freebsd-nq/contrib/wpa_supplicant/eap_ttls.c
2007-07-11 15:48:36 +00:00

1757 lines
48 KiB
C

/*
* EAP peer method: EAP-TTLS (draft-ietf-pppext-eap-ttls-03.txt)
* Copyright (c) 2004-2006, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "includes.h"
#include "common.h"
#include "eap_i.h"
#include "eap_tls_common.h"
#include "config_ssid.h"
#include "ms_funcs.h"
#include "sha1.h"
#include "crypto.h"
#include "tls.h"
#include "eap_ttls.h"
/* Maximum supported PEAP version
* 0 = draft-ietf-pppext-eap-ttls-03.txt / draft-funk-eap-ttls-v0-00.txt
* 1 = draft-funk-eap-ttls-v1-00.txt
*/
#define EAP_TTLS_VERSION 0 /* TTLSv1 implementation is not yet complete */
#define MSCHAPV2_KEY_LEN 16
static void eap_ttls_deinit(struct eap_sm *sm, void *priv);
struct eap_ttls_data {
struct eap_ssl_data ssl;
int ssl_initialized;
int ttls_version, force_ttls_version;
const struct eap_method *phase2_method;
void *phase2_priv;
int phase2_success;
int phase2_start;
enum {
EAP_TTLS_PHASE2_EAP,
EAP_TTLS_PHASE2_MSCHAPV2,
EAP_TTLS_PHASE2_MSCHAP,
EAP_TTLS_PHASE2_PAP,
EAP_TTLS_PHASE2_CHAP
} phase2_type;
struct eap_method_type phase2_eap_type;
struct eap_method_type *phase2_eap_types;
size_t num_phase2_eap_types;
u8 auth_response[20];
int auth_response_valid;
u8 ident;
int resuming; /* starting a resumed session */
int reauth; /* reauthentication */
u8 *key_data;
u8 *pending_phase2_req;
size_t pending_phase2_req_len;
};
static void * eap_ttls_init(struct eap_sm *sm)
{
struct eap_ttls_data *data;
struct wpa_ssid *config = eap_get_config(sm);
char *selected;
data = os_zalloc(sizeof(*data));
if (data == NULL)
return NULL;
data->ttls_version = EAP_TTLS_VERSION;
data->force_ttls_version = -1;
selected = "EAP";
data->phase2_type = EAP_TTLS_PHASE2_EAP;
if (config && config->phase1) {
char *pos = os_strstr(config->phase1, "ttlsver=");
if (pos) {
data->force_ttls_version = atoi(pos + 8);
data->ttls_version = data->force_ttls_version;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Forced TTLS version "
"%d", data->force_ttls_version);
}
}
if (config && config->phase2) {
if (os_strstr(config->phase2, "autheap=")) {
selected = "EAP";
data->phase2_type = EAP_TTLS_PHASE2_EAP;
} else if (os_strstr(config->phase2, "auth=MSCHAPV2")) {
selected = "MSCHAPV2";
data->phase2_type = EAP_TTLS_PHASE2_MSCHAPV2;
} else if (os_strstr(config->phase2, "auth=MSCHAP")) {
selected = "MSCHAP";
data->phase2_type = EAP_TTLS_PHASE2_MSCHAP;
} else if (os_strstr(config->phase2, "auth=PAP")) {
selected = "PAP";
data->phase2_type = EAP_TTLS_PHASE2_PAP;
} else if (os_strstr(config->phase2, "auth=CHAP")) {
selected = "CHAP";
data->phase2_type = EAP_TTLS_PHASE2_CHAP;
}
}
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase2 type: %s", selected);
if (data->phase2_type == EAP_TTLS_PHASE2_EAP) {
if (config && config->phase2) {
char *start, *pos, *buf;
struct eap_method_type *methods = NULL, *_methods;
u8 method;
size_t num_methods = 0;
start = buf = os_strdup(config->phase2);
if (buf == NULL) {
eap_ttls_deinit(sm, data);
return NULL;
}
while (start && *start != '\0') {
int vendor;
pos = os_strstr(start, "autheap=");
if (pos == NULL)
break;
if (start != pos && *(pos - 1) != ' ') {
start = pos + 8;
continue;
}
start = pos + 8;
pos = os_strchr(start, ' ');
if (pos)
*pos++ = '\0';
method = eap_get_phase2_type(start, &vendor);
if (vendor == EAP_VENDOR_IETF &&
method == EAP_TYPE_NONE) {
wpa_printf(MSG_ERROR, "EAP-TTLS: "
"Unsupported Phase2 EAP "
"method '%s'", start);
} else {
num_methods++;
_methods = os_realloc(
methods, num_methods *
sizeof(*methods));
if (_methods == NULL) {
os_free(methods);
os_free(buf);
eap_ttls_deinit(sm, data);
return NULL;
}
methods = _methods;
methods[num_methods - 1].vendor =
vendor;
methods[num_methods - 1].method =
method;
}
start = pos;
}
os_free(buf);
data->phase2_eap_types = methods;
data->num_phase2_eap_types = num_methods;
}
if (data->phase2_eap_types == NULL) {
data->phase2_eap_types = eap_get_phase2_types(
config, &data->num_phase2_eap_types);
}
if (data->phase2_eap_types == NULL) {
wpa_printf(MSG_ERROR, "EAP-TTLS: No Phase2 EAP method "
"available");
eap_ttls_deinit(sm, data);
return NULL;
}
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: Phase2 EAP types",
(u8 *) data->phase2_eap_types,
data->num_phase2_eap_types *
sizeof(struct eap_method_type));
data->phase2_eap_type.vendor = EAP_VENDOR_IETF;
data->phase2_eap_type.method = EAP_TYPE_NONE;
}
if (!(tls_capabilities(sm->ssl_ctx) & TLS_CAPABILITY_IA) &&
data->ttls_version > 0) {
if (data->force_ttls_version > 0) {
wpa_printf(MSG_INFO, "EAP-TTLS: Forced TTLSv%d and "
"TLS library does not support TLS/IA.",
data->force_ttls_version);
eap_ttls_deinit(sm, data);
return NULL;
}
data->ttls_version = 0;
}
return data;
}
static void eap_ttls_deinit(struct eap_sm *sm, void *priv)
{
struct eap_ttls_data *data = priv;
if (data == NULL)
return;
if (data->phase2_priv && data->phase2_method)
data->phase2_method->deinit(sm, data->phase2_priv);
os_free(data->phase2_eap_types);
if (data->ssl_initialized)
eap_tls_ssl_deinit(sm, &data->ssl);
os_free(data->key_data);
os_free(data->pending_phase2_req);
os_free(data);
}
static int eap_ttls_encrypt(struct eap_sm *sm, struct eap_ttls_data *data,
int id, const u8 *plain, size_t plain_len,
u8 **out_data, size_t *out_len)
{
int res;
u8 *pos;
struct eap_hdr *resp;
/* TODO: add support for fragmentation, if needed. This will need to
* add TLS Message Length field, if the frame is fragmented. */
resp = os_malloc(sizeof(struct eap_hdr) + 2 + data->ssl.tls_out_limit);
if (resp == NULL)
return -1;
resp->code = EAP_CODE_RESPONSE;
resp->identifier = id;
pos = (u8 *) (resp + 1);
*pos++ = EAP_TYPE_TTLS;
*pos++ = data->ttls_version;
res = tls_connection_encrypt(sm->ssl_ctx, data->ssl.conn,
plain, plain_len,
pos, data->ssl.tls_out_limit);
if (res < 0) {
wpa_printf(MSG_INFO, "EAP-TTLS: Failed to encrypt Phase 2 "
"data");
os_free(resp);
return -1;
}
*out_len = sizeof(struct eap_hdr) + 2 + res;
resp->length = host_to_be16(*out_len);
*out_data = (u8 *) resp;
return 0;
}
static u8 * eap_ttls_avp_hdr(u8 *avphdr, u32 avp_code, u32 vendor_id,
int mandatory, size_t len)
{
struct ttls_avp_vendor *avp;
u8 flags;
size_t hdrlen;
avp = (struct ttls_avp_vendor *) avphdr;
flags = mandatory ? AVP_FLAGS_MANDATORY : 0;
if (vendor_id) {
flags |= AVP_FLAGS_VENDOR;
hdrlen = sizeof(*avp);
avp->vendor_id = host_to_be32(vendor_id);
} else {
hdrlen = sizeof(struct ttls_avp);
}
avp->avp_code = host_to_be32(avp_code);
avp->avp_length = host_to_be32((flags << 24) | (hdrlen + len));
return avphdr + hdrlen;
}
static u8 * eap_ttls_avp_add(u8 *start, u8 *avphdr, u32 avp_code,
u32 vendor_id, int mandatory,
u8 *data, size_t len)
{
u8 *pos;
pos = eap_ttls_avp_hdr(avphdr, avp_code, vendor_id, mandatory, len);
os_memcpy(pos, data, len);
pos += len;
AVP_PAD(start, pos);
return pos;
}
static int eap_ttls_avp_encapsulate(u8 **resp, size_t *resp_len, u32 avp_code,
int mandatory)
{
u8 *avp, *pos;
avp = os_malloc(sizeof(struct ttls_avp) + *resp_len + 4);
if (avp == NULL) {
os_free(*resp);
*resp = NULL;
*resp_len = 0;
return -1;
}
pos = eap_ttls_avp_hdr(avp, avp_code, 0, mandatory, *resp_len);
os_memcpy(pos, *resp, *resp_len);
pos += *resp_len;
AVP_PAD(avp, pos);
os_free(*resp);
*resp = avp;
*resp_len = pos - avp;
return 0;
}
static int eap_ttls_ia_permute_inner_secret(struct eap_sm *sm,
struct eap_ttls_data *data,
const u8 *key, size_t key_len)
{
u8 *buf;
size_t buf_len;
int ret;
if (key) {
buf_len = 2 + key_len;
buf = os_malloc(buf_len);
if (buf == NULL)
return -1;
WPA_PUT_BE16(buf, key_len);
os_memcpy(buf + 2, key, key_len);
} else {
buf = NULL;
buf_len = 0;
}
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: Session keys for TLS/IA inner "
"secret permutation", buf, buf_len);
ret = tls_connection_ia_permute_inner_secret(sm->ssl_ctx,
data->ssl.conn,
buf, buf_len);
os_free(buf);
return ret;
}
static int eap_ttls_v0_derive_key(struct eap_sm *sm,
struct eap_ttls_data *data)
{
os_free(data->key_data);
data->key_data = eap_tls_derive_key(sm, &data->ssl,
"ttls keying material",
EAP_TLS_KEY_LEN);
if (!data->key_data) {
wpa_printf(MSG_INFO, "EAP-TTLS: Failed to derive key");
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: Derived key",
data->key_data, EAP_TLS_KEY_LEN);
return 0;
}
static int eap_ttls_v1_derive_key(struct eap_sm *sm,
struct eap_ttls_data *data)
{
struct tls_keys keys;
u8 *rnd;
os_free(data->key_data);
data->key_data = NULL;
os_memset(&keys, 0, sizeof(keys));
if (tls_connection_get_keys(sm->ssl_ctx, data->ssl.conn, &keys) ||
keys.client_random == NULL || keys.server_random == NULL ||
keys.inner_secret == NULL) {
wpa_printf(MSG_INFO, "EAP-TTLS: Could not get inner secret, "
"client random, or server random to derive keying "
"material");
return -1;
}
rnd = os_malloc(keys.client_random_len + keys.server_random_len);
data->key_data = os_malloc(EAP_TLS_KEY_LEN);
if (rnd == NULL || data->key_data == NULL) {
wpa_printf(MSG_INFO, "EAP-TTLS: No memory for key derivation");
os_free(rnd);
os_free(data->key_data);
data->key_data = NULL;
return -1;
}
os_memcpy(rnd, keys.client_random, keys.client_random_len);
os_memcpy(rnd + keys.client_random_len, keys.server_random,
keys.server_random_len);
if (tls_prf(keys.inner_secret, keys.inner_secret_len,
"ttls v1 keying material", rnd, keys.client_random_len +
keys.server_random_len, data->key_data, EAP_TLS_KEY_LEN)) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Failed to derive key");
os_free(rnd);
os_free(data->key_data);
data->key_data = NULL;
return -1;
}
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: client/server random",
rnd, keys.client_random_len + keys.server_random_len);
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: TLS/IA inner secret",
keys.inner_secret, keys.inner_secret_len);
os_free(rnd);
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: Derived key",
data->key_data, EAP_TLS_KEY_LEN);
return 0;
}
static u8 * eap_ttls_implicit_challenge(struct eap_sm *sm,
struct eap_ttls_data *data, size_t len)
{
struct tls_keys keys;
u8 *challenge, *rnd;
if (data->ttls_version == 0) {
return eap_tls_derive_key(sm, &data->ssl, "ttls challenge",
len);
}
os_memset(&keys, 0, sizeof(keys));
if (tls_connection_get_keys(sm->ssl_ctx, data->ssl.conn, &keys) ||
keys.client_random == NULL || keys.server_random == NULL ||
keys.inner_secret == NULL) {
wpa_printf(MSG_INFO, "EAP-TTLS: Could not get inner secret, "
"client random, or server random to derive "
"implicit challenge");
return NULL;
}
rnd = os_malloc(keys.client_random_len + keys.server_random_len);
challenge = os_malloc(len);
if (rnd == NULL || challenge == NULL) {
wpa_printf(MSG_INFO, "EAP-TTLS: No memory for implicit "
"challenge derivation");
os_free(rnd);
os_free(challenge);
return NULL;
}
os_memcpy(rnd, keys.server_random, keys.server_random_len);
os_memcpy(rnd + keys.server_random_len, keys.client_random,
keys.client_random_len);
if (tls_prf(keys.inner_secret, keys.inner_secret_len,
"inner application challenge", rnd,
keys.client_random_len + keys.server_random_len,
challenge, len)) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Failed to derive implicit "
"challenge");
os_free(rnd);
os_free(challenge);
return NULL;
}
os_free(rnd);
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: Derived implicit challenge",
challenge, len);
return challenge;
}
static int eap_ttls_phase2_nak(struct eap_ttls_data *data, struct eap_hdr *hdr,
u8 **resp, size_t *resp_len)
{
struct eap_hdr *resp_hdr;
u8 *pos = (u8 *) (hdr + 1);
size_t i;
/* TODO: add support for expanded Nak */
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 Request: Nak type=%d", *pos);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: Allowed Phase2 EAP types",
(u8 *) data->phase2_eap_types, data->num_phase2_eap_types *
sizeof(struct eap_method_type));
*resp_len = sizeof(struct eap_hdr) + 1;
*resp = os_malloc(*resp_len + data->num_phase2_eap_types);
if (*resp == NULL)
return -1;
resp_hdr = (struct eap_hdr *) (*resp);
resp_hdr->code = EAP_CODE_RESPONSE;
resp_hdr->identifier = hdr->identifier;
pos = (u8 *) (resp_hdr + 1);
*pos++ = EAP_TYPE_NAK;
for (i = 0; i < data->num_phase2_eap_types; i++) {
if (data->phase2_eap_types[i].vendor == EAP_VENDOR_IETF &&
data->phase2_eap_types[i].method < 256) {
(*resp_len)++;
*pos++ = data->phase2_eap_types[i].method;
}
}
resp_hdr->length = host_to_be16(*resp_len);
return 0;
}
static int eap_ttls_phase2_request_eap(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
struct eap_hdr *hdr,
u8 **resp, size_t *resp_len)
{
size_t len = be_to_host16(hdr->length);
u8 *pos;
struct eap_method_ret iret;
struct wpa_ssid *config = eap_get_config(sm);
if (len <= sizeof(struct eap_hdr)) {
wpa_printf(MSG_INFO, "EAP-TTLS: too short "
"Phase 2 request (len=%lu)", (unsigned long) len);
return -1;
}
pos = (u8 *) (hdr + 1);
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 EAP Request: type=%d", *pos);
switch (*pos) {
case EAP_TYPE_IDENTITY:
*resp = eap_sm_buildIdentity(sm, hdr->identifier, resp_len, 1);
break;
default:
if (data->phase2_eap_type.vendor == EAP_VENDOR_IETF &&
data->phase2_eap_type.method == EAP_TYPE_NONE) {
size_t i;
for (i = 0; i < data->num_phase2_eap_types; i++) {
if (data->phase2_eap_types[i].vendor !=
EAP_VENDOR_IETF ||
data->phase2_eap_types[i].method != *pos)
continue;
data->phase2_eap_type.vendor =
data->phase2_eap_types[i].vendor;
data->phase2_eap_type.method =
data->phase2_eap_types[i].method;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Selected "
"Phase 2 EAP vendor %d method %d",
data->phase2_eap_type.vendor,
data->phase2_eap_type.method);
break;
}
}
if (*pos != data->phase2_eap_type.method ||
*pos == EAP_TYPE_NONE) {
if (eap_ttls_phase2_nak(data, hdr, resp, resp_len))
return -1;
break;
}
if (data->phase2_priv == NULL) {
data->phase2_method = eap_sm_get_eap_methods(
EAP_VENDOR_IETF, *pos);
if (data->phase2_method) {
sm->init_phase2 = 1;
sm->mschapv2_full_key = 1;
data->phase2_priv =
data->phase2_method->init(sm);
sm->init_phase2 = 0;
sm->mschapv2_full_key = 0;
}
}
if (data->phase2_priv == NULL || data->phase2_method == NULL) {
wpa_printf(MSG_INFO, "EAP-TTLS: failed to initialize "
"Phase 2 EAP method %d", *pos);
return -1;
}
os_memset(&iret, 0, sizeof(iret));
*resp = data->phase2_method->process(sm, data->phase2_priv,
&iret, (u8 *) hdr, len,
resp_len);
if ((iret.methodState == METHOD_DONE ||
iret.methodState == METHOD_MAY_CONT) &&
(iret.decision == DECISION_UNCOND_SUCC ||
iret.decision == DECISION_COND_SUCC ||
iret.decision == DECISION_FAIL)) {
ret->methodState = iret.methodState;
ret->decision = iret.decision;
}
if (data->ttls_version > 0) {
const struct eap_method *m = data->phase2_method;
void *priv = data->phase2_priv;
/* TTLSv1 requires TLS/IA FinalPhaseFinished */
if (ret->decision == DECISION_UNCOND_SUCC)
ret->decision = DECISION_COND_SUCC;
ret->methodState = METHOD_CONT;
if (ret->decision == DECISION_COND_SUCC &&
m->isKeyAvailable && m->getKey &&
m->isKeyAvailable(sm, priv)) {
u8 *key;
size_t key_len;
key = m->getKey(sm, priv, &key_len);
if (key) {
eap_ttls_ia_permute_inner_secret(
sm, data, key, key_len);
os_free(key);
}
}
}
break;
}
if (*resp == NULL &&
(config->pending_req_identity || config->pending_req_password ||
config->pending_req_otp)) {
return 0;
}
if (*resp == NULL)
return -1;
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: AVP encapsulate EAP Response",
*resp, *resp_len);
return eap_ttls_avp_encapsulate(resp, resp_len,
RADIUS_ATTR_EAP_MESSAGE, 1);
}
static int eap_ttls_phase2_request_mschapv2(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
u8 **resp, size_t *resp_len)
{
struct wpa_ssid *config = eap_get_config(sm);
u8 *buf, *pos, *challenge, *username, *peer_challenge;
size_t username_len, i;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 MSCHAPV2 Request");
/* MSCHAPv2 does not include optional domain name in the
* challenge-response calculation, so remove domain prefix
* (if present). */
username = config->identity;
username_len = config->identity_len;
pos = username;
for (i = 0; i < username_len; i++) {
if (username[i] == '\\') {
username_len -= i + 1;
username += i + 1;
break;
}
}
pos = buf = os_malloc(config->identity_len + 1000);
if (buf == NULL) {
wpa_printf(MSG_ERROR,
"EAP-TTLS/MSCHAPV2: Failed to allocate memory");
return -1;
}
/* User-Name */
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_USER_NAME, 0, 1,
config->identity, config->identity_len);
/* MS-CHAP-Challenge */
challenge = eap_ttls_implicit_challenge(
sm, data, EAP_TTLS_MSCHAPV2_CHALLENGE_LEN * 2 + 1);
if (challenge == NULL) {
os_free(buf);
wpa_printf(MSG_ERROR, "EAP-TTLS/MSCHAPV2: Failed to derive "
"implicit challenge");
return -1;
}
peer_challenge = challenge + 1 + EAP_TTLS_MSCHAPV2_CHALLENGE_LEN;
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_MS_CHAP_CHALLENGE,
RADIUS_VENDOR_ID_MICROSOFT, 1,
challenge, EAP_TTLS_MSCHAPV2_CHALLENGE_LEN);
/* MS-CHAP2-Response */
pos = eap_ttls_avp_hdr(pos, RADIUS_ATTR_MS_CHAP2_RESPONSE,
RADIUS_VENDOR_ID_MICROSOFT, 1,
EAP_TTLS_MSCHAPV2_RESPONSE_LEN);
data->ident = challenge[EAP_TTLS_MSCHAPV2_CHALLENGE_LEN];
*pos++ = data->ident;
*pos++ = 0; /* Flags */
os_memcpy(pos, peer_challenge, EAP_TTLS_MSCHAPV2_CHALLENGE_LEN);
pos += EAP_TTLS_MSCHAPV2_CHALLENGE_LEN;
os_memset(pos, 0, 8); /* Reserved, must be zero */
pos += 8;
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: MSCHAPV2: implicit auth_challenge",
challenge, EAP_TTLS_MSCHAPV2_CHALLENGE_LEN);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: MSCHAPV2: peer_challenge",
peer_challenge, EAP_TTLS_MSCHAPV2_CHALLENGE_LEN);
wpa_hexdump_ascii(MSG_DEBUG, "EAP-TTLS: MSCHAPV2 username",
username, username_len);
wpa_hexdump_ascii_key(MSG_DEBUG, "EAP-TTLS: MSCHAPV2 password",
config->password, config->password_len);
generate_nt_response(challenge, peer_challenge,
username, username_len,
config->password, config->password_len,
pos);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: MSCHAPV2 response", pos, 24);
generate_authenticator_response(config->password, config->password_len,
peer_challenge, challenge,
username, username_len,
pos, data->auth_response);
data->auth_response_valid = 1;
if (data->ttls_version > 0) {
u8 pw_hash[16], pw_hash_hash[16], master_key[16];
u8 session_key[2 * MSCHAPV2_KEY_LEN];
nt_password_hash(config->password, config->password_len,
pw_hash);
hash_nt_password_hash(pw_hash, pw_hash_hash);
get_master_key(pw_hash_hash, pos /* nt_response */,
master_key);
get_asymetric_start_key(master_key, session_key,
MSCHAPV2_KEY_LEN, 0, 0);
get_asymetric_start_key(master_key,
session_key + MSCHAPV2_KEY_LEN,
MSCHAPV2_KEY_LEN, 1, 0);
eap_ttls_ia_permute_inner_secret(sm, data,
session_key,
sizeof(session_key));
}
pos += 24;
os_free(challenge);
AVP_PAD(buf, pos);
*resp = buf;
*resp_len = pos - buf;
if (sm->workaround && data->ttls_version == 0) {
/* At least FreeRADIUS seems to be terminating
* EAP-TTLS/MSHCAPV2 without the expected MS-CHAP-v2 Success
* packet. */
wpa_printf(MSG_DEBUG, "EAP-TTLS/MSCHAPV2: EAP workaround - "
"allow success without tunneled response");
ret->methodState = METHOD_MAY_CONT;
ret->decision = DECISION_COND_SUCC;
}
return 0;
}
static int eap_ttls_phase2_request_mschap(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
u8 **resp, size_t *resp_len)
{
struct wpa_ssid *config = eap_get_config(sm);
u8 *buf, *pos, *challenge;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 MSCHAP Request");
pos = buf = os_malloc(config->identity_len + 1000);
if (buf == NULL) {
wpa_printf(MSG_ERROR,
"EAP-TTLS/MSCHAP: Failed to allocate memory");
return -1;
}
/* User-Name */
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_USER_NAME, 0, 1,
config->identity, config->identity_len);
/* MS-CHAP-Challenge */
challenge = eap_ttls_implicit_challenge(sm, data, EAP_TLS_KEY_LEN);
if (challenge == NULL) {
os_free(buf);
wpa_printf(MSG_ERROR, "EAP-TTLS/MSCHAP: Failed to derive "
"implicit challenge");
return -1;
}
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_MS_CHAP_CHALLENGE,
RADIUS_VENDOR_ID_MICROSOFT, 1,
challenge, EAP_TTLS_MSCHAP_CHALLENGE_LEN);
/* MS-CHAP-Response */
pos = eap_ttls_avp_hdr(pos, RADIUS_ATTR_MS_CHAP_RESPONSE,
RADIUS_VENDOR_ID_MICROSOFT, 1,
EAP_TTLS_MSCHAP_RESPONSE_LEN);
data->ident = challenge[EAP_TTLS_MSCHAP_CHALLENGE_LEN];
*pos++ = data->ident;
*pos++ = 1; /* Flags: Use NT style passwords */
os_memset(pos, 0, 24); /* LM-Response */
pos += 24;
nt_challenge_response(challenge,
config->password, config->password_len,
pos); /* NT-Response */
wpa_hexdump_ascii_key(MSG_DEBUG, "EAP-TTLS: MSCHAP password",
config->password, config->password_len);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: MSCHAP implicit challenge",
challenge, EAP_TTLS_MSCHAP_CHALLENGE_LEN);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: MSCHAP response", pos, 24);
pos += 24;
os_free(challenge);
AVP_PAD(buf, pos);
*resp = buf;
*resp_len = pos - buf;
if (data->ttls_version > 0) {
/* EAP-TTLSv1 uses TLS/IA FinalPhaseFinished to report success,
* so do not allow connection to be terminated yet. */
ret->methodState = METHOD_CONT;
ret->decision = DECISION_COND_SUCC;
} else {
/* EAP-TTLS/MSCHAP does not provide tunneled success
* notification, so assume that Phase2 succeeds. */
ret->methodState = METHOD_DONE;
ret->decision = DECISION_COND_SUCC;
}
return 0;
}
static int eap_ttls_phase2_request_pap(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
u8 **resp, size_t *resp_len)
{
struct wpa_ssid *config = eap_get_config(sm);
u8 *buf, *pos;
size_t pad;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 PAP Request");
pos = buf = os_malloc(config->identity_len + config->password_len +
100);
if (buf == NULL) {
wpa_printf(MSG_ERROR,
"EAP-TTLS/PAP: Failed to allocate memory");
return -1;
}
/* User-Name */
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_USER_NAME, 0, 1,
config->identity, config->identity_len);
/* User-Password; in RADIUS, this is encrypted, but EAP-TTLS encrypts
* the data, so no separate encryption is used in the AVP itself.
* However, the password is padded to obfuscate its length. */
pad = (16 - (config->password_len & 15)) & 15;
pos = eap_ttls_avp_hdr(pos, RADIUS_ATTR_USER_PASSWORD, 0, 1,
config->password_len + pad);
os_memcpy(pos, config->password, config->password_len);
pos += config->password_len;
os_memset(pos, 0, pad);
pos += pad;
AVP_PAD(buf, pos);
*resp = buf;
*resp_len = pos - buf;
if (data->ttls_version > 0) {
/* EAP-TTLSv1 uses TLS/IA FinalPhaseFinished to report success,
* so do not allow connection to be terminated yet. */
ret->methodState = METHOD_CONT;
ret->decision = DECISION_COND_SUCC;
} else {
/* EAP-TTLS/PAP does not provide tunneled success notification,
* so assume that Phase2 succeeds. */
ret->methodState = METHOD_DONE;
ret->decision = DECISION_COND_SUCC;
}
return 0;
}
static int eap_ttls_phase2_request_chap(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
u8 **resp, size_t *resp_len)
{
struct wpa_ssid *config = eap_get_config(sm);
u8 *buf, *pos, *challenge;
const u8 *addr[3];
size_t len[3];
wpa_printf(MSG_DEBUG, "EAP-TTLS: Phase 2 CHAP Request");
pos = buf = os_malloc(config->identity_len + 1000);
if (buf == NULL) {
wpa_printf(MSG_ERROR,
"EAP-TTLS/CHAP: Failed to allocate memory");
return -1;
}
/* User-Name */
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_USER_NAME, 0, 1,
config->identity, config->identity_len);
/* CHAP-Challenge */
challenge = eap_ttls_implicit_challenge(sm, data, EAP_TLS_KEY_LEN);
if (challenge == NULL) {
os_free(buf);
wpa_printf(MSG_ERROR, "EAP-TTLS/CHAP: Failed to derive "
"implicit challenge");
return -1;
}
pos = eap_ttls_avp_add(buf, pos, RADIUS_ATTR_CHAP_CHALLENGE, 0, 1,
challenge, EAP_TTLS_CHAP_CHALLENGE_LEN);
/* CHAP-Password */
pos = eap_ttls_avp_hdr(pos, RADIUS_ATTR_CHAP_PASSWORD, 0, 1,
1 + EAP_TTLS_CHAP_PASSWORD_LEN);
data->ident = challenge[EAP_TTLS_CHAP_CHALLENGE_LEN];
*pos++ = data->ident;
/* MD5(Ident + Password + Challenge) */
addr[0] = &data->ident;
len[0] = 1;
addr[1] = config->password;
len[1] = config->password_len;
addr[2] = challenge;
len[2] = EAP_TTLS_CHAP_CHALLENGE_LEN;
md5_vector(3, addr, len, pos);
wpa_hexdump_ascii(MSG_DEBUG, "EAP-TTLS: CHAP username",
config->identity, config->identity_len);
wpa_hexdump_ascii_key(MSG_DEBUG, "EAP-TTLS: CHAP password",
config->password, config->password_len);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: CHAP implicit challenge",
challenge, EAP_TTLS_CHAP_CHALLENGE_LEN);
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: CHAP password",
pos, EAP_TTLS_CHAP_PASSWORD_LEN);
pos += EAP_TTLS_CHAP_PASSWORD_LEN;
os_free(challenge);
AVP_PAD(buf, pos);
*resp = buf;
*resp_len = pos - buf;
if (data->ttls_version > 0) {
/* EAP-TTLSv1 uses TLS/IA FinalPhaseFinished to report success,
* so do not allow connection to be terminated yet. */
ret->methodState = METHOD_CONT;
ret->decision = DECISION_COND_SUCC;
} else {
/* EAP-TTLS/CHAP does not provide tunneled success
* notification, so assume that Phase2 succeeds. */
ret->methodState = METHOD_DONE;
ret->decision = DECISION_COND_SUCC;
}
return 0;
}
static int eap_ttls_phase2_request(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret,
const struct eap_hdr *req,
struct eap_hdr *hdr,
u8 **resp, size_t *resp_len)
{
int res = 0;
size_t len;
if (data->phase2_type == EAP_TTLS_PHASE2_MSCHAPV2 ||
data->phase2_type == EAP_TTLS_PHASE2_MSCHAP ||
data->phase2_type == EAP_TTLS_PHASE2_PAP ||
data->phase2_type == EAP_TTLS_PHASE2_CHAP) {
if (eap_get_config_identity(sm, &len) == NULL) {
wpa_printf(MSG_INFO,
"EAP-TTLS: Identity not configured");
eap_sm_request_identity(sm);
if (eap_get_config_password(sm, &len) == NULL)
eap_sm_request_password(sm);
return 0;
}
if (eap_get_config_password(sm, &len) == NULL) {
wpa_printf(MSG_INFO,
"EAP-TTLS: Password not configured");
eap_sm_request_password(sm);
return 0;
}
}
switch (data->phase2_type) {
case EAP_TTLS_PHASE2_EAP:
res = eap_ttls_phase2_request_eap(sm, data, ret, hdr,
resp, resp_len);
break;
case EAP_TTLS_PHASE2_MSCHAPV2:
res = eap_ttls_phase2_request_mschapv2(sm, data, ret,
resp, resp_len);
break;
case EAP_TTLS_PHASE2_MSCHAP:
res = eap_ttls_phase2_request_mschap(sm, data, ret,
resp, resp_len);
break;
case EAP_TTLS_PHASE2_PAP:
res = eap_ttls_phase2_request_pap(sm, data, ret,
resp, resp_len);
break;
case EAP_TTLS_PHASE2_CHAP:
res = eap_ttls_phase2_request_chap(sm, data, ret,
resp, resp_len);
break;
default:
wpa_printf(MSG_ERROR, "EAP-TTLS: Phase 2 - Unknown");
res = -1;
break;
}
if (res < 0) {
ret->methodState = METHOD_DONE;
ret->decision = DECISION_FAIL;
}
return res;
}
static u8 * eap_ttls_build_phase_finished(struct eap_sm *sm,
struct eap_ttls_data *data,
int id, int final,
size_t *reqDataLen)
{
int len;
struct eap_hdr *req;
u8 *pos;
const int max_len = 300;
len = sizeof(struct eap_hdr) + 2 + max_len;
req = os_malloc(len);
if (req == NULL)
return NULL;
req->code = EAP_CODE_RESPONSE;
req->identifier = id;
pos = (u8 *) (req + 1);
*pos++ = EAP_TYPE_TTLS;
*pos++ = data->ttls_version;
len = tls_connection_ia_send_phase_finished(sm->ssl_ctx,
data->ssl.conn,
final, pos, max_len);
if (len < 0) {
os_free(req);
return NULL;
}
*reqDataLen = sizeof(struct eap_hdr) + 2 + len;
req->length = host_to_be16(*reqDataLen);
return (u8 *) req;
}
static int eap_ttls_decrypt(struct eap_sm *sm, struct eap_ttls_data *data,
struct eap_method_ret *ret,
const struct eap_hdr *req,
const u8 *in_data, size_t in_len,
u8 **out_data, size_t *out_len)
{
u8 *in_decrypted = NULL, *pos;
int res, retval = 0;
struct eap_hdr *hdr = NULL;
u8 *resp = NULL, *mschapv2 = NULL, *eapdata = NULL;
size_t resp_len, eap_len = 0, len_decrypted = 0, len, buf_len, left;
struct ttls_avp *avp;
u8 recv_response[20];
int mschapv2_error = 0;
struct wpa_ssid *config = eap_get_config(sm);
const u8 *msg;
size_t msg_len;
int need_more_input;
wpa_printf(MSG_DEBUG, "EAP-TTLS: received %lu bytes encrypted data for"
" Phase 2", (unsigned long) in_len);
if (data->pending_phase2_req) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Pending Phase 2 request - "
"skip decryption and use old data");
/* Clear TLS reassembly state. */
os_free(data->ssl.tls_in);
data->ssl.tls_in = NULL;
data->ssl.tls_in_len = 0;
data->ssl.tls_in_left = 0;
data->ssl.tls_in_total = 0;
in_decrypted = data->pending_phase2_req;
data->pending_phase2_req = NULL;
len_decrypted = data->pending_phase2_req_len;
if (data->pending_phase2_req_len == 0) {
os_free(in_decrypted);
in_decrypted = NULL;
goto fake_req_identity;
}
goto continue_req;
}
if (in_len == 0 && data->phase2_start) {
data->phase2_start = 0;
/* EAP-TTLS does not use Phase2 on fast re-auth; this must be
* done only if TLS part was indeed resuming a previous
* session. Most Authentication Servers terminate EAP-TTLS
* before reaching this point, but some do not. Make
* wpa_supplicant stop phase 2 here, if needed. */
if (data->reauth &&
tls_connection_resumed(sm->ssl_ctx, data->ssl.conn)) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Session resumption - "
"skip phase 2");
*out_data = eap_tls_build_ack(&data->ssl, out_len,
req->identifier,
EAP_TYPE_TTLS, 0);
ret->methodState = METHOD_DONE;
ret->decision = DECISION_UNCOND_SUCC;
data->phase2_success = 1;
return 0;
}
fake_req_identity:
wpa_printf(MSG_DEBUG, "EAP-TTLS: empty data in beginning of "
"Phase 2 - use fake EAP-Request Identity");
buf_len = sizeof(*hdr) + 1;
in_decrypted = os_malloc(buf_len);
if (in_decrypted == NULL) {
wpa_printf(MSG_WARNING, "EAP-TTLS: failed to allocate "
"memory for fake EAP-Identity Request");
retval = -1;
goto done;
}
hdr = (struct eap_hdr *) in_decrypted;
hdr->code = EAP_CODE_REQUEST;
hdr->identifier = 0;
hdr->length = host_to_be16(sizeof(*hdr) + 1);
in_decrypted[sizeof(*hdr)] = EAP_TYPE_IDENTITY;
goto process_eap;
}
msg = eap_tls_data_reassemble(sm, &data->ssl, in_data, in_len,
&msg_len, &need_more_input);
if (msg == NULL)
return need_more_input ? 1 : -1;
buf_len = in_len;
if (data->ssl.tls_in_total > buf_len)
buf_len = data->ssl.tls_in_total;
in_decrypted = os_malloc(buf_len);
if (in_decrypted == NULL) {
os_free(data->ssl.tls_in);
data->ssl.tls_in = NULL;
data->ssl.tls_in_len = 0;
wpa_printf(MSG_WARNING, "EAP-TTLS: failed to allocate memory "
"for decryption");
retval = -1;
goto done;
}
res = tls_connection_decrypt(sm->ssl_ctx, data->ssl.conn,
msg, msg_len, in_decrypted, buf_len);
os_free(data->ssl.tls_in);
data->ssl.tls_in = NULL;
data->ssl.tls_in_len = 0;
if (res < 0) {
wpa_printf(MSG_INFO, "EAP-TTLS: Failed to decrypt Phase 2 "
"data");
retval = -1;
goto done;
}
len_decrypted = res;
if (data->ttls_version > 0 && len_decrypted == 0 &&
tls_connection_ia_final_phase_finished(sm->ssl_ctx,
data->ssl.conn)) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: FinalPhaseFinished received");
wpa_printf(MSG_INFO, "EAP-TTLS: TLS/IA authentication "
"succeeded");
ret->methodState = METHOD_DONE;
ret->decision = DECISION_UNCOND_SUCC;
data->phase2_success = 1;
*out_data = eap_ttls_build_phase_finished(sm, data,
req->identifier, 1,
out_len);
eap_ttls_v1_derive_key(sm, data);
goto done;
}
continue_req:
data->phase2_start = 0;
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: Decrypted Phase 2 AVPs",
in_decrypted, len_decrypted);
if (len_decrypted < sizeof(struct ttls_avp)) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Too short Phase 2 AVP frame"
" len=%lu expected %lu or more - dropped",
(unsigned long) len_decrypted,
(unsigned long) sizeof(struct ttls_avp));
retval = -1;
goto done;
}
/* Parse AVPs */
pos = in_decrypted;
left = len_decrypted;
mschapv2 = NULL;
while (left > 0) {
u32 avp_code, avp_length, vendor_id = 0;
u8 avp_flags, *dpos;
size_t pad, dlen;
avp = (struct ttls_avp *) pos;
avp_code = be_to_host32(avp->avp_code);
avp_length = be_to_host32(avp->avp_length);
avp_flags = (avp_length >> 24) & 0xff;
avp_length &= 0xffffff;
wpa_printf(MSG_DEBUG, "EAP-TTLS: AVP: code=%d flags=0x%02x "
"length=%d", (int) avp_code, avp_flags,
(int) avp_length);
if (avp_length > left) {
wpa_printf(MSG_WARNING, "EAP-TTLS: AVP overflow "
"(len=%d, left=%lu) - dropped",
(int) avp_length, (unsigned long) left);
retval = -1;
goto done;
}
if (avp_length < sizeof(*avp)) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Invalid AVP length "
"%d", avp_length);
retval = -1;
goto done;
}
dpos = (u8 *) (avp + 1);
dlen = avp_length - sizeof(*avp);
if (avp_flags & AVP_FLAGS_VENDOR) {
if (dlen < 4) {
wpa_printf(MSG_WARNING, "EAP-TTLS: vendor AVP "
"underflow");
retval = -1;
goto done;
}
vendor_id = be_to_host32(* (u32 *) dpos);
wpa_printf(MSG_DEBUG, "EAP-TTLS: AVP vendor_id %d",
(int) vendor_id);
dpos += 4;
dlen -= 4;
}
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: AVP data", dpos, dlen);
if (vendor_id == 0 && avp_code == RADIUS_ATTR_EAP_MESSAGE) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: AVP - EAP Message");
if (eapdata == NULL) {
eapdata = os_malloc(dlen);
if (eapdata == NULL) {
retval = -1;
wpa_printf(MSG_WARNING, "EAP-TTLS: "
"failed to allocate memory "
"for Phase 2 EAP data");
goto done;
}
os_memcpy(eapdata, dpos, dlen);
eap_len = dlen;
} else {
u8 *neweap = os_realloc(eapdata,
eap_len + dlen);
if (neweap == NULL) {
retval = -1;
wpa_printf(MSG_WARNING, "EAP-TTLS: "
"failed to allocate memory "
"for Phase 2 EAP data");
goto done;
}
os_memcpy(neweap + eap_len, dpos, dlen);
eapdata = neweap;
eap_len += dlen;
}
} else if (vendor_id == 0 &&
avp_code == RADIUS_ATTR_REPLY_MESSAGE) {
/* This is an optional message that can be displayed to
* the user. */
wpa_hexdump_ascii(MSG_DEBUG,
"EAP-TTLS: AVP - Reply-Message",
dpos, dlen);
} else if (vendor_id == RADIUS_VENDOR_ID_MICROSOFT &&
avp_code == RADIUS_ATTR_MS_CHAP2_SUCCESS) {
wpa_hexdump_ascii(MSG_DEBUG, "EAP-TTLS: "
"MS-CHAP2-Success", dpos, dlen);
if (dlen != 43) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Unexpected "
"MS-CHAP2-Success length "
"(len=%lu, expected 43)",
(unsigned long) dlen);
retval = -1;
break;
}
mschapv2 = dpos;
} else if (vendor_id == RADIUS_VENDOR_ID_MICROSOFT &&
avp_code == RADIUS_ATTR_MS_CHAP_ERROR) {
wpa_hexdump_ascii(MSG_DEBUG, "EAP-TTLS: "
"MS-CHAP-Error", dpos, dlen);
mschapv2_error = 1;
} else if (avp_flags & AVP_FLAGS_MANDATORY) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Unsupported "
"mandatory AVP code %d vendor_id %d - "
"dropped", (int) avp_code, (int) vendor_id);
retval = -1;
goto done;
} else {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Ignoring unsupported "
"AVP code %d vendor_id %d",
(int) avp_code, (int) vendor_id);
}
pad = (4 - (avp_length & 3)) & 3;
pos += avp_length + pad;
if (left < avp_length + pad)
left = 0;
else
left -= avp_length + pad;
}
switch (data->phase2_type) {
case EAP_TTLS_PHASE2_EAP:
if (eapdata == NULL) {
wpa_printf(MSG_WARNING, "EAP-TTLS: No EAP Message in "
"the packet - dropped");
retval = -1;
goto done;
}
wpa_hexdump(MSG_DEBUG, "EAP-TTLS: Phase 2 EAP",
eapdata, eap_len);
hdr = (struct eap_hdr *) eapdata;
if (eap_len < sizeof(*hdr)) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Too short Phase 2 "
"EAP frame (len=%lu, expected %lu or more) "
"- dropped", (unsigned long) eap_len,
(unsigned long) sizeof(*hdr));
retval = -1;
goto done;
}
len = be_to_host16(hdr->length);
if (len > eap_len) {
wpa_printf(MSG_INFO, "EAP-TTLS: Length mismatch in "
"Phase 2 EAP frame (EAP hdr len=%lu, EAP "
"data len in AVP=%lu)",
(unsigned long) len,
(unsigned long) eap_len);
retval = -1;
goto done;
}
wpa_printf(MSG_DEBUG, "EAP-TTLS: received Phase 2: code=%d "
"identifier=%d length=%lu",
hdr->code, hdr->identifier, (unsigned long) len);
process_eap:
switch (hdr->code) {
case EAP_CODE_REQUEST:
if (eap_ttls_phase2_request(sm, data, ret, req, hdr,
&resp, &resp_len)) {
wpa_printf(MSG_INFO, "EAP-TTLS: Phase2 "
"Request processing failed");
retval = -1;
goto done;
}
break;
default:
wpa_printf(MSG_INFO, "EAP-TTLS: Unexpected code=%d in "
"Phase 2 EAP header", hdr->code);
retval = -1;
break;
}
break;
case EAP_TTLS_PHASE2_MSCHAPV2:
if (mschapv2_error) {
wpa_printf(MSG_DEBUG, "EAP-TTLS/MSCHAPV2: Received "
"MS-CHAP-Error - failed");
ret->methodState = METHOD_DONE;
ret->decision = DECISION_FAIL;
*out_data = eap_tls_build_ack(&data->ssl, out_len,
req->identifier,
EAP_TYPE_TTLS, 0);
break;
}
if (mschapv2 == NULL) {
wpa_printf(MSG_WARNING, "EAP-TTLS: no MS-CHAP2-Success"
" AVP received for Phase2 MSCHAPV2");
retval = -1;
break;
}
if (mschapv2[0] != data->ident) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Ident mismatch "
"for Phase 2 MSCHAPV2 (received Ident "
"0x%02x, expected 0x%02x)",
mschapv2[0], data->ident);
retval = -1;
break;
}
if (!data->auth_response_valid ||
mschapv2[1] != 'S' || mschapv2[2] != '=' ||
hexstr2bin((char *) (mschapv2 + 3), recv_response, 20) ||
os_memcmp(data->auth_response, recv_response, 20) != 0) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Invalid "
"authenticator response in Phase 2 "
"MSCHAPV2 success request");
retval = -1;
break;
}
wpa_printf(MSG_INFO, "EAP-TTLS: Phase 2 MSCHAPV2 "
"authentication succeeded");
if (data->ttls_version > 0) {
/* EAP-TTLSv1 uses TLS/IA FinalPhaseFinished to report
* success, so do not allow connection to be terminated
* yet. */
ret->methodState = METHOD_CONT;
ret->decision = DECISION_COND_SUCC;
} else {
ret->methodState = METHOD_DONE;
ret->decision = DECISION_UNCOND_SUCC;
data->phase2_success = 1;
}
/* Reply with empty data; authentication server will reply
* with EAP-Success after this. */
retval = 1;
goto done;
case EAP_TTLS_PHASE2_MSCHAP:
case EAP_TTLS_PHASE2_PAP:
case EAP_TTLS_PHASE2_CHAP:
/* EAP-TTLS/{MSCHAP,PAP,CHAP} should not send any TLS tunneled
* requests to the supplicant */
wpa_printf(MSG_INFO, "EAP-TTLS: Phase 2 received unexpected "
"tunneled data");
retval = -1;
break;
}
if (resp) {
wpa_hexdump_key(MSG_DEBUG, "EAP-TTLS: Encrypting Phase 2 data",
resp, resp_len);
if (eap_ttls_encrypt(sm, data, req->identifier,
resp, resp_len, out_data, out_len)) {
wpa_printf(MSG_INFO, "EAP-TTLS: Failed to encrypt "
"a Phase 2 frame");
}
os_free(resp);
} else if (config->pending_req_identity ||
config->pending_req_password ||
config->pending_req_otp ||
config->pending_req_new_password) {
os_free(data->pending_phase2_req);
data->pending_phase2_req = os_malloc(len_decrypted);
if (data->pending_phase2_req) {
os_memcpy(data->pending_phase2_req, in_decrypted,
len_decrypted);
data->pending_phase2_req_len = len_decrypted;
}
}
done:
os_free(in_decrypted);
os_free(eapdata);
if (retval < 0) {
ret->methodState = METHOD_DONE;
ret->decision = DECISION_FAIL;
}
return retval;
}
static u8 * eap_ttls_process(struct eap_sm *sm, void *priv,
struct eap_method_ret *ret,
const u8 *reqData, size_t reqDataLen,
size_t *respDataLen)
{
const struct eap_hdr *req;
size_t left;
int res;
u8 flags, *resp, id;
const u8 *pos;
struct eap_ttls_data *data = priv;
struct wpa_ssid *config = eap_get_config(sm);
pos = eap_tls_process_init(sm, &data->ssl, EAP_TYPE_TTLS, ret,
reqData, reqDataLen, &left, &flags);
if (pos == NULL)
return NULL;
req = (const struct eap_hdr *) reqData;
id = req->identifier;
if (flags & EAP_TLS_FLAGS_START) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Start (server ver=%d, own "
"ver=%d)", flags & EAP_PEAP_VERSION_MASK,
data->ttls_version);
if ((flags & EAP_PEAP_VERSION_MASK) < data->ttls_version)
data->ttls_version = flags & EAP_PEAP_VERSION_MASK;
if (data->force_ttls_version >= 0 &&
data->force_ttls_version != data->ttls_version) {
wpa_printf(MSG_WARNING, "EAP-TTLS: Failed to select "
"forced TTLS version %d",
data->force_ttls_version);
ret->methodState = METHOD_DONE;
ret->decision = DECISION_FAIL;
ret->allowNotifications = FALSE;
return NULL;
}
wpa_printf(MSG_DEBUG, "EAP-TTLS: Using TTLS version %d",
data->ttls_version);
if (data->ttls_version > 0)
data->ssl.tls_ia = 1;
if (!data->ssl_initialized &&
eap_tls_ssl_init(sm, &data->ssl, config)) {
wpa_printf(MSG_INFO, "EAP-TTLS: Failed to initialize "
"SSL.");
return NULL;
}
data->ssl_initialized = 1;
wpa_printf(MSG_DEBUG, "EAP-TTLS: Start");
/* draft-ietf-pppext-eap-ttls-03.txt, Ch. 8.1:
* EAP-TTLS Start packet may, in a future specification, be
* allowed to contain data. Client based on this draft version
* must ignore such data but must not reject the Start packet.
*/
left = 0;
} else if (!data->ssl_initialized) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: First message did not "
"include Start flag");
ret->methodState = METHOD_DONE;
ret->decision = DECISION_FAIL;
ret->allowNotifications = FALSE;
return NULL;
}
resp = NULL;
if (tls_connection_established(sm->ssl_ctx, data->ssl.conn) &&
!data->resuming) {
res = eap_ttls_decrypt(sm, data, ret, req, pos, left,
&resp, respDataLen);
} else {
res = eap_tls_process_helper(sm, &data->ssl, EAP_TYPE_TTLS,
data->ttls_version, id, pos, left,
&resp, respDataLen);
if (tls_connection_established(sm->ssl_ctx, data->ssl.conn)) {
wpa_printf(MSG_DEBUG,
"EAP-TTLS: TLS done, proceed to Phase 2");
if (data->resuming) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: fast reauth -"
" may skip Phase 2");
ret->decision = DECISION_COND_SUCC;
ret->methodState = METHOD_MAY_CONT;
}
data->phase2_start = 1;
if (data->ttls_version == 0)
eap_ttls_v0_derive_key(sm, data);
if (*respDataLen == 0) {
if (eap_ttls_decrypt(sm, data, ret, req, NULL,
0, &resp, respDataLen)) {
wpa_printf(MSG_WARNING, "EAP-TTLS: "
"failed to process early "
"start for Phase 2");
}
res = 0;
}
data->resuming = 0;
}
if (res == 2) {
/*
* Application data included in the handshake message.
*/
os_free(data->pending_phase2_req);
data->pending_phase2_req = resp;
data->pending_phase2_req_len = *respDataLen;
resp = NULL;
*respDataLen = 0;
res = eap_ttls_decrypt(sm, data, ret, req, pos, left,
&resp, respDataLen);
}
}
if (data->ttls_version == 0 && ret->methodState == METHOD_DONE) {
ret->allowNotifications = FALSE;
if (ret->decision == DECISION_UNCOND_SUCC ||
ret->decision == DECISION_COND_SUCC) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Authentication "
"completed successfully");
data->phase2_success = 1;
}
} else if (data->ttls_version == 0 && sm->workaround &&
ret->methodState == METHOD_MAY_CONT &&
(ret->decision == DECISION_UNCOND_SUCC ||
ret->decision == DECISION_COND_SUCC)) {
wpa_printf(MSG_DEBUG, "EAP-TTLS: Authentication "
"completed successfully (EAP workaround)");
data->phase2_success = 1;
}
if (res == 1) {
return eap_tls_build_ack(&data->ssl, respDataLen, id,
EAP_TYPE_TTLS, data->ttls_version);
}
return resp;
}
static Boolean eap_ttls_has_reauth_data(struct eap_sm *sm, void *priv)
{
struct eap_ttls_data *data = priv;
return tls_connection_established(sm->ssl_ctx, data->ssl.conn) &&
data->phase2_success;
}
static void eap_ttls_deinit_for_reauth(struct eap_sm *sm, void *priv)
{
struct eap_ttls_data *data = priv;
os_free(data->pending_phase2_req);
data->pending_phase2_req = NULL;
}
static void * eap_ttls_init_for_reauth(struct eap_sm *sm, void *priv)
{
struct eap_ttls_data *data = priv;
os_free(data->key_data);
data->key_data = NULL;
if (eap_tls_reauth_init(sm, &data->ssl)) {
os_free(data);
return NULL;
}
if (data->phase2_priv && data->phase2_method &&
data->phase2_method->init_for_reauth)
data->phase2_method->init_for_reauth(sm, data->phase2_priv);
data->phase2_start = 0;
data->phase2_success = 0;
data->resuming = 1;
data->reauth = 1;
return priv;
}
static int eap_ttls_get_status(struct eap_sm *sm, void *priv, char *buf,
size_t buflen, int verbose)
{
struct eap_ttls_data *data = priv;
int len, ret;
len = eap_tls_status(sm, &data->ssl, buf, buflen, verbose);
ret = os_snprintf(buf + len, buflen - len,
"EAP-TTLSv%d Phase2 method=",
data->ttls_version);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
switch (data->phase2_type) {
case EAP_TTLS_PHASE2_EAP:
ret = os_snprintf(buf + len, buflen - len, "EAP-%s\n",
data->phase2_method ?
data->phase2_method->name : "?");
break;
case EAP_TTLS_PHASE2_MSCHAPV2:
ret = os_snprintf(buf + len, buflen - len, "MSCHAPV2\n");
break;
case EAP_TTLS_PHASE2_MSCHAP:
ret = os_snprintf(buf + len, buflen - len, "MSCHAP\n");
break;
case EAP_TTLS_PHASE2_PAP:
ret = os_snprintf(buf + len, buflen - len, "PAP\n");
break;
case EAP_TTLS_PHASE2_CHAP:
ret = os_snprintf(buf + len, buflen - len, "CHAP\n");
break;
default:
ret = 0;
break;
}
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
return len;
}
static Boolean eap_ttls_isKeyAvailable(struct eap_sm *sm, void *priv)
{
struct eap_ttls_data *data = priv;
return data->key_data != NULL && data->phase2_success;
}
static u8 * eap_ttls_getKey(struct eap_sm *sm, void *priv, size_t *len)
{
struct eap_ttls_data *data = priv;
u8 *key;
if (data->key_data == NULL || !data->phase2_success)
return NULL;
key = os_malloc(EAP_TLS_KEY_LEN);
if (key == NULL)
return NULL;
*len = EAP_TLS_KEY_LEN;
os_memcpy(key, data->key_data, EAP_TLS_KEY_LEN);
return key;
}
int eap_peer_ttls_register(void)
{
struct eap_method *eap;
int ret;
eap = eap_peer_method_alloc(EAP_PEER_METHOD_INTERFACE_VERSION,
EAP_VENDOR_IETF, EAP_TYPE_TTLS, "TTLS");
if (eap == NULL)
return -1;
eap->init = eap_ttls_init;
eap->deinit = eap_ttls_deinit;
eap->process = eap_ttls_process;
eap->isKeyAvailable = eap_ttls_isKeyAvailable;
eap->getKey = eap_ttls_getKey;
eap->get_status = eap_ttls_get_status;
eap->has_reauth_data = eap_ttls_has_reauth_data;
eap->deinit_for_reauth = eap_ttls_deinit_for_reauth;
eap->init_for_reauth = eap_ttls_init_for_reauth;
ret = eap_peer_method_register(eap);
if (ret)
eap_peer_method_free(eap);
return ret;
}