constant.");
return;
}
brmask = e1.X_add_number;
if (sep == ',')
{
sep = parse_operand (&e2);
reg = e2.X_add_number - REG_GR;
if (e2.X_op != O_register || reg > 127)
{
as_bad ("Second operand to .save.b must be a general register.");
return;
}
add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
}
else
add_unwind_entry (output_br_mem (brmask));
if (!is_end_of_line[sep] && !is_it_end_of_statement ())
demand_empty_rest_of_line ();
}
static void
dot_savegf (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
int sep;
sep = parse_operand (&e1);
if (sep == ',')
parse_operand (&e2);
if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
as_bad ("Both operands of .save.gf must be constants.");
else
{
int grmask = e1.X_add_number;
int frmask = e2.X_add_number;
add_unwind_entry (output_frgr_mem (grmask, frmask));
}
}
static void
dot_spill (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
unsigned char sep;
sep = parse_operand (&e);
if (!is_end_of_line[sep] && !is_it_end_of_statement ())
demand_empty_rest_of_line ();
if (e.X_op != O_constant)
as_bad ("Operand to .spill must be a constant");
else
add_unwind_entry (output_spill_base (e.X_add_number));
}
static void
dot_spillreg (dummy)
int dummy ATTRIBUTE_UNUSED;
{
int sep, ab, xy, reg, treg;
expressionS e1, e2;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("No second operand to .spillreg");
return;
}
parse_operand (&e2);
if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
{
as_bad ("First operand to .spillreg must be a preserved register");
return;
}
if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
{
as_bad ("Second operand to .spillreg must be a register");
return;
}
add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
}
static void
dot_spillmem (psprel)
int psprel;
{
expressionS e1, e2;
int sep, ab, reg;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("Second operand missing");
return;
}
parse_operand (&e2);
if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
{
as_bad ("First operand to .spill%s must be a preserved register",
psprel ? "psp" : "sp");
return;
}
if (e2.X_op != O_constant)
{
as_bad ("Second operand to .spill%s must be a constant",
psprel ? "psp" : "sp");
return;
}
if (psprel)
add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
else
add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
}
static void
dot_spillreg_p (dummy)
int dummy ATTRIBUTE_UNUSED;
{
int sep, ab, xy, reg, treg;
expressionS e1, e2, e3;
unsigned int qp;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("No second and third operand to .spillreg.p");
return;
}
sep = parse_operand (&e2);
if (sep != ',')
{
as_bad ("No third operand to .spillreg.p");
return;
}
parse_operand (&e3);
qp = e1.X_add_number - REG_P;
if (e1.X_op != O_register || qp > 63)
{
as_bad ("First operand to .spillreg.p must be a predicate");
return;
}
if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
{
as_bad ("Second operand to .spillreg.p must be a preserved register");
return;
}
if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
{
as_bad ("Third operand to .spillreg.p must be a register");
return;
}
add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
}
static void
dot_spillmem_p (psprel)
int psprel;
{
expressionS e1, e2, e3;
int sep, ab, reg;
unsigned int qp;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("Second operand missing");
return;
}
parse_operand (&e2);
if (sep != ',')
{
as_bad ("Second operand missing");
return;
}
parse_operand (&e3);
qp = e1.X_add_number - REG_P;
if (e1.X_op != O_register || qp > 63)
{
as_bad ("First operand to .spill%s_p must be a predicate",
psprel ? "psp" : "sp");
return;
}
if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
{
as_bad ("Second operand to .spill%s_p must be a preserved register",
psprel ? "psp" : "sp");
return;
}
if (e3.X_op != O_constant)
{
as_bad ("Third operand to .spill%s_p must be a constant",
psprel ? "psp" : "sp");
return;
}
if (psprel)
add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
else
add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
}
static unsigned int
get_saved_prologue_count (lbl)
unsigned long lbl;
{
label_prologue_count *lpc = unwind.saved_prologue_counts;
while (lpc != NULL && lpc->label_number != lbl)
lpc = lpc->next;
if (lpc != NULL)
return lpc->prologue_count;
as_bad ("Missing .label_state %ld", lbl);
return 1;
}
static void
save_prologue_count (lbl, count)
unsigned long lbl;
unsigned int count;
{
label_prologue_count *lpc = unwind.saved_prologue_counts;
while (lpc != NULL && lpc->label_number != lbl)
lpc = lpc->next;
if (lpc != NULL)
lpc->prologue_count = count;
else
{
label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
new_lpc->next = unwind.saved_prologue_counts;
new_lpc->label_number = lbl;
new_lpc->prologue_count = count;
unwind.saved_prologue_counts = new_lpc;
}
}
static void
free_saved_prologue_counts ()
{
label_prologue_count *lpc = unwind.saved_prologue_counts;
label_prologue_count *next;
while (lpc != NULL)
{
next = lpc->next;
free (lpc);
lpc = next;
}
unwind.saved_prologue_counts = NULL;
}
static void
dot_label_state (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
parse_operand (&e);
if (e.X_op != O_constant)
{
as_bad ("Operand to .label_state must be a constant");
return;
}
add_unwind_entry (output_label_state (e.X_add_number));
save_prologue_count (e.X_add_number, unwind.prologue_count);
}
static void
dot_copy_state (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
parse_operand (&e);
if (e.X_op != O_constant)
{
as_bad ("Operand to .copy_state must be a constant");
return;
}
add_unwind_entry (output_copy_state (e.X_add_number));
unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
}
static void
dot_unwabi (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e1, e2;
unsigned char sep;
sep = parse_operand (&e1);
if (sep != ',')
{
as_bad ("Second operand to .unwabi missing");
return;
}
sep = parse_operand (&e2);
if (!is_end_of_line[sep] && !is_it_end_of_statement ())
demand_empty_rest_of_line ();
if (e1.X_op != O_constant)
{
as_bad ("First operand to .unwabi must be a constant");
return;
}
if (e2.X_op != O_constant)
{
as_bad ("Second operand to .unwabi must be a constant");
return;
}
add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
}
static void
dot_personality (dummy)
int dummy ATTRIBUTE_UNUSED;
{
char *name, *p, c;
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
p = input_line_pointer;
unwind.personality_routine = symbol_find_or_make (name);
unwind.force_unwind_entry = 1;
*p = c;
SKIP_WHITESPACE ();
demand_empty_rest_of_line ();
}
static void
dot_proc (dummy)
int dummy ATTRIBUTE_UNUSED;
{
char *name, *p, c;
symbolS *sym;
unwind.proc_start = expr_build_dot ();
/* Parse names of main and alternate entry points and mark them as
function symbols: */
while (1)
{
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
p = input_line_pointer;
sym = symbol_find_or_make (name);
if (unwind.proc_start == 0)
{
unwind.proc_start = sym;
}
symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
*p = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
break;
++input_line_pointer;
}
demand_empty_rest_of_line ();
ia64_do_align (16);
unwind.prologue_count = 0;
unwind.list = unwind.tail = unwind.current_entry = NULL;
unwind.personality_routine = 0;
}
static void
dot_body (dummy)
int dummy ATTRIBUTE_UNUSED;
{
unwind.prologue = 0;
unwind.prologue_mask = 0;
add_unwind_entry (output_body ());
demand_empty_rest_of_line ();
}
static void
dot_prologue (dummy)
int dummy ATTRIBUTE_UNUSED;
{
unsigned char sep;
int mask = 0, grsave = 0;
if (!is_it_end_of_statement ())
{
expressionS e1, e2;
sep = parse_operand (&e1);
if (sep != ',')
as_bad ("No second operand to .prologue");
sep = parse_operand (&e2);
if (!is_end_of_line[sep] && !is_it_end_of_statement ())
demand_empty_rest_of_line ();
if (e1.X_op == O_constant)
{
mask = e1.X_add_number;
if (e2.X_op == O_constant)
grsave = e2.X_add_number;
else if (e2.X_op == O_register
&& (grsave = e2.X_add_number - REG_GR) < 128)
;
else
as_bad ("Second operand not a constant or general register");
add_unwind_entry (output_prologue_gr (mask, grsave));
}
else
as_bad ("First operand not a constant");
}
else
add_unwind_entry (output_prologue ());
unwind.prologue = 1;
unwind.prologue_mask = mask;
++unwind.prologue_count;
}
static void
dot_endp (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS e;
unsigned char *ptr;
int bytes_per_address;
long where;
segT saved_seg;
subsegT saved_subseg;
const char *sec_name, *text_name;
char *name, *p, c;
symbolS *sym;
if (unwind.saved_text_seg)
{
saved_seg = unwind.saved_text_seg;
saved_subseg = unwind.saved_text_subseg;
unwind.saved_text_seg = NULL;
}
else
{
saved_seg = now_seg;
saved_subseg = now_subseg;
}
/*
Use a slightly ugly scheme to derive the unwind section names from
the text section name:
text sect. unwind table sect.
name: name: comments:
---------- ----------------- --------------------------------
.text .IA_64.unwind
.text.foo .IA_64.unwind.text.foo
.foo .IA_64.unwind.foo
.gnu.linkonce.t.foo
.gnu.linkonce.ia64unw.foo
_info .IA_64.unwind_info gas issues error message (ditto)
_infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
This mapping is done so that:
(a) An object file with unwind info only in .text will use
unwind section names .IA_64.unwind and .IA_64.unwind_info.
This follows the letter of the ABI and also ensures backwards
compatibility with older toolchains.
(b) An object file with unwind info in multiple text sections
will use separate unwind sections for each text section.
This allows us to properly set the "sh_info" and "sh_link"
fields in SHT_IA_64_UNWIND as required by the ABI and also
lets GNU ld support programs with multiple segments
containing unwind info (as might be the case for certain
embedded applications).
(c) An error is issued if there would be a name clash.
*/
text_name = segment_name (saved_seg);
if (strncmp (text_name, "_info", 5) == 0)
{
as_bad ("Illegal section name `%s' (causes unwind section name clash)",
text_name);
ignore_rest_of_line ();
return;
}
if (strcmp (text_name, ".text") == 0)
text_name = "";
insn_group_break (1, 0, 0);
/* If there wasn't a .handlerdata, we haven't generated an image yet. */
if (!unwind.info)
generate_unwind_image (text_name);
if (unwind.info || unwind.force_unwind_entry)
{
subseg_set (md.last_text_seg, 0);
unwind.proc_end = expr_build_dot ();
make_unw_section_name (SPECIAL_SECTION_UNWIND, text_name, sec_name);
set_section ((char *) sec_name);
bfd_set_section_flags (stdoutput, now_seg,
SEC_LOAD | SEC_ALLOC | SEC_READONLY);
/* Make sure that section has 4 byte alignment for ILP32 and
8 byte alignment for LP64. */
record_alignment (now_seg, md.pointer_size_shift);
/* Need space for 3 pointers for procedure start, procedure end,
and unwind info. */
ptr = frag_more (3 * md.pointer_size);
where = frag_now_fix () - (3 * md.pointer_size);
bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
/* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
e.X_op = O_pseudo_fixup;
e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
e.X_add_number = 0;
e.X_add_symbol = unwind.proc_start;
ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
e.X_op = O_pseudo_fixup;
e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
e.X_add_number = 0;
e.X_add_symbol = unwind.proc_end;
ia64_cons_fix_new (frag_now, where + bytes_per_address,
bytes_per_address, &e);
if (unwind.info)
{
e.X_op = O_pseudo_fixup;
e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
e.X_add_number = 0;
e.X_add_symbol = unwind.info;
ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
bytes_per_address, &e);
}
else
md_number_to_chars (ptr + (bytes_per_address * 2), 0,
bytes_per_address);
}
subseg_set (saved_seg, saved_subseg);
/* Parse names of main and alternate entry points and set symbol sizes. */
while (1)
{
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
p = input_line_pointer;
sym = symbol_find (name);
if (sym && unwind.proc_start
&& (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
&& S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
{
fragS *fr = symbol_get_frag (unwind.proc_start);
fragS *frag = symbol_get_frag (sym);
/* Check whether the function label is at or beyond last
.proc directive. */
while (fr && fr != frag)
fr = fr->fr_next;
if (fr)
{
if (frag == frag_now && SEG_NORMAL (now_seg))
S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
else
{
symbol_get_obj (sym)->size =
(expressionS *) xmalloc (sizeof (expressionS));
symbol_get_obj (sym)->size->X_op = O_subtract;
symbol_get_obj (sym)->size->X_add_symbol
= symbol_new (FAKE_LABEL_NAME, now_seg,
frag_now_fix (), frag_now);
symbol_get_obj (sym)->size->X_op_symbol = sym;
symbol_get_obj (sym)->size->X_add_number = 0;
}
}
}
*p = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
break;
++input_line_pointer;
}
demand_empty_rest_of_line ();
unwind.proc_start = unwind.proc_end = unwind.info = 0;
}
static void
dot_template (template)
int template;
{
CURR_SLOT.user_template = template;
}
static void
dot_regstk (dummy)
int dummy ATTRIBUTE_UNUSED;
{
int ins, locs, outs, rots;
if (is_it_end_of_statement ())
ins = locs = outs = rots = 0;
else
{
ins = get_absolute_expression ();
if (*input_line_pointer++ != ',')
goto err;
locs = get_absolute_expression ();
if (*input_line_pointer++ != ',')
goto err;
outs = get_absolute_expression ();
if (*input_line_pointer++ != ',')
goto err;
rots = get_absolute_expression ();
}
set_regstack (ins, locs, outs, rots);
return;
err:
as_bad ("Comma expected");
ignore_rest_of_line ();
}
static void
dot_rot (type)
int type;
{
unsigned num_regs, num_alloced = 0;
struct dynreg **drpp, *dr;
int ch, base_reg = 0;
char *name, *start;
size_t len;
switch (type)
{
case DYNREG_GR: base_reg = REG_GR + 32; break;
case DYNREG_FR: base_reg = REG_FR + 32; break;
case DYNREG_PR: base_reg = REG_P + 16; break;
default: break;
}
/* First, remove existing names from hash table. */
for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
{
hash_delete (md.dynreg_hash, dr->name);
dr->num_regs = 0;
}
drpp = &md.dynreg[type];
while (1)
{
start = input_line_pointer;
ch = get_symbol_end ();
*input_line_pointer = ch;
len = (input_line_pointer - start);
SKIP_WHITESPACE ();
if (*input_line_pointer != '[')
{
as_bad ("Expected '['");
goto err;
}
++input_line_pointer; /* skip '[' */
num_regs = get_absolute_expression ();
if (*input_line_pointer++ != ']')
{
as_bad ("Expected ']'");
goto err;
}
SKIP_WHITESPACE ();
num_alloced += num_regs;
switch (type)
{
case DYNREG_GR:
if (num_alloced > md.rot.num_regs)
{
as_bad ("Used more than the declared %d rotating registers",
md.rot.num_regs);
goto err;
}
break;
case DYNREG_FR:
if (num_alloced > 96)
{
as_bad ("Used more than the available 96 rotating registers");
goto err;
}
break;
case DYNREG_PR:
if (num_alloced > 48)
{
as_bad ("Used more than the available 48 rotating registers");
goto err;
}
break;
default:
break;
}
name = obstack_alloc (&notes, len + 1);
memcpy (name, start, len);
name[len] = '\0';
if (!*drpp)
{
*drpp = obstack_alloc (&notes, sizeof (*dr));
memset (*drpp, 0, sizeof (*dr));
}
dr = *drpp;
dr->name = name;
dr->num_regs = num_regs;
dr->base = base_reg;
drpp = &dr->next;
base_reg += num_regs;
if (hash_insert (md.dynreg_hash, name, dr))
{
as_bad ("Attempt to redefine register set `%s'", name);
goto err;
}
if (*input_line_pointer != ',')
break;
++input_line_pointer; /* skip comma */
SKIP_WHITESPACE ();
}
demand_empty_rest_of_line ();
return;
err:
ignore_rest_of_line ();
}
static void
dot_byteorder (byteorder)
int byteorder;
{
segment_info_type *seginfo = seg_info (now_seg);
if (byteorder == -1)
{
if (seginfo->tc_segment_info_data.endian == 0)
seginfo->tc_segment_info_data.endian
= TARGET_BYTES_BIG_ENDIAN ? 1 : 2;
byteorder = seginfo->tc_segment_info_data.endian == 1;
}
else
seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
if (target_big_endian != byteorder)
{
target_big_endian = byteorder;
if (target_big_endian)
{
ia64_number_to_chars = number_to_chars_bigendian;
ia64_float_to_chars = ia64_float_to_chars_bigendian;
}
else
{
ia64_number_to_chars = number_to_chars_littleendian;
ia64_float_to_chars = ia64_float_to_chars_littleendian;
}
}
}
static void
dot_psr (dummy)
int dummy ATTRIBUTE_UNUSED;
{
char *option;
int ch;
while (1)
{
option = input_line_pointer;
ch = get_symbol_end ();
if (strcmp (option, "lsb") == 0)
md.flags &= ~EF_IA_64_BE;
else if (strcmp (option, "msb") == 0)
md.flags |= EF_IA_64_BE;
else if (strcmp (option, "abi32") == 0)
md.flags &= ~EF_IA_64_ABI64;
else if (strcmp (option, "abi64") == 0)
md.flags |= EF_IA_64_ABI64;
else
as_bad ("Unknown psr option `%s'", option);
*input_line_pointer = ch;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
break;
++input_line_pointer;
SKIP_WHITESPACE ();
}
demand_empty_rest_of_line ();
}
static void
dot_ln (dummy)
int dummy ATTRIBUTE_UNUSED;
{
new_logical_line (0, get_absolute_expression ());
demand_empty_rest_of_line ();
}
static char *
parse_section_name ()
{
char *name;
int len;
SKIP_WHITESPACE ();
if (*input_line_pointer != '"')
{
as_bad ("Missing section name");
ignore_rest_of_line ();
return 0;
}
name = demand_copy_C_string (&len);
if (!name)
{
ignore_rest_of_line ();
return 0;
}
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad ("Comma expected after section name");
ignore_rest_of_line ();
return 0;
}
++input_line_pointer; /* skip comma */
return name;
}
static void
dot_xdata (size)
int size;
{
char *name = parse_section_name ();
if (!name)
return;
md.keep_pending_output = 1;
set_section (name);
cons (size);
obj_elf_previous (0);
md.keep_pending_output = 0;
}
/* Why doesn't float_cons() call md_cons_align() the way cons() does? */
static void
stmt_float_cons (kind)
int kind;
{
size_t alignment;
switch (kind)
{
case 'd':
alignment = 8;
break;
case 'x':
case 'X':
alignment = 16;
break;
case 'f':
default:
alignment = 4;
break;
}
ia64_do_align (alignment);
float_cons (kind);
}
static void
stmt_cons_ua (size)
int size;
{
int saved_auto_align = md.auto_align;
md.auto_align = 0;
cons (size);
md.auto_align = saved_auto_align;
}
static void
dot_xfloat_cons (kind)
int kind;
{
char *name = parse_section_name ();
if (!name)
return;
md.keep_pending_output = 1;
set_section (name);
stmt_float_cons (kind);
obj_elf_previous (0);
md.keep_pending_output = 0;
}
static void
dot_xstringer (zero)
int zero;
{
char *name = parse_section_name ();
if (!name)
return;
md.keep_pending_output = 1;
set_section (name);
stringer (zero);
obj_elf_previous (0);
md.keep_pending_output = 0;
}
static void
dot_xdata_ua (size)
int size;
{
int saved_auto_align = md.auto_align;
char *name = parse_section_name ();
if (!name)
return;
md.keep_pending_output = 1;
set_section (name);
md.auto_align = 0;
cons (size);
md.auto_align = saved_auto_align;
obj_elf_previous (0);
md.keep_pending_output = 0;
}
static void
dot_xfloat_cons_ua (kind)
int kind;
{
int saved_auto_align = md.auto_align;
char *name = parse_section_name ();
if (!name)
return;
md.keep_pending_output = 1;
set_section (name);
md.auto_align = 0;
stmt_float_cons (kind);
md.auto_align = saved_auto_align;
obj_elf_previous (0);
md.keep_pending_output = 0;
}
/* .reg.val <regname>,value */
static void
dot_reg_val (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS reg;
expression (&reg);
if (reg.X_op != O_register)
{
as_bad (_("Register name expected"));
ignore_rest_of_line ();
}
else if (*input_line_pointer++ != ',')
{
as_bad (_("Comma expected"));
ignore_rest_of_line ();
}
else
{
valueT value = get_absolute_expression ();
int regno = reg.X_add_number;
if (regno < REG_GR || regno > REG_GR + 128)
as_warn (_("Register value annotation ignored"));
else
{
gr_values[regno - REG_GR].known = 1;
gr_values[regno - REG_GR].value = value;
gr_values[regno - REG_GR].path = md.path;
}
}
demand_empty_rest_of_line ();
}
/* select dv checking mode
.auto
.explicit
.default
A stop is inserted when changing modes
*/
static void
dot_dv_mode (type)
int type;
{
if (md.manual_bundling)
as_warn (_("Directive invalid within a bundle"));
if (type == 'E' || type == 'A')
md.mode_explicitly_set = 0;
else
md.mode_explicitly_set = 1;
md.detect_dv = 1;
switch (type)
{
case 'A':
case 'a':
if (md.explicit_mode)
insn_group_break (1, 0, 0);
md.explicit_mode = 0;
break;
case 'E':
case 'e':
if (!md.explicit_mode)
insn_group_break (1, 0, 0);
md.explicit_mode = 1;
break;
default:
case 'd':
if (md.explicit_mode != md.default_explicit_mode)
insn_group_break (1, 0, 0);
md.explicit_mode = md.default_explicit_mode;
md.mode_explicitly_set = 0;
break;
}
}
static void
print_prmask (mask)
valueT mask;
{
int regno;
char *comma = "";
for (regno = 0; regno < 64; regno++)
{
if (mask & ((valueT) 1 << regno))
{
fprintf (stderr, "%s p%d", comma, regno);
comma = ",";
}
}
}
/*
.pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear")
.pred.rel.imply p1, p2 (also .pred.rel "imply")
.pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex")
.pred.safe_across_calls p1 [, p2 [,...]]
*/
static void
dot_pred_rel (type)
int type;
{
valueT mask = 0;
int count = 0;
int p1 = -1, p2 = -1;
if (type == 0)
{
if (*input_line_pointer != '"')
{
as_bad (_("Missing predicate relation type"));
ignore_rest_of_line ();
return;
}
else
{
int len;
char *form = demand_copy_C_string (&len);
if (strcmp (form, "mutex") == 0)
type = 'm';
else if (strcmp (form, "clear") == 0)
type = 'c';
else if (strcmp (form, "imply") == 0)
type = 'i';
else
{
as_bad (_("Unrecognized predicate relation type"));
ignore_rest_of_line ();
return;
}
}
if (*input_line_pointer == ',')
++input_line_pointer;
SKIP_WHITESPACE ();
}
SKIP_WHITESPACE ();
while (1)
{
valueT bit = 1;
int regno;
if (TOUPPER (*input_line_pointer) != 'P'
|| (regno = atoi (++input_line_pointer)) < 0
|| regno > 63)
{
as_bad (_("Predicate register expected"));
ignore_rest_of_line ();
return;
}
while (ISDIGIT (*input_line_pointer))
++input_line_pointer;
if (p1 == -1)
p1 = regno;
else if (p2 == -1)
p2 = regno;
bit <<= regno;
if (mask & bit)
as_warn (_("Duplicate predicate register ignored"));
mask |= bit;
count++;
/* See if it's a range. */
if (*input_line_pointer == '-')
{
valueT stop = 1;
++input_line_pointer;
if (TOUPPER (*input_line_pointer) != 'P'
|| (regno = atoi (++input_line_pointer)) < 0
|| regno > 63)
{
as_bad (_("Predicate register expected"));
ignore_rest_of_line ();
return;
}
while (ISDIGIT (*input_line_pointer))
++input_line_pointer;
stop <<= regno;
if (bit >= stop)
{
as_bad (_("Bad register range"));
ignore_rest_of_line ();
return;
}
while (bit < stop)
{
bit <<= 1;
mask |= bit;
count++;
}
SKIP_WHITESPACE ();
}
if (*input_line_pointer != ',')
break;
++input_line_pointer;
SKIP_WHITESPACE ();
}
switch (type)
{
case 'c':
if (count == 0)
mask = ~(valueT) 0;
clear_qp_mutex (mask);
clear_qp_implies (mask, (valueT) 0);
break;
case 'i':
if (count != 2 || p1 == -1 || p2 == -1)
as_bad (_("Predicate source and target required"));
else if (p1 == 0 || p2 == 0)
as_bad (_("Use of p0 is not valid in this context"));
else
add_qp_imply (p1, p2);
break;
case 'm':
if (count < 2)
{
as_bad (_("At least two PR arguments expected"));
break;
}
else if (mask & 1)
{
as_bad (_("Use of p0 is not valid in this context"));
break;
}
add_qp_mutex (mask);
break;
case 's':
/* note that we don't override any existing relations */
if (count == 0)
{
as_bad (_("At least one PR argument expected"));
break;
}
if (md.debug_dv)
{
fprintf (stderr, "Safe across calls: ");
print_prmask (mask);
fprintf (stderr, "\n");
}
qp_safe_across_calls = mask;
break;
}
demand_empty_rest_of_line ();
}
/* .entry label [, label [, ...]]
Hint to DV code that the given labels are to be considered entry points.
Otherwise, only global labels are considered entry points. */
static void
dot_entry (dummy)
int dummy ATTRIBUTE_UNUSED;
{
const char *err;
char *name;
int c;
symbolS *symbolP;
do
{
name = input_line_pointer;
c = get_symbol_end ();
symbolP = symbol_find_or_make (name);
err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
if (err)
as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
name, err);
*input_line_pointer = c;
SKIP_WHITESPACE ();
c = *input_line_pointer;
if (c == ',')
{
input_line_pointer++;
SKIP_WHITESPACE ();
if (*input_line_pointer == '\n')
c = '\n';
}
}
while (c == ',');
demand_empty_rest_of_line ();
}
/* .mem.offset offset, base
"base" is used to distinguish between offsets from a different base. */
static void
dot_mem_offset (dummy)
int dummy ATTRIBUTE_UNUSED;
{
md.mem_offset.hint = 1;
md.mem_offset.offset = get_absolute_expression ();
if (*input_line_pointer != ',')
{
as_bad (_("Comma expected"));
ignore_rest_of_line ();
return;
}
++input_line_pointer;
md.mem_offset.base = get_absolute_expression ();
demand_empty_rest_of_line ();
}
/* ia64-specific pseudo-ops: */
const pseudo_typeS md_pseudo_table[] =
{
{ "radix", dot_radix, 0 },
{ "lcomm", s_lcomm_bytes, 1 },
{ "bss", dot_special_section, SPECIAL_SECTION_BSS },
{ "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
{ "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
{ "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
{ "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
{ "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
{ "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
{ "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
{ "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
{ "proc", dot_proc, 0 },
{ "body", dot_body, 0 },
{ "prologue", dot_prologue, 0 },
{ "endp", dot_endp, 0 },
{ "fframe", dot_fframe, 0 },
{ "vframe", dot_vframe, 0 },
{ "vframesp", dot_vframesp, 0 },
{ "vframepsp", dot_vframepsp, 0 },
{ "save", dot_save, 0 },
{ "restore", dot_restore, 0 },
{ "restorereg", dot_restorereg, 0 },
{ "restorereg.p", dot_restorereg_p, 0 },
{ "handlerdata", dot_handlerdata, 0 },
{ "unwentry", dot_unwentry, 0 },
{ "altrp", dot_altrp, 0 },
{ "savesp", dot_savemem, 0 },
{ "savepsp", dot_savemem, 1 },
{ "save.g", dot_saveg, 0 },
{ "save.f", dot_savef, 0 },
{ "save.b", dot_saveb, 0 },
{ "save.gf", dot_savegf, 0 },
{ "spill", dot_spill, 0 },
{ "spillreg", dot_spillreg, 0 },
{ "spillsp", dot_spillmem, 0 },
{ "spillpsp", dot_spillmem, 1 },
{ "spillreg.p", dot_spillreg_p, 0 },
{ "spillsp.p", dot_spillmem_p, 0 },
{ "spillpsp.p", dot_spillmem_p, 1 },
{ "label_state", dot_label_state, 0 },
{ "copy_state", dot_copy_state, 0 },
{ "unwabi", dot_unwabi, 0 },
{ "personality", dot_personality, 0 },
#if 0
{ "estate", dot_estate, 0 },
#endif
{ "mii", dot_template, 0x0 },
{ "mli", dot_template, 0x2 }, /* old format, for compatibility */
{ "mlx", dot_template, 0x2 },
{ "mmi", dot_template, 0x4 },
{ "mfi", dot_template, 0x6 },
{ "mmf", dot_template, 0x7 },
{ "mib", dot_template, 0x8 },
{ "mbb", dot_template, 0x9 },
{ "bbb", dot_template, 0xb },
{ "mmb", dot_template, 0xc },
{ "mfb", dot_template, 0xe },
#if 0
{ "lb", dot_scope, 0 },
{ "le", dot_scope, 1 },
#endif
{ "align", dot_align, 0 },
{ "regstk", dot_regstk, 0 },
{ "rotr", dot_rot, DYNREG_GR },
{ "rotf", dot_rot, DYNREG_FR },
{ "rotp", dot_rot, DYNREG_PR },
{ "lsb", dot_byteorder, 0 },
{ "msb", dot_byteorder, 1 },
{ "psr", dot_psr, 0 },
{ "alias", dot_alias, 0 },
{ "secalias", dot_alias, 1 },
{ "ln", dot_ln, 0 }, /* source line info (for debugging) */
{ "xdata1", dot_xdata, 1 },
{ "xdata2", dot_xdata, 2 },
{ "xdata4", dot_xdata, 4 },
{ "xdata8", dot_xdata, 8 },
{ "xreal4", dot_xfloat_cons, 'f' },
{ "xreal8", dot_xfloat_cons, 'd' },
{ "xreal10", dot_xfloat_cons, 'x' },
{ "xreal16", dot_xfloat_cons, 'X' },
{ "xstring", dot_xstringer, 0 },
{ "xstringz", dot_xstringer, 1 },
/* unaligned versions: */
{ "xdata2.ua", dot_xdata_ua, 2 },
{ "xdata4.ua", dot_xdata_ua, 4 },
{ "xdata8.ua", dot_xdata_ua, 8 },
{ "xreal4.ua", dot_xfloat_cons_ua, 'f' },
{ "xreal8.ua", dot_xfloat_cons_ua, 'd' },
{ "xreal10.ua", dot_xfloat_cons_ua, 'x' },
{ "xreal16.ua", dot_xfloat_cons_ua, 'X' },
/* annotations/DV checking support */
{ "entry", dot_entry, 0 },
{ "mem.offset", dot_mem_offset, 0 },
{ "pred.rel", dot_pred_rel, 0 },
{ "pred.rel.clear", dot_pred_rel, 'c' },
{ "pred.rel.imply", dot_pred_rel, 'i' },
{ "pred.rel.mutex", dot_pred_rel, 'm' },
{ "pred.safe_across_calls", dot_pred_rel, 's' },
{ "reg.val", dot_reg_val, 0 },
{ "auto", dot_dv_mode, 'a' },
{ "explicit", dot_dv_mode, 'e' },
{ "default", dot_dv_mode, 'd' },
/* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
IA-64 aligns data allocation pseudo-ops by default, so we have to
tell it that these ones are supposed to be unaligned. Long term,
should rewrite so that only IA-64 specific data allocation pseudo-ops
are aligned by default. */
{"2byte", stmt_cons_ua, 2},
{"4byte", stmt_cons_ua, 4},
{"8byte", stmt_cons_ua, 8},
{ NULL, 0, 0 }
};
static const struct pseudo_opcode
{
const char *name;
void (*handler) (int);
int arg;
}
pseudo_opcode[] =
{
/* these are more like pseudo-ops, but don't start with a dot */
{ "data1", cons, 1 },
{ "data2", cons, 2 },
{ "data4", cons, 4 },
{ "data8", cons, 8 },
{ "data16", cons, 16 },
{ "real4", stmt_float_cons, 'f' },
{ "real8", stmt_float_cons, 'd' },
{ "real10", stmt_float_cons, 'x' },
{ "real16", stmt_float_cons, 'X' },
{ "string", stringer, 0 },
{ "stringz", stringer, 1 },
/* unaligned versions: */
{ "data2.ua", stmt_cons_ua, 2 },
{ "data4.ua", stmt_cons_ua, 4 },
{ "data8.ua", stmt_cons_ua, 8 },
{ "data16.ua", stmt_cons_ua, 16 },
{ "real4.ua", float_cons, 'f' },
{ "real8.ua", float_cons, 'd' },
{ "real10.ua", float_cons, 'x' },
{ "real16.ua", float_cons, 'X' },
};
/* Declare a register by creating a symbol for it and entering it in
the symbol table. */
static symbolS *
declare_register (name, regnum)
const char *name;
int regnum;
{
const char *err;
symbolS *sym;
sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
if (err)
as_fatal ("Inserting \"%s\" into register table failed: %s",
name, err);
return sym;
}
static void
declare_register_set (prefix, num_regs, base_regnum)
const char *prefix;
int num_regs;
int base_regnum;
{
char name[8];
int i;
for (i = 0; i < num_regs; ++i)
{
sprintf (name, "%s%u", prefix, i);
declare_register (name, base_regnum + i);
}
}
static unsigned int
operand_width (opnd)
enum ia64_opnd opnd;
{
const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
unsigned int bits = 0;
int i;
bits = 0;
for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
bits += odesc->field[i].bits;
return bits;
}
static enum operand_match_result
operand_match (idesc, index, e)
const struct ia64_opcode *idesc;
int index;
expressionS *e;
{
enum ia64_opnd opnd = idesc->operands[index];
int bits, relocatable = 0;
struct insn_fix *fix;
bfd_signed_vma val;
switch (opnd)
{
/* constants: */
case IA64_OPND_AR_CCV:
if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
return OPERAND_MATCH;
break;
case IA64_OPND_AR_CSD:
if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
return OPERAND_MATCH;
break;
case IA64_OPND_AR_PFS:
if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
return OPERAND_MATCH;
break;
case IA64_OPND_GR0:
if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
return OPERAND_MATCH;
break;
case IA64_OPND_IP:
if (e->X_op == O_register && e->X_add_number == REG_IP)
return OPERAND_MATCH;
break;
case IA64_OPND_PR:
if (e->X_op == O_register && e->X_add_number == REG_PR)
return OPERAND_MATCH;
break;
case IA64_OPND_PR_ROT:
if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
return OPERAND_MATCH;
break;
case IA64_OPND_PSR:
if (e->X_op == O_register && e->X_add_number == REG_PSR)
return OPERAND_MATCH;
break;
case IA64_OPND_PSR_L:
if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
return OPERAND_MATCH;
break;
case IA64_OPND_PSR_UM:
if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
return OPERAND_MATCH;
break;
case IA64_OPND_C1:
if (e->X_op == O_constant)
{
if (e->X_add_number == 1)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_C8:
if (e->X_op == O_constant)
{
if (e->X_add_number == 8)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_C16:
if (e->X_op == O_constant)
{
if (e->X_add_number == 16)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
/* register operands: */
case IA64_OPND_AR3:
if (e->X_op == O_register && e->X_add_number >= REG_AR
&& e->X_add_number < REG_AR + 128)
return OPERAND_MATCH;
break;
case IA64_OPND_B1:
case IA64_OPND_B2:
if (e->X_op == O_register && e->X_add_number >= REG_BR
&& e->X_add_number < REG_BR + 8)
return OPERAND_MATCH;
break;
case IA64_OPND_CR3:
if (e->X_op == O_register && e->X_add_number >= REG_CR
&& e->X_add_number < REG_CR + 128)
return OPERAND_MATCH;
break;
case IA64_OPND_F1:
case IA64_OPND_F2:
case IA64_OPND_F3:
case IA64_OPND_F4:
if (e->X_op == O_register && e->X_add_number >= REG_FR
&& e->X_add_number < REG_FR + 128)
return OPERAND_MATCH;
break;
case IA64_OPND_P1:
case IA64_OPND_P2:
if (e->X_op == O_register && e->X_add_number >= REG_P
&& e->X_add_number < REG_P + 64)
return OPERAND_MATCH;
break;
case IA64_OPND_R1:
case IA64_OPND_R2:
case IA64_OPND_R3:
if (e->X_op == O_register && e->X_add_number >= REG_GR
&& e->X_add_number < REG_GR + 128)
return OPERAND_MATCH;
break;
case IA64_OPND_R3_2:
if (e->X_op == O_register && e->X_add_number >= REG_GR)
{
if (e->X_add_number < REG_GR + 4)
return OPERAND_MATCH;
else if (e->X_add_number < REG_GR + 128)
return OPERAND_OUT_OF_RANGE;
}
break;
/* indirect operands: */
case IA64_OPND_CPUID_R3:
case IA64_OPND_DBR_R3:
case IA64_OPND_DTR_R3:
case IA64_OPND_ITR_R3:
case IA64_OPND_IBR_R3:
case IA64_OPND_MSR_R3:
case IA64_OPND_PKR_R3:
case IA64_OPND_PMC_R3:
case IA64_OPND_PMD_R3:
case IA64_OPND_RR_R3:
if (e->X_op == O_index && e->X_op_symbol
&& (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
== opnd - IA64_OPND_CPUID_R3))
return OPERAND_MATCH;
break;
case IA64_OPND_MR3:
if (e->X_op == O_index && !e->X_op_symbol)
return OPERAND_MATCH;
break;
/* immediate operands: */
case IA64_OPND_CNT2a:
case IA64_OPND_LEN4:
case IA64_OPND_LEN6:
bits = operand_width (idesc->operands[index]);
if (e->X_op == O_constant)
{
if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_CNT2b:
if (e->X_op == O_constant)
{
if ((bfd_vma) (e->X_add_number - 1) < 3)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_CNT2c:
val = e->X_add_number;
if (e->X_op == O_constant)
{
if ((val == 0 || val == 7 || val == 15 || val == 16))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_SOR:
/* SOR must be an integer multiple of 8 */
if (e->X_op == O_constant && e->X_add_number & 0x7)
return OPERAND_OUT_OF_RANGE;
case IA64_OPND_SOF:
case IA64_OPND_SOL:
if (e->X_op == O_constant)
{
if ((bfd_vma) e->X_add_number <= 96)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_IMMU62:
if (e->X_op == O_constant)
{
if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
else
{
/* FIXME -- need 62-bit relocation type */
as_bad (_("62-bit relocation not yet implemented"));
}
break;
case IA64_OPND_IMMU64:
if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
|| e->X_op == O_subtract)
{
fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
fix->code = BFD_RELOC_IA64_IMM64;
if (e->X_op != O_subtract)
{
fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
if (e->X_op == O_pseudo_fixup)
e->X_op = O_symbol;
}
fix->opnd = idesc->operands[index];
fix->expr = *e;
fix->is_pcrel = 0;
++CURR_SLOT.num_fixups;
return OPERAND_MATCH;
}
else if (e->X_op == O_constant)
return OPERAND_MATCH;
break;
case IA64_OPND_CCNT5:
case IA64_OPND_CNT5:
case IA64_OPND_CNT6:
case IA64_OPND_CPOS6a:
case IA64_OPND_CPOS6b:
case IA64_OPND_CPOS6c:
case IA64_OPND_IMMU2:
case IA64_OPND_IMMU7a:
case IA64_OPND_IMMU7b:
case IA64_OPND_IMMU21:
case IA64_OPND_IMMU24:
case IA64_OPND_MBTYPE4:
case IA64_OPND_MHTYPE8:
case IA64_OPND_POS6:
bits = operand_width (idesc->operands[index]);
if (e->X_op == O_constant)
{
if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_IMMU9:
bits = operand_width (idesc->operands[index]);
if (e->X_op == O_constant)
{
if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
{
int lobits = e->X_add_number & 0x3;
if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
e->X_add_number |= (bfd_vma) 0x3;
return OPERAND_MATCH;
}
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_IMM44:
/* least 16 bits must be zero */
if ((e->X_add_number & 0xffff) != 0)
/* XXX technically, this is wrong: we should not be issuing warning
messages until we're sure this instruction pattern is going to
be used! */
as_warn (_("lower 16 bits of mask ignored"));
if (e->X_op == O_constant)
{
if (((e->X_add_number >= 0
&& (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
|| (e->X_add_number < 0
&& (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
{
/* sign-extend */
if (e->X_add_number >= 0
&& (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
{
e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
}
return OPERAND_MATCH;
}
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_IMM17:
/* bit 0 is a don't care (pr0 is hardwired to 1) */
if (e->X_op == O_constant)
{
if (((e->X_add_number >= 0
&& (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
|| (e->X_add_number < 0
&& (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
{
/* sign-extend */
if (e->X_add_number >= 0
&& (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
{
e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
}
return OPERAND_MATCH;
}
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_IMM14:
case IA64_OPND_IMM22:
relocatable = 1;
case IA64_OPND_IMM1:
case IA64_OPND_IMM8:
case IA64_OPND_IMM8U4:
case IA64_OPND_IMM8M1:
case IA64_OPND_IMM8M1U4:
case IA64_OPND_IMM8M1U8:
case IA64_OPND_IMM9a:
case IA64_OPND_IMM9b:
bits = operand_width (idesc->operands[index]);
if (relocatable && (e->X_op == O_symbol
|| e->X_op == O_subtract
|| e->X_op == O_pseudo_fixup))
{
fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
if (idesc->operands[index] == IA64_OPND_IMM14)
fix->code = BFD_RELOC_IA64_IMM14;
else
fix->code = BFD_RELOC_IA64_IMM22;
if (e->X_op != O_subtract)
{
fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
if (e->X_op == O_pseudo_fixup)
e->X_op = O_symbol;
}
fix->opnd = idesc->operands[index];
fix->expr = *e;
fix->is_pcrel = 0;
++CURR_SLOT.num_fixups;
return OPERAND_MATCH;
}
else if (e->X_op != O_constant
&& ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
return OPERAND_MISMATCH;
if (opnd == IA64_OPND_IMM8M1U4)
{
/* Zero is not valid for unsigned compares that take an adjusted
constant immediate range. */
if (e->X_add_number == 0)
return OPERAND_OUT_OF_RANGE;
/* Sign-extend 32-bit unsigned numbers, so that the following range
checks will work. */
val = e->X_add_number;
if (((val & (~(bfd_vma) 0 << 32)) == 0)
&& ((val & ((bfd_vma) 1 << 31)) != 0))
val = ((val << 32) >> 32);
/* Check for 0x100000000. This is valid because
0x100000000-1 is the same as ((uint32_t) -1). */
if (val == ((bfd_signed_vma) 1 << 32))
return OPERAND_MATCH;
val = val - 1;
}
else if (opnd == IA64_OPND_IMM8M1U8)
{
/* Zero is not valid for unsigned compares that take an adjusted
constant immediate range. */
if (e->X_add_number == 0)
return OPERAND_OUT_OF_RANGE;
/* Check for 0x10000000000000000. */
if (e->X_op == O_big)
{
if (generic_bignum[0] == 0
&& generic_bignum[1] == 0
&& generic_bignum[2] == 0
&& generic_bignum[3] == 0
&& generic_bignum[4] == 1)
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
else
val = e->X_add_number - 1;
}
else if (opnd == IA64_OPND_IMM8M1)
val = e->X_add_number - 1;
else if (opnd == IA64_OPND_IMM8U4)
{
/* Sign-extend 32-bit unsigned numbers, so that the following range
checks will work. */
val = e->X_add_number;
if (((val & (~(bfd_vma) 0 << 32)) == 0)
&& ((val & ((bfd_vma) 1 << 31)) != 0))
val = ((val << 32) >> 32);
}
else
val = e->X_add_number;
if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
|| (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
case IA64_OPND_INC3:
/* +/- 1, 4, 8, 16 */
val = e->X_add_number;
if (val < 0)
val = -val;
if (e->X_op == O_constant)
{
if ((val == 1 || val == 4 || val == 8 || val == 16))
return OPERAND_MATCH;
else
return OPERAND_OUT_OF_RANGE;
}
break;
case IA64_OPND_TGT25:
case IA64_OPND_TGT25b:
case IA64_OPND_TGT25c:
case IA64_OPND_TGT64:
if (e->X_op == O_symbol)
{
fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
if (opnd == IA64_OPND_TGT25)
fix->code = BFD_RELOC_IA64_PCREL21F;
else if (opnd == IA64_OPND_TGT25b)
fix->code = BFD_RELOC_IA64_PCREL21M;
else if (opnd == IA64_OPND_TGT25c)
fix->code = BFD_RELOC_IA64_PCREL21B;
else if (opnd == IA64_OPND_TGT64)
fix->code = BFD_RELOC_IA64_PCREL60B;
else
abort ();
fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
fix->opnd = idesc->operands[index];
fix->expr = *e;
fix->is_pcrel = 1;
++CURR_SLOT.num_fixups;
return OPERAND_MATCH;
}
case IA64_OPND_TAG13:
case IA64_OPND_TAG13b:
switch (e->X_op)
{
case O_constant:
return OPERAND_MATCH;
case O_symbol:
fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
/* There are no external relocs for TAG13/TAG13b fields, so we
create a dummy reloc. This will not live past md_apply_fix3. */
fix->code = BFD_RELOC_UNUSED;
fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
fix->opnd = idesc->operands[index];
fix->expr = *e;
fix->is_pcrel = 1;
++CURR_SLOT.num_fixups;
return OPERAND_MATCH;
default:
break;
}
break;
case IA64_OPND_LDXMOV:
fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
fix->code = BFD_RELOC_IA64_LDXMOV;
fix->opnd = idesc->operands[index];
fix->expr = *e;
fix->is_pcrel = 0;
++CURR_SLOT.num_fixups;
return OPERAND_MATCH;
default:
break;
}
return OPERAND_MISMATCH;
}
static int
parse_operand (e)
expressionS *e;
{
int sep = '\0';
memset (e, 0, sizeof (*e));
e->X_op = O_absent;
SKIP_WHITESPACE ();
if (*input_line_pointer != '}')
expression (e);
sep = *input_line_pointer++;
if (sep == '}')
{
if (!md.manual_bundling)
as_warn ("Found '}' when manual bundling is off");
else
CURR_SLOT.manual_bundling_off = 1;
md.manual_bundling = 0;
sep = '\0';
}
return sep;
}
/* Returns the next entry in the opcode table that matches the one in
IDESC, and frees the entry in IDESC. If no matching entry is
found, NULL is returned instead. */
static struct ia64_opcode *
get_next_opcode (struct ia64_opcode *idesc)
{
struct ia64_opcode *next = ia64_find_next_opcode (idesc);
ia64_free_opcode (idesc);
return next;
}
/* Parse the operands for the opcode and find the opcode variant that
matches the specified operands, or NULL if no match is possible. */
static struct ia64_opcode *
parse_operands (idesc)
struct ia64_opcode *idesc;
{
int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
enum ia64_opnd expected_operand = IA64_OPND_NIL;
enum operand_match_result result;
char mnemonic[129];
char *first_arg = 0, *end, *saved_input_pointer;
unsigned int sof;
assert (strlen (idesc->name) <= 128);
strcpy (mnemonic, idesc->name);
if (idesc->operands[2] == IA64_OPND_SOF)
{
/* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
can't parse the first operand until we have parsed the
remaining operands of the "alloc" instruction. */
SKIP_WHITESPACE ();
first_arg = input_line_pointer;
end = strchr (input_line_pointer, '=');
if (!end)
{
as_bad ("Expected separator `='");
return 0;
}
input_line_pointer = end + 1;
++i;
++num_outputs;
}
for (; i < NELEMS (CURR_SLOT.opnd); ++i)
{
sep = parse_operand (CURR_SLOT.opnd + i);
if (CURR_SLOT.opnd[i].X_op == O_absent)
break;
++num_operands;
if (sep != '=' && sep != ',')
break;
if (sep == '=')
{
if (num_outputs > 0)
as_bad ("Duplicate equal sign (=) in instruction");
else
num_outputs = i + 1;
}
}
if (sep != '\0')
{
as_bad ("Illegal operand separator `%c'", sep);
return 0;
}
if (idesc->operands[2] == IA64_OPND_SOF)
{
/* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
know (strcmp (idesc->name, "alloc") == 0);
if (num_operands == 5 /* first_arg not included in this count! */
&& CURR_SLOT.opnd[2].X_op == O_constant
&& CURR_SLOT.opnd[3].X_op == O_constant
&& CURR_SLOT.opnd[4].X_op == O_constant
&& CURR_SLOT.opnd[5].X_op == O_constant)
{
sof = set_regstack (CURR_SLOT.opnd[2].X_add_number,
CURR_SLOT.opnd[3].X_add_number,
CURR_SLOT.opnd[4].X_add_number,
CURR_SLOT.opnd[5].X_add_number);
/* now we can parse the first arg: */
saved_input_pointer = input_line_pointer;
input_line_pointer = first_arg;
sep = parse_operand (CURR_SLOT.opnd + 0);
if (sep != '=')
--num_outputs; /* force error */
input_line_pointer = saved_input_pointer;
CURR_SLOT.opnd[2].X_add_number = sof;
CURR_SLOT.opnd[3].X_add_number
= sof - CURR_SLOT.opnd[4].X_add_number;
CURR_SLOT.opnd[4] = CURR_SLOT.opnd[5];
}
}
highest_unmatched_operand = 0;
curr_out_of_range_pos = -1;
error_pos = 0;
expected_operand = idesc->operands[0];
for (; idesc; idesc = get_next_opcode (idesc))
{
if (num_outputs != idesc->num_outputs)
continue; /* mismatch in # of outputs */
CURR_SLOT.num_fixups = 0;
/* Try to match all operands. If we see an out-of-range operand,
then continue trying to match the rest of the operands, since if
the rest match, then this idesc will give the best error message. */
out_of_range_pos = -1;
for (i = 0; i < num_operands && idesc->operands[i]; ++i)
{
result = operand_match (idesc, i, CURR_SLOT.opnd + i);
if (result != OPERAND_MATCH)
{
if (result != OPERAND_OUT_OF_RANGE)
break;
if (out_of_range_pos < 0)
/* remember position of the first out-of-range operand: */
out_of_range_pos = i;
}
}
/* If we did not match all operands, or if at least one operand was
out-of-range, then this idesc does not match. Keep track of which
idesc matched the most operands before failing. If we have two
idescs that failed at the same position, and one had an out-of-range
operand, then prefer the out-of-range operand. Thus if we have
"add r0=0x1000000,r1" we get an error saying the constant is out
of range instead of an error saying that the constant should have been
a register. */
if (i != num_operands || out_of_range_pos >= 0)
{
if (i > highest_unmatched_operand
|| (i == highest_unmatched_operand
&& out_of_range_pos > curr_out_of_range_pos))
{
highest_unmatched_operand = i;
if (out_of_range_pos >= 0)
{
expected_operand = idesc->operands[out_of_range_pos];
error_pos = out_of_range_pos;
}
else
{
expected_operand = idesc->operands[i];
error_pos = i;
}
curr_out_of_range_pos = out_of_range_pos;
}
continue;
}
if (num_operands < NELEMS (idesc->operands)
&& idesc->operands[num_operands])
continue; /* mismatch in number of arguments */
break;
}
if (!idesc)
{
if (expected_operand)
as_bad ("Operand %u of `%s' should be %s",
error_pos + 1, mnemonic,
elf64_ia64_operands[expected_operand].desc);
else
as_bad ("Operand mismatch");
return 0;
}
return idesc;
}
/* Keep track of state necessary to determine whether a NOP is necessary
to avoid an erratum in A and B step Itanium chips, and return 1 if we
detect a case where additional NOPs may be necessary. */
static int
errata_nop_necessary_p (slot, insn_unit)
struct slot *slot;
enum ia64_unit insn_unit;
{
int i;
struct group *this_group = md.last_groups + md.group_idx;
struct group *prev_group = md.last_groups + (md.group_idx + 2) % 3;
struct ia64_opcode *idesc = slot->idesc;
/* Test whether this could be the first insn in a problematic sequence. */
if (insn_unit == IA64_UNIT_F)
{
for (i = 0; i < idesc->num_outputs; i++)
if (idesc->operands[i] == IA64_OPND_P1
|| idesc->operands[i] == IA64_OPND_P2)
{
int regno = slot->opnd[i].X_add_number - REG_P;
/* Ignore invalid operands; they generate errors elsewhere. */
if (regno >= 64)
return 0;
this_group->p_reg_set[regno] = 1;
}
}
/* Test whether this could be the second insn in a problematic sequence. */
if (insn_unit == IA64_UNIT_M && slot->qp_regno > 0
&& prev_group->p_reg_set[slot->qp_regno])
{
for (i = 0; i < idesc->num_outputs; i++)
if (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3)
{
int regno = slot->opnd[i].X_add_number - REG_GR;
/* Ignore invalid operands; they generate errors elsewhere. */
if (regno >= 128)
return 0;
if (strncmp (idesc->name, "add", 3) != 0
&& strncmp (idesc->name, "sub", 3) != 0
&& strncmp (idesc->name, "shladd", 6) != 0
&& (idesc->flags & IA64_OPCODE_POSTINC) == 0)
this_group->g_reg_set_conditionally[regno] = 1;
}
}
/* Test whether this could be the third insn in a problematic sequence. */
for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; i++)
{
if (/* For fc, ptc, ptr, tak, thash, tpa, ttag, probe, ptr, ptc. */
idesc->operands[i] == IA64_OPND_R3
/* For mov indirect. */
|| idesc->operands[i] == IA64_OPND_RR_R3
|| idesc->operands[i] == IA64_OPND_DBR_R3
|| idesc->operands[i] == IA64_OPND_IBR_R3
|| idesc->operands[i] == IA64_OPND_PKR_R3
|| idesc->operands[i] == IA64_OPND_PMC_R3
|| idesc->operands[i] == IA64_OPND_PMD_R3
|| idesc->operands[i] == IA64_OPND_MSR_R3
|| idesc->operands[i] == IA64_OPND_CPUID_R3
/* For itr. */
|| idesc->operands[i] == IA64_OPND_ITR_R3
|| idesc->operands[i] == IA64_OPND_DTR_R3
/* Normal memory addresses (load, store, xchg, cmpxchg, etc.). */
|| idesc->operands[i] == IA64_OPND_MR3)
{
int regno = slot->opnd[i].X_add_number - REG_GR;
/* Ignore invalid operands; they generate errors elsewhere. */
if (regno >= 128)
return 0;
if (idesc->operands[i] == IA64_OPND_R3)
{
if (strcmp (idesc->name, "fc") != 0
&& strcmp (idesc->name, "tak") != 0
&& strcmp (idesc->name, "thash") != 0
&& strcmp (idesc->name, "tpa") != 0
&& strcmp (idesc->name, "ttag") != 0
&& strncmp (idesc->name, "ptr", 3) != 0
&& strncmp (idesc->name, "ptc", 3) != 0
&& strncmp (idesc->name, "probe", 5) != 0)
return 0;
}
if (prev_group->g_reg_set_conditionally[regno])
return 1;
}
}
return 0;
}
static void
build_insn (slot, insnp)
struct slot *slot;
bfd_vma *insnp;
{
const struct ia64_operand *odesc, *o2desc;
struct ia64_opcode *idesc = slot->idesc;
bfd_signed_vma insn, val;
const char *err;
int i;
insn = idesc->opcode | slot->qp_regno;
for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
{
if (slot->opnd[i].X_op == O_register
|| slot->opnd[i].X_op == O_constant
|| slot->opnd[i].X_op == O_index)
val = slot->opnd[i].X_add_number;
else if (slot->opnd[i].X_op == O_big)
{
/* This must be the value 0x10000000000000000. */
assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
val = 0;
}
else
val = 0;
switch (idesc->operands[i])
{
case IA64_OPND_IMMU64:
*insnp++ = (val >> 22) & 0x1ffffffffffLL;
insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
| (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
| (((val >> 63) & 0x1) << 36));
continue;
case IA64_OPND_IMMU62:
val &= 0x3fffffffffffffffULL;
if (val != slot->opnd[i].X_add_number)
as_warn (_("Value truncated to 62 bits"));
*insnp++ = (val >> 21) & 0x1ffffffffffLL;
insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
continue;
case IA64_OPND_TGT64:
val >>= 4;
*insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
insn |= ((((val >> 59) & 0x1) << 36)
| (((val >> 0) & 0xfffff) << 13));
continue;
case IA64_OPND_AR3:
val -= REG_AR;
break;
case IA64_OPND_B1:
case IA64_OPND_B2:
val -= REG_BR;
break;
case IA64_OPND_CR3:
val -= REG_CR;
break;
case IA64_OPND_F1:
case IA64_OPND_F2:
case IA64_OPND_F3:
case IA64_OPND_F4:
val -= REG_FR;
break;
case IA64_OPND_P1:
case IA64_OPND_P2:
val -= REG_P;
break;
case IA64_OPND_R1:
case IA64_OPND_R2:
case IA64_OPND_R3:
case IA64_OPND_R3_2:
case IA64_OPND_CPUID_R3:
case IA64_OPND_DBR_R3:
case IA64_OPND_DTR_R3:
case IA64_OPND_ITR_R3:
case IA64_OPND_IBR_R3:
case IA64_OPND_MR3:
case IA64_OPND_MSR_R3:
case IA64_OPND_PKR_R3:
case IA64_OPND_PMC_R3:
case IA64_OPND_PMD_R3:
case IA64_OPND_RR_R3:
val -= REG_GR;
break;
default:
break;
}
odesc = elf64_ia64_operands + idesc->operands[i];
err = (*odesc->insert) (odesc, val, &insn);
if (err)
as_bad_where (slot->src_file, slot->src_line,
"Bad operand value: %s", err);
if (idesc->flags & IA64_OPCODE_PSEUDO)
{
if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
&& odesc == elf64_ia64_operands + IA64_OPND_F3)
{
o2desc = elf64_ia64_operands + IA64_OPND_F2;
(*o2desc->insert) (o2desc, val, &insn);
}
if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
&& (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
|| odesc == elf64_ia64_operands + IA64_OPND_POS6))
{
o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
(*o2desc->insert) (o2desc, 64 - val, &insn);
}
}
}
*insnp = insn;
}
static void
emit_one_bundle ()
{
unsigned int manual_bundling_on = 0, manual_bundling_off = 0;
unsigned int manual_bundling = 0;
enum ia64_unit required_unit, insn_unit = 0;
enum ia64_insn_type type[3], insn_type;
unsigned int template, orig_template;
bfd_vma insn[3] = { -1, -1, -1 };
struct ia64_opcode *idesc;
int end_of_insn_group = 0, user_template = -1;
int n, i, j, first, curr;
unw_rec_list *ptr, *last_ptr, *end_ptr;
bfd_vma t0 = 0, t1 = 0;
struct label_fix *lfix;
struct insn_fix *ifix;
char mnemonic[16];
fixS *fix;
char *f;
first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
know (first >= 0 & first < NUM_SLOTS);
n = MIN (3, md.num_slots_in_use);
/* Determine template: user user_template if specified, best match
otherwise: */
if (md.slot[first].user_template >= 0)
user_template = template = md.slot[first].user_template;
else
{
/* Auto select appropriate template. */
memset (type, 0, sizeof (type));
curr = first;
for (i = 0; i < n; ++i)
{
if (md.slot[curr].label_fixups && i != 0)
break;
type[i] = md.slot[curr].idesc->type;
curr = (curr + 1) % NUM_SLOTS;
}
template = best_template[type[0]][type[1]][type[2]];
}
/* initialize instructions with appropriate nops: */
for (i = 0; i < 3; ++i)
insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
f = frag_more (16);
/* now fill in slots with as many insns as possible: */
curr = first;
idesc = md.slot[curr].idesc;
end_of_insn_group = 0;
for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
{
/* If we have unwind records, we may need to update some now. */
ptr = md.slot[curr].unwind_record;
if (ptr)
{
/* Find the last prologue/body record in the list for the current
insn, and set the slot number for all records up to that point.
This needs to be done now, because prologue/body records refer to
the current point, not the point after the instruction has been
issued. This matters because there may have been nops emitted
meanwhile. Any non-prologue non-body record followed by a
prologue/body record must also refer to the current point. */
last_ptr = NULL;
end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
for (; ptr != end_ptr; ptr = ptr->next)
if (ptr->r.type == prologue || ptr->r.type == prologue_gr
|| ptr->r.type == body)
last_ptr = ptr;
if (last_ptr)
{
/* Make last_ptr point one after the last prologue/body
record. */
last_ptr = last_ptr->next;
for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
ptr = ptr->next)
{
ptr->slot_number = (unsigned long) f + i;
ptr->slot_frag = frag_now;
}
/* Remove the initialized records, so that we won't accidentally
update them again if we insert a nop and continue. */
md.slot[curr].unwind_record = last_ptr;
}
}
if (idesc->flags & IA64_OPCODE_SLOT2)
{
if (manual_bundling && i != 2)
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"`%s' must be last in bundle", idesc->name);
else
i = 2;
}
if (idesc->flags & IA64_OPCODE_LAST)
{
int required_slot;
unsigned int required_template;
/* If we need a stop bit after an M slot, our only choice is
template 5 (M;;MI). If we need a stop bit after a B
slot, our only choice is to place it at the end of the
bundle, because the only available templates are MIB,
MBB, BBB, MMB, and MFB. We don't handle anything other
than M and B slots because these are the only kind of
instructions that can have the IA64_OPCODE_LAST bit set. */
required_template = template;
switch (idesc->type)
{
case IA64_TYPE_M:
required_slot = 0;
required_template = 5;
break;
case IA64_TYPE_B:
required_slot = 2;
break;
default:
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"Internal error: don't know how to force %s to end"
"of instruction group", idesc->name);
required_slot = i;
break;
}
if (manual_bundling && i != required_slot)
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"`%s' must be last in instruction group",
idesc->name);
if (required_slot < i)
/* Can't fit this instruction. */
break;
i = required_slot;
if (required_template != template)
{
/* If we switch the template, we need to reset the NOPs
after slot i. The slot-types of the instructions ahead
of i never change, so we don't need to worry about
changing NOPs in front of this slot. */
for (j = i; j < 3; ++j)
insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
}
template = required_template;
}
if (curr != first && md.slot[curr].label_fixups)
{
if (manual_bundling_on)
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"Label must be first in a bundle");
/* This insn must go into the first slot of a bundle. */
break;
}
manual_bundling_on = md.slot[curr].manual_bundling_on;
manual_bundling_off = md.slot[curr].manual_bundling_off;
if (manual_bundling_on)
{
if (curr == first)
manual_bundling = 1;
else
break; /* need to start a new bundle */
}
if (end_of_insn_group && md.num_slots_in_use >= 1)
{
/* We need an instruction group boundary in the middle of a
bundle. See if we can switch to an other template with
an appropriate boundary. */
orig_template = template;
if (i == 1 && (user_template == 4
|| (user_template < 0
&& (ia64_templ_desc[template].exec_unit[0]
== IA64_UNIT_M))))
{
template = 5;
end_of_insn_group = 0;
}
else if (i == 2 && (user_template == 0
|| (user_template < 0
&& (ia64_templ_desc[template].exec_unit[1]
== IA64_UNIT_I)))
/* This test makes sure we don't switch the template if
the next instruction is one that needs to be first in
an instruction group. Since all those instructions are
in the M group, there is no way such an instruction can
fit in this bundle even if we switch the template. The
reason we have to check for this is that otherwise we
may end up generating "MI;;I M.." which has the deadly
effect that the second M instruction is no longer the
first in the bundle! --davidm 99/12/16 */
&& (idesc->flags & IA64_OPCODE_FIRST) == 0)
{
template = 1;
end_of_insn_group = 0;
}
else if (curr != first)
/* can't fit this insn */
break;
if (template != orig_template)
/* if we switch the template, we need to reset the NOPs
after slot i. The slot-types of the instructions ahead
of i never change, so we don't need to worry about
changing NOPs in front of this slot. */
for (j = i; j < 3; ++j)
insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
}
required_unit = ia64_templ_desc[template].exec_unit[i];
/* resolve dynamic opcodes such as "break", "hint", and "nop": */
if (idesc->type == IA64_TYPE_DYN)
{
if ((strcmp (idesc->name, "nop") == 0)
|| (strcmp (idesc->name, "hint") == 0)
|| (strcmp (idesc->name, "break") == 0))
insn_unit = required_unit;
else if (strcmp (idesc->name, "chk.s") == 0)
{
insn_unit = IA64_UNIT_M;
if (required_unit == IA64_UNIT_I)
insn_unit = IA64_UNIT_I;
}
else
as_fatal ("emit_one_bundle: unexpected dynamic op");
sprintf (mnemonic, "%s.%c", idesc->name, "?imbf??"[insn_unit]);
ia64_free_opcode (idesc);
md.slot[curr].idesc = idesc = ia64_find_opcode (mnemonic);
#if 0
know (!idesc->next); /* no resolved dynamic ops have collisions */
#endif
}
else
{
insn_type = idesc->type;
insn_unit = IA64_UNIT_NIL;
switch (insn_type)
{
case IA64_TYPE_A:
if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
insn_unit = required_unit;
break;
case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
default: break;
}
}
if (insn_unit != required_unit)
{
if (required_unit == IA64_UNIT_L
&& insn_unit == IA64_UNIT_I
&& !(idesc->flags & IA64_OPCODE_X_IN_MLX))
{
/* we got ourselves an MLX template but the current
instruction isn't an X-unit, or an I-unit instruction
that can go into the X slot of an MLX template. Duh. */
if (md.num_slots_in_use >= NUM_SLOTS)
{
as_bad_where (md.slot[curr].src_file,
md.slot[curr].src_line,
"`%s' can't go in X slot of "
"MLX template", idesc->name);
/* drop this insn so we don't livelock: */
--md.num_slots_in_use;
}
break;
}
continue; /* try next slot */
}
{
bfd_vma addr;
addr = frag_now->fr_address + frag_now_fix () - 16 + i;
dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
}
if (errata_nop_necessary_p (md.slot + curr, insn_unit))
as_warn (_("Additional NOP may be necessary to workaround Itanium processor A/B step errata"));
build_insn (md.slot + curr, insn + i);
ptr = md.slot[curr].unwind_record;
if (ptr)
{
/* Set slot numbers for all remaining unwind records belonging to the
current insn. There can not be any prologue/body unwind records
here. */
end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
for (; ptr != end_ptr; ptr = ptr->next)
{
ptr->slot_number = (unsigned long) f + i;
ptr->slot_frag = frag_now;
}
md.slot[curr].unwind_record = NULL;
}
if (required_unit == IA64_UNIT_L)
{
know (i == 1);
/* skip one slot for long/X-unit instructions */
++i;
}
--md.num_slots_in_use;
/* now is a good time to fix up the labels for this insn: */
for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
{
S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
symbol_set_frag (lfix->sym, frag_now);
}
/* and fix up the tags also. */
for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
{
S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
symbol_set_frag (lfix->sym, frag_now);
}
for (j = 0; j < md.slot[curr].num_fixups; ++j)
{
ifix = md.slot[curr].fixup + j;
fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
&ifix->expr, ifix->is_pcrel, ifix->code);
fix->tc_fix_data.opnd = ifix->opnd;
fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
fix->fx_file = md.slot[curr].src_file;
fix->fx_line = md.slot[curr].src_line;
}
end_of_insn_group = md.slot[curr].end_of_insn_group;
if (end_of_insn_group)
{
md.group_idx = (md.group_idx + 1) % 3;
memset (md.last_groups + md.group_idx, 0, sizeof md.last_groups[0]);
}
/* clear slot: */
ia64_free_opcode (md.slot[curr].idesc);
memset (md.slot + curr, 0, sizeof (md.slot[curr]));
md.slot[curr].user_template = -1;
if (manual_bundling_off)
{
manual_bundling = 0;
break;
}
curr = (curr + 1) % NUM_SLOTS;
idesc = md.slot[curr].idesc;
}
if (manual_bundling)
{
if (md.num_slots_in_use > 0)
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"`%s' does not fit into %s template",
idesc->name, ia64_templ_desc[template].name);
else
as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
"Missing '}' at end of file");
}
know (md.num_slots_in_use < NUM_SLOTS);
t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
number_to_chars_littleendian (f + 0, t0, 8);
number_to_chars_littleendian (f + 8, t1, 8);
if (unwind.list)
{
unwind.list->next_slot_number = (unsigned long) f + 16;
unwind.list->next_slot_frag = frag_now;
}
}
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
/* Switches from the Intel assembler. */
case 'm':
if (strcmp (arg, "ilp64") == 0
|| strcmp (arg, "lp64") == 0
|| strcmp (arg, "p64") == 0)
{
md.flags |= EF_IA_64_ABI64;
}
else if (strcmp (arg, "ilp32") == 0)
{
md.flags &= ~EF_IA_64_ABI64;
}
else if (strcmp (arg, "le") == 0)
{
md.flags &= ~EF_IA_64_BE;
}
else if (strcmp (arg, "be") == 0)
{
md.flags |= EF_IA_64_BE;
}
else
return 0;
break;
case 'N':
if (strcmp (arg, "so") == 0)
{
/* Suppress signon message. */
}
else if (strcmp (arg, "pi") == 0)
{
/* Reject privileged instructions. FIXME */
}
else if (strcmp (arg, "us") == 0)
{
/* Allow union of signed and unsigned range. FIXME */
}
else if (strcmp (arg, "close_fcalls") == 0)
{
/* Do not resolve global function calls. */
}
else
return 0;
break;
case 'C':
/* temp[="prefix"] Insert temporary labels into the object file
symbol table prefixed by "prefix".
Default prefix is ":temp:".
*/
break;
case 'a':
/* indirect=<tgt> Assume unannotated indirect branches behavior
according to <tgt> --
exit: branch out from the current context (default)
labels: all labels in context may be branch targets
*/
if (strncmp (arg, "indirect=", 9) != 0)
return 0;
break;
case 'x':
/* -X conflicts with an ignored option, use -x instead */
md.detect_dv = 1;
if (!arg || strcmp (arg, "explicit") == 0)
{
/* set default mode to explicit */
md.default_explicit_mode = 1;
break;
}
else if (strcmp (arg, "auto") == 0)
{
md.default_explicit_mode = 0;
}
else if (strcmp (arg, "debug") == 0)
{
md.debug_dv = 1;
}
else if (strcmp (arg, "debugx") == 0)
{
md.default_explicit_mode = 1;
md.debug_dv = 1;
}
else
{
as_bad (_("Unrecognized option '-x%s'"), arg);
}
break;
case 'S':
/* nops Print nops statistics. */
break;
/* GNU specific switches for gcc. */
case OPTION_MCONSTANT_GP:
md.flags |= EF_IA_64_CONS_GP;
break;
case OPTION_MAUTO_PIC:
md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
fputs (_("\
IA-64 options:\n\
--mconstant-gp mark output file as using the constant-GP model\n\
(sets ELF header flag EF_IA_64_CONS_GP)\n\
--mauto-pic mark output file as using the constant-GP model\n\
without function descriptors (sets ELF header flag\n\
EF_IA_64_NOFUNCDESC_CONS_GP)\n\
-milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
-mle | -mbe select little- or big-endian byte order (default -mle)\n\
-x | -xexplicit turn on dependency violation checking (default)\n\
-xauto automagically remove dependency violations\n\
-xdebug debug dependency violation checker\n"),
stream);
}
void
ia64_after_parse_args ()
{
if (debug_type == DEBUG_STABS)
as_fatal (_("--gstabs is not supported for ia64"));
}
/* Return true if TYPE fits in TEMPL at SLOT. */
static int
match (int templ, int type, int slot)
{
enum ia64_unit unit;
int result;
unit = ia64_templ_desc[templ].exec_unit[slot];
switch (type)
{
case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
case IA64_TYPE_A:
result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
break;
case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
default: result = 0; break;
}
return result;
}
/* Add a bit of extra goodness if a nop of type F or B would fit
in TEMPL at SLOT. */
static inline int
extra_goodness (int templ, int slot)
{
if (slot == 1 && match (templ, IA64_TYPE_F, slot))
return 2;
if (slot == 2 && match (templ, IA64_TYPE_B, slot))
return 1;
return 0;
}
/* This function is called once, at assembler startup time. It sets
up all the tables, etc. that the MD part of the assembler will need
that can be determined before arguments are parsed. */
void
md_begin ()
{
int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
const char *err;
char name[8];
md.auto_align = 1;
md.explicit_mode = md.default_explicit_mode;
bfd_set_section_alignment (stdoutput, text_section, 4);
/* Make sure function pointers get initialized. */
target_big_endian = -1;
dot_byteorder (TARGET_BYTES_BIG_ENDIAN);
alias_hash = hash_new ();
alias_name_hash = hash_new ();
secalias_hash = hash_new ();
secalias_name_hash = hash_new ();
pseudo_func[FUNC_DTP_MODULE].u.sym =
symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
&zero_address_frag);
pseudo_func[FUNC_DTP_RELATIVE].u.sym =
symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_GP_RELATIVE].u.sym =
symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LT_RELATIVE].u.sym =
symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
&zero_address_frag);
pseudo_func[FUNC_PC_RELATIVE].u.sym =
symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_PLT_RELATIVE].u.sym =
symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_SEC_RELATIVE].u.sym =
symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_SEG_RELATIVE].u.sym =
symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_TP_RELATIVE].u.sym =
symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LTV_RELATIVE].u.sym =
symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
&zero_address_frag);
pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
&zero_address_frag);
pseudo_func[FUNC_IPLT_RELOC].u.sym =
symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
&zero_address_frag);
/* Compute the table of best templates. We compute goodness as a
base 4 value, in which each match counts for 3, each F counts
for 2, each B counts for 1. This should maximize the number of
F and B nops in the chosen bundles, which is good because these
pipelines are least likely to be overcommitted. */
for (i = 0; i < IA64_NUM_TYPES; ++i)
for (j = 0; j < IA64_NUM_TYPES; ++j)
for (k = 0; k < IA64_NUM_TYPES; ++k)
{
best = 0;
for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
{
goodness = 0;
if (match (t, i, 0))
{
if (match (t, j, 1))
{
if (match (t, k, 2))
goodness = 3 + 3 + 3;
else
goodness = 3 + 3 + extra_goodness (t, 2);
}
else if (match (t, j, 2))
goodness = 3 + 3 + extra_goodness (t, 1);
else
{
goodness = 3;
goodness += extra_goodness (t, 1);
goodness += extra_goodness (t, 2);
}
}
else if (match (t, i, 1))
{
if (match (t, j, 2))
goodness = 3 + 3;
else
goodness = 3 + extra_goodness (t, 2);
}
else if (match (t, i, 2))
goodness = 3 + extra_goodness (t, 1);
if (goodness > best)
{
best = goodness;
best_template[i][j][k] = t;
}
}
}
for (i = 0; i < NUM_SLOTS; ++i)
md.slot[i].user_template = -1;
md.pseudo_hash = hash_new ();
for (i = 0; i < NELEMS (pseudo_opcode); ++i)
{
err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
(void *) (pseudo_opcode + i));
if (err)
as_fatal ("ia64.md_begin: can't hash `%s': %s",
pseudo_opcode[i].name, err);
}
md.reg_hash = hash_new ();
md.dynreg_hash = hash_new ();
md.const_hash = hash_new ();
md.entry_hash = hash_new ();
/* general registers: */
total = 128;
for (i = 0; i < total; ++i)
{
sprintf (name, "r%d", i - REG_GR);
md.regsym[i] = declare_register (name, i);
}
/* floating point registers: */
total += 128;
for (; i < total; ++i)
{
sprintf (name, "f%d", i - REG_FR);
md.regsym[i] = declare_register (name, i);
}
/* application registers: */
total += 128;
ar_base = i;
for (; i < total; ++i)
{
sprintf (name, "ar%d", i - REG_AR);
md.regsym[i] = declare_register (name, i);
}
/* control registers: */
total += 128;
cr_base = i;
for (; i < total; ++i)
{
sprintf (name, "cr%d", i - REG_CR);
md.regsym[i] = declare_register (name, i);
}
/* predicate registers: */
total += 64;
for (; i < total; ++i)
{
sprintf (name, "p%d", i - REG_P);
md.regsym[i] = declare_register (name, i);
}
/* branch registers: */
total += 8;
for (; i < total; ++i)
{
sprintf (name, "b%d", i - REG_BR);
md.regsym[i] = declare_register (name, i);
}
md.regsym[REG_IP] = declare_register ("ip", REG_IP);
md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
md.regsym[REG_PR] = declare_register ("pr", REG_PR);
md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
for (i = 0; i < NELEMS (indirect_reg); ++i)
{
regnum = indirect_reg[i].regnum;
md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
}
/* define synonyms for application registers: */
for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
md.regsym[i] = declare_register (ar[i - REG_AR].name,
REG_AR + ar[i - REG_AR].regnum);
/* define synonyms for control registers: */
for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
md.regsym[i] = declare_register (cr[i - REG_CR].name,
REG_CR + cr[i - REG_CR].regnum);
declare_register ("gp", REG_GR + 1);
declare_register ("sp", REG_GR + 12);
declare_register ("rp", REG_BR + 0);
/* pseudo-registers used to specify unwind info: */
declare_register ("psp", REG_PSP);
declare_register_set ("ret", 4, REG_GR + 8);
declare_register_set ("farg", 8, REG_FR + 8);
declare_register_set ("fret", 8, REG_FR + 8);
for (i = 0; i < NELEMS (const_bits); ++i)
{
err = hash_insert (md.const_hash, const_bits[i].name,
(PTR) (const_bits + i));
if (err)
as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
name, err);
}
/* Set the architecture and machine depending on defaults and command line
options. */
if (md.flags & EF_IA_64_ABI64)
ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
else
ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
if (! ok)
as_warn (_("Could not set architecture and machine"));
/* Set the pointer size and pointer shift size depending on md.flags */
if (md.flags & EF_IA_64_ABI64)
{
md.pointer_size = 8; /* pointers are 8 bytes */
md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
}
else
{
md.pointer_size = 4; /* pointers are 4 bytes */
md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
}
md.mem_offset.hint = 0;
md.path = 0;
md.maxpaths = 0;
md.entry_labels = NULL;
}
/* Set the elf type to 64 bit ABI by default. Cannot do this in md_begin
because that is called after md_parse_option which is where we do the
dynamic changing of md.flags based on -mlp64 or -milp32. Also, set the
default endianness. */
void
ia64_init (argc, argv)
int argc ATTRIBUTE_UNUSED;
char **argv ATTRIBUTE_UNUSED;
{
md.flags = MD_FLAGS_DEFAULT;
}
/* Return a string for the target object file format. */
const char *
ia64_target_format ()
{
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
if (md.flags & EF_IA_64_BE)
{
if (md.flags & EF_IA_64_ABI64)
#if defined(TE_AIX50)
return "elf64-ia64-aix-big";
#elif defined(TE_HPUX)
return "elf64-ia64-hpux-big";
#else
return "elf64-ia64-big";
#endif
else
#if defined(TE_AIX50)
return "elf32-ia64-aix-big";
#elif defined(TE_HPUX)
return "elf32-ia64-hpux-big";
#else
return "elf32-ia64-big";
#endif
}
else
{
if (md.flags & EF_IA_64_ABI64)
#ifdef TE_AIX50
return "elf64-ia64-aix-little";
#else
return "elf64-ia64-little";
#endif
else
#ifdef TE_AIX50
return "elf32-ia64-aix-little";
#else
return "elf32-ia64-little";
#endif
}
}
else
return "unknown-format";
}
void
ia64_end_of_source ()
{
/* terminate insn group upon reaching end of file: */
insn_group_break (1, 0, 0);
/* emits slots we haven't written yet: */
ia64_flush_insns ();
bfd_set_private_flags (stdoutput, md.flags);
md.mem_offset.hint = 0;
}
void
ia64_start_line ()
{
if (md.qp.X_op == O_register)
as_bad ("qualifying predicate not followed by instruction");
md.qp.X_op = O_absent;
if (ignore_input ())
return;
if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
{
if (md.detect_dv && !md.explicit_mode)
as_warn (_("Explicit stops are ignored in auto mode"));
else
insn_group_break (1, 0, 0);
}
}
/* This is a hook for ia64_frob_label, so that it can distinguish tags from
labels. */
static int defining_tag = 0;
int
ia64_unrecognized_line (ch)
int ch;
{
switch (ch)
{
case '(':
expression (&md.qp);
if (*input_line_pointer++ != ')')
{
as_bad ("Expected ')'");
return 0;
}
if (md.qp.X_op != O_register)
{
as_bad ("Qualifying predicate expected");
return 0;
}
if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
{
as_bad ("Predicate register expected");
return 0;
}
return 1;
case '{':
if (md.manual_bundling)
as_warn ("Found '{' when manual bundling is already turned on");
else
CURR_SLOT.manual_bundling_on = 1;
md.manual_bundling = 1;
/* Bundling is only acceptable in explicit mode
or when in default automatic mode. */
if (md.detect_dv && !md.explicit_mode)
{
if (!md.mode_explicitly_set
&& !md.default_explicit_mode)
dot_dv_mode ('E');
else
as_warn (_("Found '{' after explicit switch to automatic mode"));
}
return 1;
case '}':
if (!md.manual_bundling)
as_warn ("Found '}' when manual bundling is off");
else
PREV_SLOT.manual_bundling_off = 1;
md.manual_bundling = 0;
/* switch back to automatic mode, if applicable */
if (md.detect_dv
&& md.explicit_mode
&& !md.mode_explicitly_set
&& !md.default_explicit_mode)
dot_dv_mode ('A');
/* Allow '{' to follow on the same line. We also allow ";;", but that
happens automatically because ';' is an end of line marker. */
SKIP_WHITESPACE ();
if (input_line_pointer[0] == '{')
{
input_line_pointer++;
return ia64_unrecognized_line ('{');
}
demand_empty_rest_of_line ();
return 1;
case '[':
{
char *s;
char c;
symbolS *tag;
int temp;
if (md.qp.X_op == O_register)
{
as_bad ("Tag must come before qualifying predicate.");
return 0;
}
/* This implements just enough of read_a_source_file in read.c to
recognize labels. */
if (is_name_beginner (*input_line_pointer))
{
s = input_line_pointer;
c = get_symbol_end ();
}
else if (LOCAL_LABELS_FB
&& ISDIGIT (*input_line_pointer))
{
temp = 0;
while (ISDIGIT (*input_line_pointer))
temp = (temp * 10) + *input_line_pointer++ - '0';
fb_label_instance_inc (temp);
s = fb_label_name (temp, 0);
c = *input_line_pointer;
}
else
{
s = NULL;
c = '\0';
}
if (c != ':')
{
/* Put ':' back for error messages' sake. */
*input_line_pointer++ = ':';
as_bad ("Expected ':'");
return 0;
}
defining_tag = 1;
tag = colon (s);
defining_tag = 0;
/* Put ':' back for error messages' sake. */
*input_line_pointer++ = ':';
if (*input_line_pointer++ != ']')
{
as_bad ("Expected ']'");
return 0;
}
if (! tag)
{
as_bad ("Tag name expected");
return 0;
}
return 1;
}
default:
break;
}
/* Not a valid line. */
return 0;
}
void
ia64_frob_label (sym)
struct symbol *sym;
{
struct label_fix *fix;
/* Tags need special handling since they are not bundle breaks like
labels. */
if (defining_tag)
{
fix = obstack_alloc (&notes, sizeof (*fix));
fix->sym = sym;
fix->next = CURR_SLOT.tag_fixups;
CURR_SLOT.tag_fixups = fix;
return;
}
if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
{
md.last_text_seg = now_seg;
fix = obstack_alloc (&notes, sizeof (*fix));
fix->sym = sym;
fix->next = CURR_SLOT.label_fixups;
CURR_SLOT.label_fixups = fix;
/* Keep track of how many code entry points we've seen. */
if (md.path == md.maxpaths)
{
md.maxpaths += 20;
md.entry_labels = (const char **)
xrealloc ((void *) md.entry_labels,
md.maxpaths * sizeof (char *));
}
md.entry_labels[md.path++] = S_GET_NAME (sym);
}
}
#ifdef TE_HPUX
/* The HP-UX linker will give unresolved symbol errors for symbols
that are declared but unused. This routine removes declared,
unused symbols from an object. */
int
ia64_frob_symbol (sym)
struct symbol *sym;
{
if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
|| (S_GET_SEGMENT (sym) == &bfd_abs_section
&& ! S_IS_EXTERNAL (sym)))
return 1;
return 0;
}
#endif
void
ia64_flush_pending_output ()
{
if (!md.keep_pending_output
&& bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
{
/* ??? This causes many unnecessary stop bits to be emitted.
Unfortunately, it isn't clear if it is safe to remove this. */
insn_group_break (1, 0, 0);
ia64_flush_insns ();
}
}
/* Do ia64-specific expression optimization. All that's done here is
to transform index expressions that are either due to the indexing
of rotating registers or due to the indexing of indirect register
sets. */
int
ia64_optimize_expr (l, op, r)
expressionS *l;
operatorT op;
expressionS *r;
{
unsigned num_regs;
if (op == O_index)
{
if (l->X_op == O_register && r->X_op == O_constant)
{
num_regs = (l->X_add_number >> 16);
if ((unsigned) r->X_add_number >= num_regs)
{
if (!num_regs)
as_bad ("No current frame");
else
as_bad ("Index out of range 0..%u", num_regs - 1);
r->X_add_number = 0;
}
l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
return 1;
}
else if (l->X_op == O_register && r->X_op == O_register)
{
if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
|| l->X_add_number == IND_MEM)
{
as_bad ("Indirect register set name expected");
l->X_add_number = IND_CPUID;
}
l->X_op = O_index;
l->X_op_symbol = md.regsym[l->X_add_number];
l->X_add_number = r->X_add_number;
return 1;
}
}
return 0;
}
int
ia64_parse_name (name, e)
char *name;
expressionS *e;
{
struct const_desc *cdesc;
struct dynreg *dr = 0;
unsigned int regnum;
struct symbol *sym;
char *end;
/* first see if NAME is a known register name: */
sym = hash_find (md.reg_hash, name);
if (sym)
{
e->X_op = O_register;
e->X_add_number = S_GET_VALUE (sym);
return 1;
}
cdesc = hash_find (md.const_hash, name);
if (cdesc)
{
e->X_op = O_constant;
e->X_add_number = cdesc->value;
return 1;
}
/* check for inN, locN, or outN: */
switch (name[0])
{
case 'i':
if (name[1] == 'n' && ISDIGIT (name[2]))
{
dr = &md.in;
name += 2;
}
break;
case 'l':
if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
{
dr = &md.loc;
name += 3;
}
break;
case 'o':
if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
{
dr = &md.out;
name += 3;
}
break;
default:
break;
}
if (dr)
{
/* The name is inN, locN, or outN; parse the register number. */
regnum = strtoul (name, &end, 10);
if (end > name && *end == '\0')
{
if ((unsigned) regnum >= dr->num_regs)
{
if (!dr->num_regs)
as_bad ("No current frame");
else
as_bad ("Register number out of range 0..%u",
dr->num_regs - 1);
regnum = 0;
}
e->X_op = O_register;
e->X_add_number = dr->base + regnum;
return 1;
}
}
if ((dr = hash_find (md.dynreg_hash, name)))
{
/* We've got ourselves the name of a rotating register set.
Store the base register number in the low 16 bits of
X_add_number and the size of the register set in the top 16
bits. */
e->X_op = O_register;
e->X_add_number = dr->base | (dr->num_regs << 16);
return 1;
}
return 0;
}
/* Remove the '#' suffix that indicates a symbol as opposed to a register. */
char *
ia64_canonicalize_symbol_name (name)
char *name;
{
size_t len = strlen (name);
if (len > 1 && name[len - 1] == '#')
name[len - 1] = '\0';
return name;
}
/* Return true if idesc is a conditional branch instruction. This excludes
the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
because they always read/write resources regardless of the value of the
qualifying predicate. br.ia must always use p0, and hence is always
taken. Thus this function returns true for branches which can fall
through, and which use no resources if they do fall through. */
static int
is_conditional_branch (idesc)
struct ia64_opcode *idesc;
{
/* br is a conditional branch. Everything that starts with br. except
br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
Everything that starts with brl is a conditional branch. */
return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
&& (idesc->name[2] == '\0'
|| (idesc->name[2] == '.' && idesc->name[3] != 'i'
&& idesc->name[3] != 'c' && idesc->name[3] != 'w')
|| idesc->name[2] == 'l'
/* br.cond, br.call, br.clr */
|| (idesc->name[2] == '.' && idesc->name[3] == 'c'
&& (idesc->name[4] == 'a' || idesc->name[4] == 'o'
|| (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
}
/* Return whether the given opcode is a taken branch. If there's any doubt,
returns zero. */
static int
is_taken_branch (idesc)
struct ia64_opcode *idesc;
{
return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
|| strncmp (idesc->name, "br.ia", 5) == 0);
}
/* Return whether the given opcode is an interruption or rfi. If there's any
doubt, returns zero. */
static int
is_interruption_or_rfi (idesc)
struct ia64_opcode *idesc;
{
if (strcmp (idesc->name, "rfi") == 0)
return 1;
return 0;
}
/* Returns the index of the given dependency in the opcode's list of chks, or
-1 if there is no dependency. */
static int
depends_on (depind, idesc)
int depind;
struct ia64_opcode *idesc;
{
int i;
const struct ia64_opcode_dependency *dep = idesc->dependencies;
for (i = 0; i < dep->nchks; i++)
{
if (depind == DEP (dep->chks[i]))
return i;
}
return -1;
}
/* Determine a set of specific resources used for a particular resource
class. Returns the number of specific resources identified For those
cases which are not determinable statically, the resource returned is
marked nonspecific.
Meanings of value in 'NOTE':
1) only read/write when the register number is explicitly encoded in the
insn.
2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
accesses CFM when qualifying predicate is in the rotating region.
3) general register value is used to specify an indirect register; not
determinable statically.
4) only read the given resource when bits 7:0 of the indirect index
register value does not match the register number of the resource; not
determinable statically.
5) all rules are implementation specific.
6) only when both the index specified by the reader and the index specified
by the writer have the same value in bits 63:61; not determinable
statically.
7) only access the specified resource when the corresponding mask bit is
set
8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
only read when these insns reference FR2-31
9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
written when these insns write FR32-127
10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
instruction
11) The target predicates are written independently of PR[qp], but source
registers are only read if PR[qp] is true. Since the state of PR[qp]
cannot statically be determined, all source registers are marked used.
12) This insn only reads the specified predicate register when that
register is the PR[qp].
13) This reference to ld-c only applies to teh GR whose value is loaded
with data returned from memory, not the post-incremented address register.
14) The RSE resource includes the implementation-specific RSE internal
state resources. At least one (and possibly more) of these resources are
read by each instruction listed in IC:rse-readers. At least one (and
possibly more) of these resources are written by each insn listed in
IC:rse-writers.
15+16) Represents reserved instructions, which the assembler does not
generate.
Memory resources (i.e. locations in memory) are *not* marked or tracked by
this code; there are no dependency violations based on memory access.
*/
#define MAX_SPECS 256
#define DV_CHK 1
#define DV_REG 0
static int
specify_resource (dep, idesc, type, specs, note, path)
const struct ia64_dependency *dep;
struct ia64_opcode *idesc;
int type; /* is this a DV chk or a DV reg? */
struct rsrc specs[MAX_SPECS]; /* returned specific resources */
int note; /* resource note for this insn's usage */
int path; /* which execution path to examine */
{
int count = 0;
int i;
int rsrc_write = 0;
struct rsrc tmpl;
if (dep->mode == IA64_DV_WAW
|| (dep->mode == IA64_DV_RAW && type == DV_REG)
|| (dep->mode == IA64_DV_WAR && type == DV_CHK))
rsrc_write = 1;
/* template for any resources we identify */
tmpl.dependency = dep;
tmpl.note = note;
tmpl.insn_srlz = tmpl.data_srlz = 0;
tmpl.qp_regno = CURR_SLOT.qp_regno;
tmpl.link_to_qp_branch = 1;
tmpl.mem_offset.hint = 0;
tmpl.specific = 1;
tmpl.index = 0;
tmpl.cmp_type = CMP_NONE;
#define UNHANDLED \
as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
dep->name, idesc->name, (rsrc_write?"write":"read"), note)
#define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
/* we don't need to track these */
if (dep->semantics == IA64_DVS_NONE)
return 0;
switch (dep->specifier)
{
case IA64_RS_AR_K:
if (note == 1)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if (regno >= 0 && regno <= 7)
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
}
else if (note == 0)
{
for (i = 0; i < 8; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_AR_UNAT:
/* This is a mov =AR or mov AR= instruction. */
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if (regno == AR_UNAT)
{
specs[count++] = tmpl;
}
}
else
{
/* This is a spill/fill, or other instruction that modifies the
unat register. */
/* Unless we can determine the specific bits used, mark the whole
thing; bits 8:3 of the memory address indicate the bit used in
UNAT. The .mem.offset hint may be used to eliminate a small
subset of conflicts. */
specs[count] = tmpl;
if (md.mem_offset.hint)
{
if (md.debug_dv)
fprintf (stderr, " Using hint for spill/fill\n");
/* The index isn't actually used, just set it to something
approximating the bit index. */
specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
specs[count].mem_offset.hint = 1;
specs[count].mem_offset.offset = md.mem_offset.offset;
specs[count++].mem_offset.base = md.mem_offset.base;
}
else
{
specs[count++].specific = 0;
}
}
break;
case IA64_RS_AR:
if (note == 1)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if ((regno >= 8 && regno <= 15)
|| (regno >= 20 && regno <= 23)
|| (regno >= 31 && regno <= 39)
|| (regno >= 41 && regno <= 47)
|| (regno >= 67 && regno <= 111))
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_ARb:
if (note == 1)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if ((regno >= 48 && regno <= 63)
|| (regno >= 112 && regno <= 127))
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
}
else if (note == 0)
{
for (i = 48; i < 64; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
for (i = 112; i < 128; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_BR:
if (note != 1)
{
UNHANDLED;
}
else
{
if (rsrc_write)
{
for (i = 0; i < idesc->num_outputs; i++)
if (idesc->operands[i] == IA64_OPND_B1
|| idesc->operands[i] == IA64_OPND_B2)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_BR;
}
}
else
{
for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
if (idesc->operands[i] == IA64_OPND_B1
|| idesc->operands[i] == IA64_OPND_B2)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_BR;
}
}
}
break;
case IA64_RS_CPUID: /* four or more registers */
if (note == 3)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_DBR: /* four or more registers */
if (note == 3)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else if (note == 0 && !rsrc_write)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
else
{
UNHANDLED;
}
break;
case IA64_RS_IBR: /* four or more registers */
if (note == 3)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_MSR:
if (note == 5)
{
/* These are implementation specific. Force all references to
conflict with all other references. */
specs[count] = tmpl;
specs[count++].specific = 0;
}
else
{
UNHANDLED;
}
break;
case IA64_RS_PKR: /* 16 or more registers */
if (note == 3 || note == 4)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
if (note == 3)
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
for (i = 0; i < NELEMS (gr_values); i++)
{
/* Uses all registers *except* the one in R3. */
if ((unsigned)i != (gr_values[regno].value & 0xFF))
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else if (note == 0)
{
/* probe et al. */
specs[count] = tmpl;
specs[count++].specific = 0;
}
break;
case IA64_RS_PMC: /* four or more registers */
if (note == 3)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
|| (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
{
int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
? 1 : !rsrc_write);
int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_PMD: /* four or more registers */
if (note == 3)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = gr_values[regno].value & 0xFF;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_RR: /* eight registers */
if (note == 6)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
if (regno >= 0 && regno < NELEMS (gr_values)
&& KNOWN (regno))
{
specs[count] = tmpl;
specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
}
else
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
else if (note == 0 && !rsrc_write)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
else
{
UNHANDLED;
}
break;
case IA64_RS_CR_IRR:
if (note == 0)
{
/* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
if (rsrc_write
&& idesc->operands[1] == IA64_OPND_CR3
&& regno == CR_IVR)
{
for (i = 0; i < 4; i++)
{
specs[count] = tmpl;
specs[count++].index = CR_IRR0 + i;
}
}
}
else if (note == 1)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
&& regno >= CR_IRR0
&& regno <= CR_IRR3)
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_CR_LRR:
if (note != 1)
{
UNHANDLED;
}
else
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
&& (regno == CR_LRR0 || regno == CR_LRR1))
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
break;
case IA64_RS_CR:
if (note == 1)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_FR:
case IA64_RS_FRb:
if (note != 1)
{
UNHANDLED;
}
else if (rsrc_write)
{
if (dep->specifier == IA64_RS_FRb
&& idesc->operands[0] == IA64_OPND_F1)
{
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
}
}
else
{
for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
{
if (idesc->operands[i] == IA64_OPND_F2
|| idesc->operands[i] == IA64_OPND_F3
|| idesc->operands[i] == IA64_OPND_F4)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_FR;
}
}
}
break;
case IA64_RS_GR:
if (note == 13)
{
/* This reference applies only to the GR whose value is loaded with
data returned from memory. */
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
}
else if (note == 1)
{
if (rsrc_write)
{
for (i = 0; i < idesc->num_outputs; i++)
if (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_GR;
}
if (idesc->flags & IA64_OPCODE_POSTINC)
for (i = 0; i < NELEMS (idesc->operands); i++)
if (idesc->operands[i] == IA64_OPND_MR3)
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_GR;
}
}
else
{
/* Look for anything that reads a GR. */
for (i = 0; i < NELEMS (idesc->operands); i++)
{
if (idesc->operands[i] == IA64_OPND_MR3
|| idesc->operands[i] == IA64_OPND_CPUID_R3
|| idesc->operands[i] == IA64_OPND_DBR_R3
|| idesc->operands[i] == IA64_OPND_IBR_R3
|| idesc->operands[i] == IA64_OPND_MSR_R3
|| idesc->operands[i] == IA64_OPND_PKR_R3
|| idesc->operands[i] == IA64_OPND_PMC_R3
|| idesc->operands[i] == IA64_OPND_PMD_R3
|| idesc->operands[i] == IA64_OPND_RR_R3
|| ((i >= idesc->num_outputs)
&& (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3
/* addl source register. */
|| idesc->operands[i] == IA64_OPND_R3_2)))
{
specs[count] = tmpl;
specs[count++].index =
CURR_SLOT.opnd[i].X_add_number - REG_GR;
}
}
}
}
else
{
UNHANDLED;
}
break;
/* This is the same as IA64_RS_PRr, except that the register range is
from 1 - 15, and there are no rotating register reads/writes here. */
case IA64_RS_PR:
if (note == 0)
{
for (i = 1; i < 16; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else if (note == 7)
{
valueT mask = 0;
/* Mark only those registers indicated by the mask. */
if (rsrc_write)
{
mask = CURR_SLOT.opnd[2].X_add_number;
for (i = 1; i < 16; i++)
if (mask & ((valueT) 1 << i))
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else
{
UNHANDLED;
}
}
else if (note == 11) /* note 11 implies note 1 as well */
{
if (rsrc_write)
{
for (i = 0; i < idesc->num_outputs; i++)
{
if (idesc->operands[i] == IA64_OPND_P1
|| idesc->operands[i] == IA64_OPND_P2)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
if (regno >= 1 && regno < 16)
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
}
}
else
{
UNHANDLED;
}
}
else if (note == 12)
{
if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
{
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.qp_regno;
}
}
else if (note == 1)
{
if (rsrc_write)
{
int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
if ((idesc->operands[0] == IA64_OPND_P1
|| idesc->operands[0] == IA64_OPND_P2)
&& p1 >= 1 && p1 < 16)
{
specs[count] = tmpl;
specs[count].cmp_type =
(or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
specs[count++].index = p1;
}
if ((idesc->operands[1] == IA64_OPND_P1
|| idesc->operands[1] == IA64_OPND_P2)
&& p2 >= 1 && p2 < 16)
{
specs[count] = tmpl;
specs[count].cmp_type =
(or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
specs[count++].index = p2;
}
}
else
{
if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
{
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.qp_regno;
}
if (idesc->operands[1] == IA64_OPND_PR)
{
for (i = 1; i < 16; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
}
}
else
{
UNHANDLED;
}
break;
/* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
simplified cases of this. */
case IA64_RS_PRr:
if (note == 0)
{
for (i = 16; i < 63; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else if (note == 7)
{
valueT mask = 0;
/* Mark only those registers indicated by the mask. */
if (rsrc_write
&& idesc->operands[0] == IA64_OPND_PR)
{
mask = CURR_SLOT.opnd[2].X_add_number;
if (mask & ((valueT) 1 << 16))
for (i = 16; i < 63; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else if (rsrc_write
&& idesc->operands[0] == IA64_OPND_PR_ROT)
{
for (i = 16; i < 63; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
else
{
UNHANDLED;
}
}
else if (note == 11) /* note 11 implies note 1 as well */
{
if (rsrc_write)
{
for (i = 0; i < idesc->num_outputs; i++)
{
if (idesc->operands[i] == IA64_OPND_P1
|| idesc->operands[i] == IA64_OPND_P2)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
if (regno >= 16 && regno < 63)
{
specs[count] = tmpl;
specs[count++].index = regno;
}
}
}
}
else
{
UNHANDLED;
}
}
else if (note == 12)
{
if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
{
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.qp_regno;
}
}
else if (note == 1)
{
if (rsrc_write)
{
int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
if ((idesc->operands[0] == IA64_OPND_P1
|| idesc->operands[0] == IA64_OPND_P2)
&& p1 >= 16 && p1 < 63)
{
specs[count] = tmpl;
specs[count].cmp_type =
(or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
specs[count++].index = p1;
}
if ((idesc->operands[1] == IA64_OPND_P1
|| idesc->operands[1] == IA64_OPND_P2)
&& p2 >= 16 && p2 < 63)
{
specs[count] = tmpl;
specs[count].cmp_type =
(or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
specs[count++].index = p2;
}
}
else
{
if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
{
specs[count] = tmpl;
specs[count++].index = CURR_SLOT.qp_regno;
}
if (idesc->operands[1] == IA64_OPND_PR)
{
for (i = 16; i < 63; i++)
{
specs[count] = tmpl;
specs[count++].index = i;
}
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_PSR:
/* Verify that the instruction is using the PSR bit indicated in
dep->regindex. */
if (note == 0)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
{
if (dep->regindex < 6)
{
specs[count++] = tmpl;
}
}
else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
{
if (dep->regindex < 32
|| dep->regindex == 35
|| dep->regindex == 36
|| (!rsrc_write && dep->regindex == PSR_CPL))
{
specs[count++] = tmpl;
}
}
else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
{
if (dep->regindex < 32
|| dep->regindex == 35
|| dep->regindex == 36
|| (rsrc_write && dep->regindex == PSR_CPL))
{
specs[count++] = tmpl;
}
}
else
{
/* Several PSR bits have very specific dependencies. */
switch (dep->regindex)
{
default:
specs[count++] = tmpl;
break;
case PSR_IC:
if (rsrc_write)
{
specs[count++] = tmpl;
}
else
{
/* Only certain CR accesses use PSR.ic */
if (idesc->operands[0] == IA64_OPND_CR3
|| idesc->operands[1] == IA64_OPND_CR3)
{
int index =
((idesc->operands[0] == IA64_OPND_CR3)
? 0 : 1);
int regno =
CURR_SLOT.opnd[index].X_add_number - REG_CR;
switch (regno)
{
default:
break;
case CR_ITIR:
case CR_IFS:
case CR_IIM:
case CR_IIP:
case CR_IPSR:
case CR_ISR:
case CR_IFA:
case CR_IHA:
case CR_IIPA:
specs[count++] = tmpl;
break;
}
}
}
break;
case PSR_CPL:
if (rsrc_write)
{
specs[count++] = tmpl;
}
else
{
/* Only some AR accesses use cpl */
if (idesc->operands[0] == IA64_OPND_AR3
|| idesc->operands[1] == IA64_OPND_AR3)
{
int index =
((idesc->operands[0] == IA64_OPND_AR3)
? 0 : 1);
int regno =
CURR_SLOT.opnd[index].X_add_number - REG_AR;
if (regno == AR_ITC
|| (index == 0
&& (regno == AR_ITC
|| regno == AR_RSC
|| (regno >= AR_K0
&& regno <= AR_K7))))
{
specs[count++] = tmpl;
}
}
else
{
specs[count++] = tmpl;
}
break;
}
}
}
}
else if (note == 7)
{
valueT mask = 0;
if (idesc->operands[0] == IA64_OPND_IMMU24)
{
mask = CURR_SLOT.opnd[0].X_add_number;
}
else
{
UNHANDLED;
}
if (mask & ((valueT) 1 << dep->regindex))
{
specs[count++] = tmpl;
}
}
else if (note == 8)
{
int min = dep->regindex == PSR_DFL ? 2 : 32;
int max = dep->regindex == PSR_DFL ? 31 : 127;
/* dfh is read on FR32-127; dfl is read on FR2-31 */
for (i = 0; i < NELEMS (idesc->operands); i++)
{
if (idesc->operands[i] == IA64_OPND_F1
|| idesc->operands[i] == IA64_OPND_F2
|| idesc->operands[i] == IA64_OPND_F3
|| idesc->operands[i] == IA64_OPND_F4)
{
int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
if (reg >= min && reg <= max)
{
specs[count++] = tmpl;
}
}
}
}
else if (note == 9)
{
int min = dep->regindex == PSR_MFL ? 2 : 32;
int max = dep->regindex == PSR_MFL ? 31 : 127;
/* mfh is read on writes to FR32-127; mfl is read on writes to
FR2-31 */
for (i = 0; i < idesc->num_outputs; i++)
{
if (idesc->operands[i] == IA64_OPND_F1)
{
int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
if (reg >= min && reg <= max)
{
specs[count++] = tmpl;
}
}
}
}
else if (note == 10)
{
for (i = 0; i < NELEMS (idesc->operands); i++)
{
if (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
if (regno >= 16 && regno <= 31)
{
specs[count++] = tmpl;
}
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_AR_FPSR:
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if (regno == AR_FPSR)
{
specs[count++] = tmpl;
}
}
else
{
specs[count++] = tmpl;
}
break;
case IA64_RS_ARX:
/* Handle all AR[REG] resources */
if (note == 0 || note == 1)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
&& regno == dep->regindex)
{
specs[count++] = tmpl;
}
/* other AR[REG] resources may be affected by AR accesses */
else if (idesc->operands[0] == IA64_OPND_AR3)
{
/* AR[] writes */
regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
switch (dep->regindex)
{
default:
break;
case AR_BSP:
case AR_RNAT:
if (regno == AR_BSPSTORE)
{
specs[count++] = tmpl;
}
case AR_RSC:
if (!rsrc_write &&
(regno == AR_BSPSTORE
|| regno == AR_RNAT))
{
specs[count++] = tmpl;
}
break;
}
}
else if (idesc->operands[1] == IA64_OPND_AR3)
{
/* AR[] reads */
regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
switch (dep->regindex)
{
default:
break;
case AR_RSC:
if (regno == AR_BSPSTORE || regno == AR_RNAT)
{
specs[count++] = tmpl;
}
break;
}
}
else
{
specs[count++] = tmpl;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_CRX:
/* Handle all CR[REG] resources */
if (note == 0 || note == 1)
{
if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
{
int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
if (regno == dep->regindex)
{
specs[count++] = tmpl;
}
else if (!rsrc_write)
{
/* Reads from CR[IVR] affect other resources. */
if (regno == CR_IVR)
{
if ((dep->regindex >= CR_IRR0
&& dep->regindex <= CR_IRR3)
|| dep->regindex == CR_TPR)
{
specs[count++] = tmpl;
}
}
}
}
else
{
specs[count++] = tmpl;
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_INSERVICE:
/* look for write of EOI (67) or read of IVR (65) */
if ((idesc->operands[0] == IA64_OPND_CR3
&& CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
|| (idesc->operands[1] == IA64_OPND_CR3
&& CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
{
specs[count++] = tmpl;
}
break;
case IA64_RS_GR0:
if (note == 1)
{
specs[count++] = tmpl;
}
else
{
UNHANDLED;
}
break;
case IA64_RS_CFM:
if (note != 2)
{
specs[count++] = tmpl;
}
else
{
/* Check if any of the registers accessed are in the rotating region.
mov to/from pr accesses CFM only when qp_regno is in the rotating
region */
for (i = 0; i < NELEMS (idesc->operands); i++)
{
if (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3)
{
int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
/* Assumes that md.rot.num_regs is always valid */
if (md.rot.num_regs > 0
&& num > 31
&& num < 31 + md.rot.num_regs)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
else if (idesc->operands[i] == IA64_OPND_F1
|| idesc->operands[i] == IA64_OPND_F2
|| idesc->operands[i] == IA64_OPND_F3
|| idesc->operands[i] == IA64_OPND_F4)
{
int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
if (num > 31)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
else if (idesc->operands[i] == IA64_OPND_P1
|| idesc->operands[i] == IA64_OPND_P2)
{
int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
if (num > 15)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
}
if (CURR_SLOT.qp_regno > 15)
{
specs[count] = tmpl;
specs[count++].specific = 0;
}
}
break;
/* This is the same as IA64_RS_PRr, except simplified to account for
the fact that there is only one register. */
case IA64_RS_PR63:
if (note == 0)
{
specs[count++] = tmpl;
}
else if (note == 7)
{
valueT mask = 0;
if (idesc->operands[2] == IA64_OPND_IMM17)
mask = CURR_SLOT.opnd[2].X_add_number;
if (mask & ((valueT) 1 << 63))
specs[count++] = tmpl;
}
else if (note == 11)
{
if ((idesc->operands[0] == IA64_OPND_P1
&& CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
|| (idesc->operands[1] == IA64_OPND_P2
&& CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
{
specs[count++] = tmpl;
}
}
else if (note == 12)
{
if (CURR_SLOT.qp_regno == 63)
{
specs[count++] = tmpl;
}
}
else if (note == 1)
{
if (rsrc_write)
{
int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
if (p1 == 63
&& (idesc->operands[0] == IA64_OPND_P1
|| idesc->operands[0] == IA64_OPND_P2))
{
specs[count] = tmpl;
specs[count++].cmp_type =
(or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
}
if (p2 == 63
&& (idesc->operands[1] == IA64_OPND_P1
|| idesc->operands[1] == IA64_OPND_P2))
{
specs[count] = tmpl;
specs[count++].cmp_type =
(or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
}
}
else
{
if (CURR_SLOT.qp_regno == 63)
{
specs[count++] = tmpl;
}
}
}
else
{
UNHANDLED;
}
break;
case IA64_RS_RSE:
/* FIXME we can identify some individual RSE written resources, but RSE
read resources have not yet been completely identified, so for now
treat RSE as a single resource */
if (strncmp (idesc->name, "mov", 3) == 0)
{
if (rsrc_write)
{
if (idesc->operands[0] == IA64_OPND_AR3
&& CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
{
specs[count] = tmpl;
specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
}
}
else
{
if (idesc->operands[0] == IA64_OPND_AR3)
{
if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
|| CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
{
specs[count++] = tmpl;
}
}
else if (idesc->operands[1] == IA64_OPND_AR3)
{
if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
|| CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
|| CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
{
specs[count++] = tmpl;
}
}
}
}
else
{
specs[count++] = tmpl;
}
break;
case IA64_RS_ANY:
/* FIXME -- do any of these need to be non-specific? */
specs[count++] = tmpl;
break;
default:
as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
break;
}
return count;
}
/* Clear branch flags on marked resources. This breaks the link between the
QP of the marking instruction and a subsequent branch on the same QP. */
static void
clear_qp_branch_flag (mask)
valueT mask;
{
int i;
for (i = 0; i < regdepslen; i++)
{
valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
if ((bit & mask) != 0)
{
regdeps[i].link_to_qp_branch = 0;
}
}
}
/* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
any mutexes which contain one of the PRs and create new ones when
needed. */
static int
update_qp_mutex (valueT mask)
{
int i;
int add = 0;
i = 0;
while (i < qp_mutexeslen)
{
if ((qp_mutexes[i].prmask & mask) != 0)
{
/* If it destroys and creates the same mutex, do nothing. */
if (qp_mutexes[i].prmask == mask
&& qp_mutexes[i].path == md.path)
{
i++;
add = -1;
}
else
{
int keep = 0;
if (md.debug_dv)
{
fprintf (stderr, " Clearing mutex relation");
print_prmask (qp_mutexes[i].prmask);
fprintf (stderr, "\n");
}
/* Deal with the old mutex with more than 3+ PRs only if
the new mutex on the same execution path with it.
FIXME: The 3+ mutex support is incomplete.
dot_pred_rel () may be a better place to fix it. */
if (qp_mutexes[i].path == md.path)
{
/* If it is a proper subset of the mutex, create a
new mutex. */
if (add == 0
&& (qp_mutexes[i].prmask & mask) == mask)
add = 1;
qp_mutexes[i].prmask &= ~mask;
if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
{
/* Modify the mutex if there are more than one
PR left. */
keep = 1;
i++;
}
}
if (keep == 0)
/* Remove the mutex. */
qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
}
}
else
++i;
}
if (add == 1)
add_qp_mutex (mask);
return add;
}
/* Remove any mutexes which contain any of the PRs indicated in the mask.
Any changes to a PR clears the mutex relations which include that PR. */
static void
clear_qp_mutex (mask)
valueT mask;
{
int i;
i = 0;
while (i < qp_mutexeslen)
{
if ((qp_mutexes[i].prmask & mask) != 0)
{
if (md.debug_dv)
{
fprintf (stderr, " Clearing mutex relation");
print_prmask (qp_mutexes[i].prmask);
fprintf (stderr, "\n");
}
qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
}
else
++i;
}
}
/* Clear implies relations which contain PRs in the given masks.
P1_MASK indicates the source of the implies relation, while P2_MASK
indicates the implied PR. */
static void
clear_qp_implies (p1_mask, p2_mask)
valueT p1_mask;
valueT p2_mask;
{
int i;
i = 0;
while (i < qp_implieslen)
{
if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
|| (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
{
if (md.debug_dv)
fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
qp_implies[i].p1, qp_implies[i].p2);
qp_implies[i] = qp_implies[--qp_implieslen];
}
else
++i;
}
}
/* Add the PRs specified to the list of implied relations. */
static void
add_qp_imply (p1, p2)
int p1, p2;
{
valueT mask;
valueT bit;
int i;
/* p0 is not meaningful here. */
if (p1 == 0 || p2 == 0)
abort ();
if (p1 == p2)
return;
/* If it exists already, ignore it. */
for (i = 0; i < qp_implieslen; i++)
{
if (qp_implies[i].p1 == p1
&& qp_implies[i].p2 == p2
&& qp_implies[i].path == md.path
&& !qp_implies[i].p2_branched)
return;
}
if (qp_implieslen == qp_impliestotlen)
{
qp_impliestotlen += 20;
qp_implies = (struct qp_imply *)
xrealloc ((void *) qp_implies,
qp_impliestotlen * sizeof (struct qp_imply));
}
if (md.debug_dv)
fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
qp_implies[qp_implieslen].p1 = p1;
qp_implies[qp_implieslen].p2 = p2;
qp_implies[qp_implieslen].path = md.path;
qp_implies[qp_implieslen++].p2_branched = 0;
/* Add in the implied transitive relations; for everything that p2 implies,
make p1 imply that, too; for everything that implies p1, make it imply p2
as well. */
for (i = 0; i < qp_implieslen; i++)
{
if (qp_implies[i].p1 == p2)
add_qp_imply (p1, qp_implies[i].p2);
if (qp_implies[i].p2 == p1)
add_qp_imply (qp_implies[i].p1, p2);
}
/* Add in mutex relations implied by this implies relation; for each mutex
relation containing p2, duplicate it and replace p2 with p1. */
bit = (valueT) 1 << p1;
mask = (valueT) 1 << p2;
for (i = 0; i < qp_mutexeslen; i++)
{
if (qp_mutexes[i].prmask & mask)
add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
}
}
/* Add the PRs specified in the mask to the mutex list; this means that only
one of the PRs can be true at any time. PR0 should never be included in
the mask. */
static void
add_qp_mutex (mask)
valueT mask;
{
if (mask & 0x1)
abort ();
if (qp_mutexeslen == qp_mutexestotlen)
{
qp_mutexestotlen += 20;
qp_mutexes = (struct qpmutex *)
xrealloc ((void *) qp_mutexes,
qp_mutexestotlen * sizeof (struct qpmutex));
}
if (md.debug_dv)
{
fprintf (stderr, " Registering mutex on");
print_prmask (mask);
fprintf (stderr, "\n");
}
qp_mutexes[qp_mutexeslen].path = md.path;
qp_mutexes[qp_mutexeslen++].prmask = mask;
}
static int
has_suffix_p (name, suffix)
const char *name;
const char *suffix;
{
size_t namelen = strlen (name);
size_t sufflen = strlen (suffix);
if (namelen <= sufflen)
return 0;
return strcmp (name + namelen - sufflen, suffix) == 0;
}
static void
clear_register_values ()
{
int i;
if (md.debug_dv)
fprintf (stderr, " Clearing register values\n");
for (i = 1; i < NELEMS (gr_values); i++)
gr_values[i].known = 0;
}
/* Keep track of register values/changes which affect DV tracking.
optimization note: should add a flag to classes of insns where otherwise we
have to examine a group of strings to identify them. */
static void
note_register_values (idesc)
struct ia64_opcode *idesc;
{
valueT qp_changemask = 0;
int i;
/* Invalidate values for registers being written to. */
for (i = 0; i < idesc->num_outputs; i++)
{
if (idesc->operands[i] == IA64_OPND_R1
|| idesc->operands[i] == IA64_OPND_R2
|| idesc->operands[i] == IA64_OPND_R3)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
if (regno > 0 && regno < NELEMS (gr_values))
gr_values[regno].known = 0;
}
else if (idesc->operands[i] == IA64_OPND_R3_2)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
if (regno > 0 && regno < 4)
gr_values[regno].known = 0;
}
else if (idesc->operands[i] == IA64_OPND_P1
|| idesc->operands[i] == IA64_OPND_P2)
{
int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
qp_changemask |= (valueT) 1 << regno;
}
else if (idesc->operands[i] == IA64_OPND_PR)
{
if (idesc->operands[2] & (valueT) 0x10000)
qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
else
qp_changemask = idesc->operands[2];
break;
}
else if (idesc->operands[i] == IA64_OPND_PR_ROT)
{
if (idesc->operands[1] & ((valueT) 1 << 43))
qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
else
qp_changemask = idesc->operands[1];
qp_changemask &= ~(valueT) 0xFFFF;
break;
}
}
/* Always clear qp branch flags on any PR change. */
/* FIXME there may be exceptions for certain compares. */
clear_qp_branch_flag (qp_changemask);
/* Invalidate rotating registers on insns which affect RRBs in CFM. */
if (idesc->flags & IA64_OPCODE_MOD_RRBS)
{
qp_changemask |= ~(valueT) 0xFFFF;
if (strcmp (idesc->name, "clrrrb.pr") != 0)
{
for (i = 32; i < 32 + md.rot.num_regs; i++)
gr_values[i].known = 0;
}
clear_qp_mutex (qp_changemask);
clear_qp_implies (qp_changemask, qp_changemask);
}
/* After a call, all register values are undefined, except those marked
as "safe". */
else if (strncmp (idesc->name, "br.call", 6) == 0
|| strncmp (idesc->name, "brl.call", 7) == 0)
{
/* FIXME keep GR values which are marked as "safe_across_calls" */
clear_register_values ();
clear_qp_mutex (~qp_safe_across_calls);
clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
clear_qp_branch_flag (~qp_safe_across_calls);
}
else if (is_interruption_or_rfi (idesc)
|| is_taken_branch (idesc))
{
clear_register_values ();
clear_qp_mutex (~(valueT) 0);
clear_qp_implies (~(valueT) 0, ~(valueT) 0);
}
/* Look for mutex and implies relations. */
else if ((idesc->operands[0] == IA64_OPND_P1
|| idesc->operands[0] == IA64_OPND_P2)
&& (idesc->operands[1] == IA64_OPND_P1
|| idesc->operands[1] == IA64_OPND_P2))
{
int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
/* If both PRs are PR0, we can't really do anything. */
if (p1 == 0 && p2 == 0)
{
if (md.debug_dv)
fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
}
/* In general, clear mutexes and implies which include P1 or P2,
with the following exceptions. */
else if (has_suffix_p (idesc->name, ".or.andcm")
|| has_suffix_p (idesc->name, ".and.orcm"))
{
clear_qp_implies (p2mask, p1mask);
}
else if (has_suffix_p (idesc->name, ".andcm")
|| has_suffix_p (idesc->name, ".and"))
{
clear_qp_implies (0, p1mask | p2mask);
}
else if (has_suffix_p (idesc->name, ".orcm")
|| has_suffix_p (idesc->name, ".or"))
{
clear_qp_mutex (p1mask | p2mask);
clear_qp_implies (p1mask | p2mask, 0);
}
else
{
int added = 0;
clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
/* If one of the PRs is PR0, we call clear_qp_mutex. */
if (p1 == 0 || p2 == 0)
clear_qp_mutex (p1mask | p2mask);
else
added = update_qp_mutex (p1mask | p2mask);
if (CURR_SLOT.qp_regno == 0
|| has_suffix_p (idesc->name, ".unc"))
{
if (added == 0 && p1 && p2)
add_qp_mutex (p1mask | p2mask);
if (CURR_SLOT.qp_regno != 0)
{
if (p1)
add_qp_imply (p1, CURR_SLOT.qp_regno);
if (p2)
add_qp_imply (p2, CURR_SLOT.qp_regno);
}
}
}
}
/* Look for mov imm insns into GRs. */
else if (idesc->operands[0] == IA64_OPND_R1
&& (idesc->operands[1] == IA64_OPND_IMM22
|| idesc->operands[1] == IA64_OPND_IMMU64)
&& (strcmp (idesc->name, "mov") == 0
|| strcmp (idesc->name, "movl") == 0))
{
int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
if (regno > 0 && regno < NELEMS (gr_values))
{
gr_values[regno].known = 1;
gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
gr_values[regno].path = md.path;
if (md.debug_dv)
{
fprintf (stderr, " Know gr%d = ", regno);
fprintf_vma (stderr, gr_values[regno].value);
fputs ("\n", stderr);
}
}
}
else
{
clear_qp_mutex (qp_changemask);
clear_qp_implies (qp_changemask, qp_changemask);
}
}
/* Return whether the given predicate registers are currently mutex. */
static int
qp_mutex (p1, p2, path)
int p1;
int p2;
int path;
{
int i;
valueT mask;
if (p1 != p2)
{
mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
for (i = 0; i < qp_mutexeslen; i++)
{
if (qp_mutexes[i].path >= path
&& (qp_mutexes[i].prmask & mask) == mask)
return 1;
}
}
return 0;
}
/* Return whether the given resource is in the given insn's list of chks
Return 1 if the conflict is absolutely determined, 2 if it's a potential
conflict. */
static int
resources_match (rs, idesc, note, qp_regno, path)
struct rsrc *rs;
struct ia64_opcode *idesc;
int note;
int qp_regno;
int path;
{
struct rsrc specs[MAX_SPECS];
int count;
/* If the marked resource's qp_regno and the given qp_regno are mutex,
we don't need to check. One exception is note 11, which indicates that
target predicates are written regardless of PR[qp]. */
if (qp_mutex (rs->qp_regno, qp_regno, path)
&& note != 11)
return 0;
count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
while (count-- > 0)
{
/* UNAT checking is a bit more specific than other resources */
if (rs->dependency->specifier == IA64_RS_AR_UNAT
&& specs[count].mem_offset.hint
&& rs->mem_offset.hint)
{
if (rs->mem_offset.base == specs[count].mem_offset.base)
{
if (((rs->mem_offset.offset >> 3) & 0x3F) ==
((specs[count].mem_offset.offset >> 3) & 0x3F))
return 1;
else
continue;
}
}
/* Skip apparent PR write conflicts where both writes are an AND or both
writes are an OR. */
if (rs->dependency->specifier == IA64_RS_PR
|| rs->dependency->specifier == IA64_RS_PRr
|| rs->dependency->specifier == IA64_RS_PR63)
{
if (specs[count].cmp_type != CMP_NONE
&& specs[count].cmp_type == rs->cmp_type)
{
if (md.debug_dv)
fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
dv_mode[rs->dependency->mode],
rs->dependency->specifier != IA64_RS_PR63 ?
specs[count].index : 63);
continue;
}
if (md.debug_dv)
fprintf (stderr,
" %s on parallel compare conflict %s vs %s on PR%d\n",
dv_mode[rs->dependency->mode],
dv_cmp_type[rs->cmp_type],
dv_cmp_type[specs[count].cmp_type],
rs->dependency->specifier != IA64_RS_PR63 ?
specs[count].index : 63);
}
/* If either resource is not specific, conservatively assume a conflict
*/
if (!specs[count].specific || !rs->specific)
return 2;
else if (specs[count].index == rs->index)
return 1;
}
#if 0
if (md.debug_dv)
fprintf (stderr, " No %s conflicts\n", rs->dependency->name);
#endif
return 0;
}
/* Indicate an instruction group break; if INSERT_STOP is non-zero, then
insert a stop to create the break. Update all resource dependencies
appropriately. If QP_REGNO is non-zero, only apply the break to resources
which use the same QP_REGNO and have the link_to_qp_branch flag set.
If SAVE_CURRENT is non-zero, don't affect resources marked by the current
instruction. */
static void
insn_group_break (insert_stop, qp_regno, save_current)
int insert_stop;
int qp_regno;
int save_current;
{
int i;
if (insert_stop && md.num_slots_in_use > 0)
PREV_SLOT.end_of_insn_group = 1;
if (md.debug_dv)
{
fprintf (stderr, " Insn group break%s",
(insert_stop ? " (w/stop)" : ""));
if (qp_regno != 0)
fprintf (stderr, " effective for QP=%d", qp_regno);
fprintf (stderr, "\n");
}
i = 0;
while (i < regdepslen)
{
const struct ia64_dependency *dep = regdeps[i].dependency;
if (qp_regno != 0
&& regdeps[i].qp_regno != qp_regno)
{
++i;
continue;
}
if (save_current
&& CURR_SLOT.src_file == regdeps[i].file
&& CURR_SLOT.src_line == regdeps[i].line)
{
++i;
continue;
}
/* clear dependencies which are automatically cleared by a stop, or
those that have reached the appropriate state of insn serialization */
if (dep->semantics == IA64_DVS_IMPLIED
|| dep->semantics == IA64_DVS_IMPLIEDF
|| regdeps[i].insn_srlz == STATE_SRLZ)
{
print_dependency ("Removing", i);
regdeps[i] = regdeps[--regdepslen];
}
else
{
if (dep->semantics == IA64_DVS_DATA
|| dep->semantics == IA64_DVS_INSTR
|| dep->semantics == IA64_DVS_SPECIFIC)
{
if (regdeps[i].insn_srlz == STATE_NONE)
regdeps[i].insn_srlz = STATE_STOP;
if (regdeps[i].data_srlz == STATE_NONE)
regdeps[i].data_srlz = STATE_STOP;
}
++i;
}
}
}
/* Add the given resource usage spec to the list of active dependencies. */
static void
mark_resource (idesc, dep, spec, depind, path)
struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
struct rsrc *spec;
int depind;
int path;
{
if (regdepslen == regdepstotlen)
{
regdepstotlen += 20;
regdeps = (struct rsrc *)
xrealloc ((void *) regdeps,
regdepstotlen * sizeof (struct rsrc));
}
regdeps[regdepslen] = *spec;
regdeps[regdepslen].depind = depind;
regdeps[regdepslen].path = path;
regdeps[regdepslen].file = CURR_SLOT.src_file;
regdeps[regdepslen].line = CURR_SLOT.src_line;
print_dependency ("Adding", regdepslen);
++regdepslen;
}
static void
print_dependency (action, depind)
const char *action;
int depind;
{
if (md.debug_dv)
{
fprintf (stderr, " %s %s '%s'",
action, dv_mode[(regdeps[depind].dependency)->mode],
(regdeps[depind].dependency)->name);
if (regdeps[depind].specific && regdeps[depind].index != 0)
fprintf (stderr, " (%d)", regdeps[depind].index);
if (regdeps[depind].mem_offset.hint)
{
fputs (" ", stderr);
fprintf_vma (stderr, regdeps[depind].mem_offset.base);
fputs ("+", stderr);
fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
}
fprintf (stderr, "\n");
}
}
static void
instruction_serialization ()
{
int i;
if (md.debug_dv)
fprintf (stderr, " Instruction serialization\n");
for (i = 0; i < regdepslen; i++)
if (regdeps[i].insn_srlz == STATE_STOP)
regdeps[i].insn_srlz = STATE_SRLZ;
}
static void
data_serialization ()
{
int i = 0;
if (md.debug_dv)
fprintf (stderr, " Data serialization\n");
while (i < regdepslen)
{
if (regdeps[i].data_srlz == STATE_STOP
/* Note: as of 991210, all "other" dependencies are cleared by a
data serialization. This might change with new tables */
|| (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
{
print_dependency ("Removing", i);
regdeps[i] = regdeps[--regdepslen];
}
else
++i;
}
}
/* Insert stops and serializations as needed to avoid DVs. */
static void
remove_marked_resource (rs)
struct rsrc *rs;
{
switch (rs->dependency->semantics)
{
case IA64_DVS_SPECIFIC:
if (md.debug_dv)
fprintf (stderr, "Implementation-specific, assume worst case...\n");
/* ...fall through... */
case IA64_DVS_INSTR:
if (md.debug_dv)
fprintf (stderr, "Inserting instr serialization\n");
if (rs->insn_srlz < STATE_STOP)
insn_group_break (1, 0, 0);
if (rs->insn_srlz < STATE_SRLZ)
{
int oldqp = CURR_SLOT.qp_regno;
struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
/* Manually jam a srlz.i insn into the stream */
CURR_SLOT.qp_regno = 0;
CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
instruction_serialization ();
md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
if (++md.num_slots_in_use >= NUM_SLOTS)
emit_one_bundle ();
CURR_SLOT.qp_regno = oldqp;
CURR_SLOT.idesc = oldidesc;
}
insn_group_break (1, 0, 0);
break;
case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
"other" types of DV are eliminated
by a data serialization */
case IA64_DVS_DATA:
if (md.debug_dv)
fprintf (stderr, "Inserting data serialization\n");
if (rs->data_srlz < STATE_STOP)
insn_group_break (1, 0, 0);
{
int oldqp = CURR_SLOT.qp_regno;
struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
/* Manually jam a srlz.d insn into the stream */
CURR_SLOT.qp_regno = 0;
CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
data_serialization ();
md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
if (++md.num_slots_in_use >= NUM_SLOTS)
emit_one_bundle ();
CURR_SLOT.qp_regno = oldqp;
CURR_SLOT.idesc = oldidesc;
}
break;
case IA64_DVS_IMPLIED:
case IA64_DVS_IMPLIEDF:
if (md.debug_dv)
fprintf (stderr, "Inserting stop\n");
insn_group_break (1, 0, 0);
break;
default:
break;
}
}
/* Check the resources used by the given opcode against the current dependency
list.
The check is run once for each execution path encountered. In this case,
a unique execution path is the sequence of instructions following a code
entry point, e.g. the following has three execution paths, one starting
at L0, one at L1, and one at L2.
L0: nop
L1: add
L2: add
br.ret
*/
static void
check_dependencies (idesc)
struct ia64_opcode *idesc;
{
const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
int path;
int i;
/* Note that the number of marked resources may change within the
loop if in auto mode. */
i = 0;
while (i < regdepslen)
{
struct rsrc *rs = &regdeps[i];
const struct ia64_dependency *dep = rs->dependency;
int chkind;
int note;
int start_over = 0;
if (dep->semantics == IA64_DVS_NONE
|| (chkind = depends_on (rs->depind, idesc)) == -1)
{
++i;
continue;
}
note = NOTE (opdeps->chks[chkind]);
/* Check this resource against each execution path seen thus far. */
for (path = 0; path <= md.path; path++)
{
int matchtype;
/* If the dependency wasn't on the path being checked, ignore it. */
if (rs->path < path)
continue;
/* If the QP for this insn implies a QP which has branched, don't
bother checking. Ed. NOTE: I don't think this check is terribly
useful; what's the point of generating code which will only be
reached if its QP is zero?
This code was specifically inserted to handle the following code,
based on notes from Intel's DV checking code, where p1 implies p2.
mov r4 = 2
(p2) br.cond L
(p1) mov r4 = 7
*/
if (CURR_SLOT.qp_regno != 0)
{
int skip = 0;
int implies;
for (implies = 0; implies < qp_implieslen; implies++)
{
if (qp_implies[implies].path >= path
&& qp_implies[implies].p1 == CURR_SLOT.qp_regno
&& qp_implies[implies].p2_branched)
{
skip = 1;
break;
}
}
if (skip)
continue;
}
if ((matchtype = resources_match (rs, idesc, note,
CURR_SLOT.qp_regno, path)) != 0)
{
char msg[1024];
char pathmsg[256] = "";
char indexmsg[256] = "";
int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
if (path != 0)
sprintf (pathmsg, " when entry is at label '%s'",
md.entry_labels[path - 1]);
if (rs->specific && rs->index != 0)
sprintf (indexmsg, ", specific resource number is %d",
rs->index);
sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
idesc->name,
(certain ? "violates" : "may violate"),
dv_mode[dep->mode], dep->name,
dv_sem[dep->semantics],
pathmsg, indexmsg);
if (md.explicit_mode)
{
as_warn ("%s", msg);
if (path < md.path)
as_warn (_("Only the first path encountering the conflict "
"is reported"));
as_warn_where (rs->file, rs->line,
_("This is the location of the "
"conflicting usage"));
/* Don't bother checking other paths, to avoid duplicating
the same warning */
break;
}
else
{
if (md.debug_dv)
fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
remove_marked_resource (rs);
/* since the set of dependencies has changed, start over */
/* FIXME -- since we're removing dvs as we go, we
probably don't really need to start over... */
start_over = 1;
break;
}
}
}
if (start_over)
i = 0;
else
++i;
}
}
/* Register new dependencies based on the given opcode. */
static void
mark_resources (idesc)
struct ia64_opcode *idesc;
{
int i;
const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
int add_only_qp_reads = 0;
/* A conditional branch only uses its resources if it is taken; if it is
taken, we stop following that path. The other branch types effectively
*always* write their resources. If it's not taken, register only QP
reads. */
if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
{
add_only_qp_reads = 1;
}
if (md.debug_dv)
fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
for (i = 0; i < opdeps->nregs; i++)
{
const struct ia64_dependency *dep;
struct rsrc specs[MAX_SPECS];
int note;
int path;
int count;
dep = ia64_find_dependency (opdeps->regs[i]);
note = NOTE (opdeps->regs[i]);
if (add_only_qp_reads
&& !(dep->mode == IA64_DV_WAR
&& (dep->specifier == IA64_RS_PR
|| dep->specifier == IA64_RS_PRr
|| dep->specifier == IA64_RS_PR63)))
continue;
count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
#if 0
if (md.debug_dv && !count)
fprintf (stderr, " No %s %s usage found (path %d)\n",
dv_mode[dep->mode], dep->name, md.path);
#endif
while (count-- > 0)
{
mark_resource (idesc, dep, &specs[count],
DEP (opdeps->regs[i]), md.path);
}
/* The execution path may affect register values, which may in turn
affect which indirect-access resources are accessed. */
switch (dep->specifier)
{
default:
break;
case IA64_RS_CPUID:
case IA64_RS_DBR:
case IA64_RS_IBR:
case IA64_RS_MSR:
case IA64_RS_PKR:
case IA64_RS_PMC:
case IA64_RS_PMD:
case IA64_RS_RR:
for (path = 0; path < md.path; path++)
{
count = specify_resource (dep, idesc, DV_REG, specs, note, path);
while (count-- > 0)
mark_resource (idesc, dep, &specs[count],
DEP (opdeps->regs[i]), path);
}
break;
}
}
}
/* Remove dependencies when they no longer apply. */
static void
update_dependencies (idesc)
struct ia64_opcode *idesc;
{
int i;
if (strcmp (idesc->name, "srlz.i") == 0)
{
instruction_serialization ();
}
else if (strcmp (idesc->name, "srlz.d") == 0)
{
data_serialization ();
}
else if (is_interruption_or_rfi (idesc)
|| is_taken_branch (idesc))
{
/* Although technically the taken branch doesn't clear dependencies
which require a srlz.[id], we don't follow the branch; the next
instruction is assumed to start with a clean slate. */
regdepslen = 0;
md.path = 0;
}
else if (is_conditional_branch (idesc)
&& CURR_SLOT.qp_regno != 0)
{
int is_call = strstr (idesc->name, ".call") != NULL;
for (i = 0; i < qp_implieslen; i++)
{
/* If the conditional branch's predicate is implied by the predicate
in an existing dependency, remove that dependency. */
if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
{
int depind = 0;
/* Note that this implied predicate takes a branch so that if
a later insn generates a DV but its predicate implies this
one, we can avoid the false DV warning. */
qp_implies[i].p2_branched = 1;
while (depind < regdepslen)
{
if (regdeps[depind].qp_regno == qp_implies[i].p1)
{
print_dependency ("Removing", depind);
regdeps[depind] = regdeps[--regdepslen];
}
else
++depind;
}
}
}
/* Any marked resources which have this same predicate should be
cleared, provided that the QP hasn't been modified between the
marking instruction and the branch. */
if (is_call)
{
insn_group_break (0, CURR_SLOT.qp_regno, 1);
}
else
{
i = 0;
while (i < regdepslen)
{
if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
&& regdeps[i].link_to_qp_branch
&& (regdeps[i].file != CURR_SLOT.src_file
|| regdeps[i].line != CURR_SLOT.src_line))
{
/* Treat like a taken branch */
print_dependency ("Removing", i);
regdeps[i] = regdeps[--regdepslen];
}
else
++i;
}
}
}
}
/* Examine the current instruction for dependency violations. */
static int
check_dv (idesc)
struct ia64_opcode *idesc;
{
if (md.debug_dv)
{
fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
idesc->name, CURR_SLOT.src_line,
idesc->dependencies->nchks,
idesc->dependencies->nregs);
}
/* Look through the list of currently marked resources; if the current
instruction has the dependency in its chks list which uses that resource,
check against the specific resources used. */
check_dependencies (idesc);
/* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
then add them to the list of marked resources. */
mark_resources (idesc);
/* There are several types of dependency semantics, and each has its own
requirements for being cleared
Instruction serialization (insns separated by interruption, rfi, or
writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
Data serialization (instruction serialization, or writer + srlz.d +
reader, where writer and srlz.d are in separate groups) clears
DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
always be the case).
Instruction group break (groups separated by stop, taken branch,
interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
*/
update_dependencies (idesc);
/* Sometimes, knowing a register value allows us to avoid giving a false DV
warning. Keep track of as many as possible that are useful. */
note_register_values (idesc);
/* We don't need or want this anymore. */
md.mem_offset.hint = 0;
return 0;
}
/* Translate one line of assembly. Pseudo ops and labels do not show
here. */
void
md_assemble (str)
char *str;
{
char *saved_input_line_pointer, *mnemonic;
const struct pseudo_opcode *pdesc;
struct ia64_opcode *idesc;
unsigned char qp_regno;
unsigned int flags;
int ch;
saved_input_line_pointer = input_line_pointer;
input_line_pointer = str;
/* extract the opcode (mnemonic): */
mnemonic = input_line_pointer;
ch = get_symbol_end ();
pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
if (pdesc)
{
*input_line_pointer = ch;
(*pdesc->handler) (pdesc->arg);
goto done;
}
/* Find the instruction descriptor matching the arguments. */
idesc = ia64_find_opcode (mnemonic);
*input_line_pointer = ch;
if (!idesc)
{
as_bad ("Unknown opcode `%s'", mnemonic);
goto done;
}
idesc = parse_operands (idesc);
if (!idesc)
goto done;
/* Handle the dynamic ops we can handle now: */
if (idesc->type == IA64_TYPE_DYN)
{
if (strcmp (idesc->name, "add") == 0)
{
if (CURR_SLOT.opnd[2].X_op == O_register
&& CURR_SLOT.opnd[2].X_add_number < 4)
mnemonic = "addl";
else
mnemonic = "adds";
ia64_free_opcode (idesc);
idesc = ia64_find_opcode (mnemonic);
#if 0
know (!idesc->next);
#endif
}
else if (strcmp (idesc->name, "mov") == 0)
{
enum ia64_opnd opnd1, opnd2;
int rop;
opnd1 = idesc->operands[0];
opnd2 = idesc->operands[1];
if (opnd1 == IA64_OPND_AR3)
rop = 0;
else if (opnd2 == IA64_OPND_AR3)
rop = 1;
else
abort ();
if (CURR_SLOT.opnd[rop].X_op == O_register
&& ar_is_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
mnemonic = "mov.i";
else
mnemonic = "mov.m";
ia64_free_opcode (idesc);
idesc = ia64_find_opcode (mnemonic);
while (idesc != NULL
&& (idesc->operands[0] != opnd1
|| idesc->operands[1] != opnd2))
idesc = get_next_opcode (idesc);
}
}
qp_regno = 0;
if (md.qp.X_op == O_register)
{
qp_regno = md.qp.X_add_number - REG_P;
md.qp.X_op = O_absent;
}
flags = idesc->flags;
if ((flags & IA64_OPCODE_FIRST) != 0)
{
/* The alignment frag has to end with a stop bit only if the
next instruction after the alignment directive has to be
the first instruction in an instruction group. */
if (align_frag)
{
while (align_frag->fr_type != rs_align_code)
{
align_frag = align_frag->fr_next;
if (!align_frag)
break;
}
/* align_frag can be NULL if there are directives in
between. */
if (align_frag && align_frag->fr_next == frag_now)
align_frag->tc_frag_data = 1;
}
insn_group_break (1, 0, 0);
}
align_frag = NULL;
if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
{
as_bad ("`%s' cannot be predicated", idesc->name);
goto done;
}
/* Build the instruction. */
CURR_SLOT.qp_regno = qp_regno;
CURR_SLOT.idesc = idesc;
as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
dwarf2_where (&CURR_SLOT.debug_line);
/* Add unwind entry, if there is one. */
if (unwind.current_entry)
{
CURR_SLOT.unwind_record = unwind.current_entry;
unwind.current_entry = NULL;
}
/* Check for dependency violations. */
if (md.detect_dv)
check_dv (idesc);
md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
if (++md.num_slots_in_use >= NUM_SLOTS)
emit_one_bundle ();
if ((flags & IA64_OPCODE_LAST) != 0)
insn_group_break (1, 0, 0);
md.last_text_seg = now_seg;
done:
input_line_pointer = saved_input_line_pointer;
}
/* Called when symbol NAME cannot be found in the symbol table.
Should be used for dynamic valued symbols only. */
symbolS *
md_undefined_symbol (name)
char *name ATTRIBUTE_UNUSED;
{
return 0;
}
/* Called for any expression that can not be recognized. When the
function is called, `input_line_pointer' will point to the start of
the expression. */
void
md_operand (e)
expressionS *e;
{
enum pseudo_type pseudo_type;
const char *name;
size_t len;
int ch, i;
switch (*input_line_pointer)
{
case '@':
/* Find what relocation pseudo-function we're dealing with. */
pseudo_type = 0;
ch = *++input_line_pointer;
for (i = 0; i < NELEMS (pseudo_func); ++i)
if (pseudo_func[i].name && pseudo_func[i].name[0] == ch)
{
len = strlen (pseudo_func[i].name);
if (strncmp (pseudo_func[i].name + 1,
input_line_pointer + 1, len - 1) == 0
&& !is_part_of_name (input_line_pointer[len]))
{
input_line_pointer += len;
pseudo_type = pseudo_func[i].type;
break;
}
}
switch (pseudo_type)
{
case PSEUDO_FUNC_RELOC:
SKIP_WHITESPACE ();
if (*input_line_pointer != '(')
{
as_bad ("Expected '('");
goto err;
}
/* Skip '('. */
++input_line_pointer;
expression (e);
if (*input_line_pointer++ != ')')
{
as_bad ("Missing ')'");
goto err;
}
if (e->X_op != O_symbol)
{
if (e->X_op != O_pseudo_fixup)
{
as_bad ("Not a symbolic expression");
goto err;
}
if (i != FUNC_LT_RELATIVE)
{
as_bad ("Illegal combination of relocation functions");
goto err;
}
switch (S_GET_VALUE (e->X_op_symbol))
{
case FUNC_FPTR_RELATIVE:
i = FUNC_LT_FPTR_RELATIVE; break;
case FUNC_DTP_MODULE:
i = FUNC_LT_DTP_MODULE; break;
case FUNC_DTP_RELATIVE:
i = FUNC_LT_DTP_RELATIVE; break;
case FUNC_TP_RELATIVE:
i = FUNC_LT_TP_RELATIVE; break;
default:
as_bad ("Illegal combination of relocation functions");
goto err;
}
}
/* Make sure gas doesn't get rid of local symbols that are used
in relocs. */
e->X_op = O_pseudo_fixup;
e->X_op_symbol = pseudo_func[i].u.sym;
break;
case PSEUDO_FUNC_CONST:
e->X_op = O_constant;
e->X_add_number = pseudo_func[i].u.ival;
break;
case PSEUDO_FUNC_REG:
e->X_op = O_register;
e->X_add_number = pseudo_func[i].u.ival;
break;
default:
name = input_line_pointer - 1;
get_symbol_end ();
as_bad ("Unknown pseudo function `%s'", name);
goto err;
}
break;
case '[':
++input_line_pointer;
expression (e);
if (*input_line_pointer != ']')
{
as_bad ("Closing bracket misssing");
goto err;
}
else
{
if (e->X_op != O_register)
as_bad ("Register expected as index");
++input_line_pointer;
e->X_op = O_index;
}
break;
default:
break;
}
return;
err:
ignore_rest_of_line ();
}
/* Return 1 if it's OK to adjust a reloc by replacing the symbol with
a section symbol plus some offset. For relocs involving @fptr(),
directives we don't want such adjustments since we need to have the
original symbol's name in the reloc. */
int
ia64_fix_adjustable (fix)
fixS *fix;
{
/* Prevent all adjustments to global symbols */
if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
return 0;
switch (fix->fx_r_type)
{
case BFD_RELOC_IA64_FPTR64I:
case BFD_RELOC_IA64_FPTR32MSB:
case BFD_RELOC_IA64_FPTR32LSB:
case BFD_RELOC_IA64_FPTR64MSB:
case BFD_RELOC_IA64_FPTR64LSB:
case BFD_RELOC_IA64_LTOFF_FPTR22:
case BFD_RELOC_IA64_LTOFF_FPTR64I:
return 0;
default:
break;
}
return 1;
}
int
ia64_force_relocation (fix)
fixS *fix;
{
switch (fix->fx_r_type)
{
case BFD_RELOC_IA64_FPTR64I:
case BFD_RELOC_IA64_FPTR32MSB:
case BFD_RELOC_IA64_FPTR32LSB:
case BFD_RELOC_IA64_FPTR64MSB:
case BFD_RELOC_IA64_FPTR64LSB:
case BFD_RELOC_IA64_LTOFF22:
case BFD_RELOC_IA64_LTOFF64I:
case BFD_RELOC_IA64_LTOFF_FPTR22:
case BFD_RELOC_IA64_LTOFF_FPTR64I:
case BFD_RELOC_IA64_PLTOFF22:
case BFD_RELOC_IA64_PLTOFF64I:
case BFD_RELOC_IA64_PLTOFF64MSB:
case BFD_RELOC_IA64_PLTOFF64LSB:
case BFD_RELOC_IA64_LTOFF22X:
case BFD_RELOC_IA64_LDXMOV:
return 1;
default:
break;
}
return generic_force_reloc (fix);
}
/* Decide from what point a pc-relative relocation is relative to,
relative to the pc-relative fixup. Er, relatively speaking. */
long
ia64_pcrel_from_section (fix, sec)
fixS *fix;
segT sec;
{
unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
off &= ~0xfUL;
return off;
}
/* Used to emit section-relative relocs for the dwarf2 debug data. */
void
ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
{
expressionS expr;
expr.X_op = O_pseudo_fixup;
expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
expr.X_add_number = 0;
expr.X_add_symbol = symbol;
emit_expr (&expr, size);
}
/* This is called whenever some data item (not an instruction) needs a
fixup. We pick the right reloc code depending on the byteorder
currently in effect. */
void
ia64_cons_fix_new (f, where, nbytes, exp)
fragS *f;
int where;
int nbytes;
expressionS *exp;
{
bfd_reloc_code_real_type code;
fixS *fix;
switch (nbytes)
{
/* There are no reloc for 8 and 16 bit quantities, but we allow
them here since they will work fine as long as the expression
is fully defined at the end of the pass over the source file. */
case 1: code = BFD_RELOC_8; break;
case 2: code = BFD_RELOC_16; break;
case 4:
if (target_big_endian)
code = BFD_RELOC_IA64_DIR32MSB;
else
code = BFD_RELOC_IA64_DIR32LSB;
break;
case 8:
/* In 32-bit mode, data8 could mean function descriptors too. */
if (exp->X_op == O_pseudo_fixup
&& exp->X_op_symbol
&& S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
&& !(md.flags & EF_IA_64_ABI64))
{
if (target_big_endian)
code = BFD_RELOC_IA64_IPLTMSB;
else
code = BFD_RELOC_IA64_IPLTLSB;
exp->X_op = O_symbol;
break;
}
else
{
if (target_big_endian)
code = BFD_RELOC_IA64_DIR64MSB;
else
code = BFD_RELOC_IA64_DIR64LSB;
break;
}
case 16:
if (exp->X_op == O_pseudo_fixup
&& exp->X_op_symbol
&& S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
{
if (target_big_endian)
code = BFD_RELOC_IA64_IPLTMSB;
else
code = BFD_RELOC_IA64_IPLTLSB;
exp->X_op = O_symbol;
break;
}
/* FALLTHRU */
default:
as_bad ("Unsupported fixup size %d", nbytes);
ignore_rest_of_line ();
return;
}
if (exp->X_op == O_pseudo_fixup)
{
exp->X_op = O_symbol;
code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
/* ??? If code unchanged, unsupported. */
}
fix = fix_new_exp (f, where, nbytes, exp, 0, code);
/* We need to store the byte order in effect in case we're going
to fix an 8 or 16 bit relocation (for which there no real
relocs available). See md_apply_fix3(). */
fix->tc_fix_data.bigendian = target_big_endian;
}
/* Return the actual relocation we wish to associate with the pseudo
reloc described by SYM and R_TYPE. SYM should be one of the
symbols in the pseudo_func array, or NULL. */
static bfd_reloc_code_real_type
ia64_gen_real_reloc_type (sym, r_type)
struct symbol *sym;
bfd_reloc_code_real_type r_type;
{
bfd_reloc_code_real_type new = 0;
if (sym == NULL)
{
return r_type;
}
switch (S_GET_VALUE (sym))
{
case FUNC_FPTR_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
default: break;
}
break;
case FUNC_GP_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
default: break;
}
break;
case FUNC_LT_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
default: break;
}
break;
case FUNC_LT_RELATIVE_X:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
default: break;
}
break;
case FUNC_PC_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
default: break;
}
break;
case FUNC_PLT_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
default: break;
}
break;
case FUNC_SEC_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
default: break;
}
break;
case FUNC_SEG_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
default: break;
}
break;
case FUNC_LTV_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
default: break;
}
break;
case FUNC_LT_FPTR_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
case BFD_RELOC_IA64_IMM64:
new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
default:
break;
}
break;
case FUNC_TP_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM14:
new = BFD_RELOC_IA64_TPREL14; break;
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_TPREL22; break;
case BFD_RELOC_IA64_IMM64:
new = BFD_RELOC_IA64_TPREL64I; break;
default:
break;
}
break;
case FUNC_LT_TP_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
default:
break;
}
break;
case FUNC_LT_DTP_MODULE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
default:
break;
}
break;
case FUNC_DTP_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_DIR64MSB:
new = BFD_RELOC_IA64_DTPREL64MSB; break;
case BFD_RELOC_IA64_DIR64LSB:
new = BFD_RELOC_IA64_DTPREL64LSB; break;
case BFD_RELOC_IA64_IMM14:
new = BFD_RELOC_IA64_DTPREL14; break;
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_DTPREL22; break;
case BFD_RELOC_IA64_IMM64:
new = BFD_RELOC_IA64_DTPREL64I; break;
default:
break;
}
break;
case FUNC_LT_DTP_RELATIVE:
switch (r_type)
{
case BFD_RELOC_IA64_IMM22:
new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
default:
break;
}
break;
case FUNC_IPLT_RELOC:
break;
default:
abort ();
}
/* Hmmmm. Should this ever occur? */
if (new)
return new;
else
return r_type;
}
/* Here is where generate the appropriate reloc for pseudo relocation
functions. */
void
ia64_validate_fix (fix)
fixS *fix;
{
switch (fix->fx_r_type)
{
case BFD_RELOC_IA64_FPTR64I:
case BFD_RELOC_IA64_FPTR32MSB:
case BFD_RELOC_IA64_FPTR64LSB:
case BFD_RELOC_IA64_LTOFF_FPTR22:
case BFD_RELOC_IA64_LTOFF_FPTR64I:
if (fix->fx_offset != 0)
as_bad_where (fix->fx_file, fix->fx_line,
"No addend allowed in @fptr() relocation");
break;
default:
break;
}
}
static void
fix_insn (fix, odesc, value)
fixS *fix;
const struct ia64_operand *odesc;
valueT value;
{
bfd_vma insn[3], t0, t1, control_bits;
const char *err;
char *fixpos;
long slot;
slot = fix->fx_where & 0x3;
fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
/* Bundles are always in little-endian byte order */
t0 = bfd_getl64 (fixpos);
t1 = bfd_getl64 (fixpos + 8);
control_bits = t0 & 0x1f;
insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
err = NULL;
if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
{
insn[1] = (value >> 22) & 0x1ffffffffffLL;
insn[2] |= (((value & 0x7f) << 13)
| (((value >> 7) & 0x1ff) << 27)
| (((value >> 16) & 0x1f) << 22)
| (((value >> 21) & 0x1) << 21)
| (((value >> 63) & 0x1) << 36));
}
else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
{
if (value & ~0x3fffffffffffffffULL)
err = "integer operand out of range";
insn[1] = (value >> 21) & 0x1ffffffffffLL;
insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
}
else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
{
value >>= 4;
insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
insn[2] |= ((((value >> 59) & 0x1) << 36)
| (((value >> 0) & 0xfffff) << 13));
}
else
err = (*odesc->insert) (odesc, value, insn + slot);
if (err)
as_bad_where (fix->fx_file, fix->fx_line, err);
t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
number_to_chars_littleendian (fixpos + 0, t0, 8);
number_to_chars_littleendian (fixpos + 8, t1, 8);
}
/* Attempt to simplify or even eliminate a fixup. The return value is
ignored; perhaps it was once meaningful, but now it is historical.
To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
(if possible). */
void
md_apply_fix3 (fix, valP, seg)
fixS *fix;
valueT *valP;
segT seg ATTRIBUTE_UNUSED;
{
char *fixpos;
valueT value = *valP;
fixpos = fix->fx_frag->fr_literal + fix->fx_where;
if (fix->fx_pcrel)
{
switch (fix->fx_r_type)
{
case BFD_RELOC_IA64_DIR32MSB:
fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
break;
case BFD_RELOC_IA64_DIR32LSB:
fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
break;
case BFD_RELOC_IA64_DIR64MSB:
fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
break;
case BFD_RELOC_IA64_DIR64LSB:
fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
break;
default:
break;
}
}
if (fix->fx_addsy)
{
switch (fix->fx_r_type)
{
case BFD_RELOC_UNUSED:
/* This must be a TAG13 or TAG13b operand. There are no external
relocs defined for them, so we must give an error. */
as_bad_where (fix->fx_file, fix->fx_line,
"%s must have a constant value",
elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
fix->fx_done = 1;
return;
case BFD_RELOC_IA64_TPREL14:
case BFD_RELOC_IA64_TPREL22:
case BFD_RELOC_IA64_TPREL64I:
case BFD_RELOC_IA64_LTOFF_TPREL22:
case BFD_RELOC_IA64_LTOFF_DTPMOD22:
case BFD_RELOC_IA64_DTPREL14:
case BFD_RELOC_IA64_DTPREL22:
case BFD_RELOC_IA64_DTPREL64I:
case BFD_RELOC_IA64_LTOFF_DTPREL22:
S_SET_THREAD_LOCAL (fix->fx_addsy);
break;
default:
break;
}
}
else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
{
if (fix->tc_fix_data.bigendian)
number_to_chars_bigendian (fixpos, value, fix->fx_size);
else
number_to_chars_littleendian (fixpos, value, fix->fx_size);
fix->fx_done = 1;
}
else
{
fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
fix->fx_done = 1;
}
}
/* Generate the BFD reloc to be stuck in the object file from the
fixup used internally in the assembler. */
arelent *
tc_gen_reloc (sec, fixp)
asection *sec ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *reloc;
reloc = xmalloc (sizeof (*reloc));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->addend = fixp->fx_offset;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (!reloc->howto)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Cannot represent %s relocation in object file",
bfd_get_reloc_code_name (fixp->fx_r_type));
}
return reloc;
}
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LIT. The number
of LITTLENUMS emitted is stored in *SIZE. An error message is
returned, or NULL on OK. */
#define MAX_LITTLENUMS 5
char *
md_atof (type, lit, size)
int type;
char *lit;
int *size;
{
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char *t;
int prec;
switch (type)
{
/* IEEE floats */
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
case 'p':
case 'P':
prec = 5;
break;
default:
*size = 0;
return "Bad call to MD_ATOF()";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
(*ia64_float_to_chars) (lit, words, prec);
if (type == 'X')
{
/* It is 10 byte floating point with 6 byte padding. */
memset (&lit [10], 0, 6);
*size = 8 * sizeof (LITTLENUM_TYPE);
}
else
*size = prec * sizeof (LITTLENUM_TYPE);
return 0;
}
/* Handle ia64 specific semantics of the align directive. */
void
ia64_md_do_align (n, fill, len, max)
int n ATTRIBUTE_UNUSED;
const char *fill ATTRIBUTE_UNUSED;
int len ATTRIBUTE_UNUSED;
int max ATTRIBUTE_UNUSED;
{
if (subseg_text_p (now_seg))
ia64_flush_insns ();
}
/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
of an rs_align_code fragment. */
void
ia64_handle_align (fragp)
fragS *fragp;
{
/* Use mfi bundle of nops with no stop bits. */
static const unsigned char le_nop[]
= { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
static const unsigned char le_nop_stop[]
= { 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
int bytes;
char *p;
const unsigned char *nop;
if (fragp->fr_type != rs_align_code)
return;
/* Check if this frag has to end with a stop bit. */
nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
p = fragp->fr_literal + fragp->fr_fix;
/* If no paddings are needed, we check if we need a stop bit. */
if (!bytes && fragp->tc_frag_data)
{
if (fragp->fr_fix < 16)
#if 1
/* FIXME: It won't work with
.align 16
alloc r32=ar.pfs,1,2,4,0
*/
;
#else
as_bad_where (fragp->fr_file, fragp->fr_line,
_("Can't add stop bit to mark end of instruction group"));
#endif
else
/* Bundles are always in little-endian byte order. Make sure
the previous bundle has the stop bit. */
*(p - 16) |= 1;
}
/* Make sure we are on a 16-byte boundary, in case someone has been
putting data into a text section. */
if (bytes & 15)
{
int fix = bytes & 15;
memset (p, 0, fix);
p += fix;
bytes -= fix;
fragp->fr_fix += fix;
}
/* Instruction bundles are always little-endian. */
memcpy (p, nop, 16);
fragp->fr_var = 16;
}
static void
ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
int prec)
{
while (prec--)
{
number_to_chars_bigendian (lit, (long) (*words++),
sizeof (LITTLENUM_TYPE));
lit += sizeof (LITTLENUM_TYPE);
}
}
static void
ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
int prec)
{
while (prec--)
{
number_to_chars_littleendian (lit, (long) (words[prec]),
sizeof (LITTLENUM_TYPE));
lit += sizeof (LITTLENUM_TYPE);
}
}
void
ia64_elf_section_change_hook (void)
{
dot_byteorder (-1);
}
/* Check if a label should be made global. */
void
ia64_check_label (symbolS *label)
{
if (*input_line_pointer == ':')
{
S_SET_EXTERNAL (label);
input_line_pointer++;
}
}
/* Used to remember where .alias and .secalias directives are seen. We
will rename symbol and section names when we are about to output
the relocatable file. */
struct alias
{
char *file; /* The file where the directive is seen. */
unsigned int line; /* The line number the directive is at. */
const char *name; /* The orignale name of the symbol. */
};
/* Called for .alias and .secalias directives. If SECTION is 1, it is
.secalias. Otherwise, it is .alias. */
static void
dot_alias (int section)
{
char *name, *alias;
char delim;
char *end_name;
int len;
const char *error_string;
struct alias *h;
const char *a;
struct hash_control *ahash, *nhash;
const char *kind;
name = input_line_pointer;
delim = get_symbol_end ();
end_name = input_line_pointer;
*end_name = delim;
if (name == end_name)
{
as_bad (_("expected symbol name"));
discard_rest_of_line ();
return;
}
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
*end_name = 0;
as_bad (_("expected comma after \"%s\""), name);
*end_name = delim;
ignore_rest_of_line ();
return;
}
input_line_pointer++;
*end_name = 0;
/* We call demand_copy_C_string to check if alias string is valid.
There should be a closing `"' and no `\0' in the string. */
alias = demand_copy_C_string (&len);
if (alias == NULL)
{
ignore_rest_of_line ();
return;
}
/* Make a copy of name string. */
len = strlen (name) + 1;
obstack_grow (&notes, name, len);
name = obstack_finish (&notes);
if (section)
{
kind = "section";
ahash = secalias_hash;
nhash = secalias_name_hash;
}
else
{
kind = "symbol";
ahash = alias_hash;
nhash = alias_name_hash;
}
/* Check if alias has been used before. */
h = (struct alias *) hash_find (ahash, alias);
if (h)
{
if (strcmp (h->name, name))
as_bad (_("`%s' is already the alias of %s `%s'"),
alias, kind, h->name);
goto out;
}
/* Check if name already has an alias. */
a = (const char *) hash_find (nhash, name);
if (a)
{
if (strcmp (a, alias))
as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
goto out;
}
h = (struct alias *) xmalloc (sizeof (struct alias));
as_where (&h->file, &h->line);
h->name = name;
error_string = hash_jam (ahash, alias, (PTR) h);
if (error_string)
{
as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
alias, kind, error_string);
goto out;
}
error_string = hash_jam (nhash, name, (PTR) alias);
if (error_string)
{
as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
alias, kind, error_string);
out:
obstack_free (&notes, name);
obstack_free (&notes, alias);
}
demand_empty_rest_of_line ();
}
/* It renames the original symbol name to its alias. */
static void
do_alias (const char *alias, PTR value)
{
struct alias *h = (struct alias *) value;
symbolS *sym = symbol_find (h->name);
if (sym == NULL)
as_warn_where (h->file, h->line,
_("symbol `%s' aliased to `%s' is not used"),
h->name, alias);
else
S_SET_NAME (sym, (char *) alias);
}
/* Called from write_object_file. */
void
ia64_adjust_symtab (void)
{
hash_traverse (alias_hash, do_alias);
}
/* It renames the original section name to its alias. */
static void
do_secalias (const char *alias, PTR value)
{
struct alias *h = (struct alias *) value;
segT sec = bfd_get_section_by_name (stdoutput, h->name);
if (sec == NULL)
as_warn_where (h->file, h->line,
_("section `%s' aliased to `%s' is not used"),
h->name, alias);
else
sec->name = alias;
}
/* Called from write_object_file. */
void
ia64_frob_file (void)
{
hash_traverse (secalias_hash, do_secalias);
}