dd4bc569b9
Correct various typos in the comments and tests. Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Closes #10423
1622 lines
40 KiB
C
1622 lines
40 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2017, Datto, Inc. All rights reserved.
|
|
* Copyright 2020 Joyent, Inc.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/dsl_crypt.h>
|
|
#include <libintl.h>
|
|
#include <termios.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <openssl/evp.h>
|
|
#include <libzfs.h>
|
|
#include "libzfs_impl.h"
|
|
#include "zfeature_common.h"
|
|
|
|
/*
|
|
* User keys are used to decrypt the master encryption keys of a dataset. This
|
|
* indirection allows a user to change his / her access key without having to
|
|
* re-encrypt the entire dataset. User keys can be provided in one of several
|
|
* ways. Raw keys are simply given to the kernel as is. Similarly, hex keys
|
|
* are converted to binary and passed into the kernel. Password based keys are
|
|
* a bit more complicated. Passwords alone do not provide suitable entropy for
|
|
* encryption and may be too short or too long to be used. In order to derive
|
|
* a more appropriate key we use a PBKDF2 function. This function is designed
|
|
* to take a (relatively) long time to calculate in order to discourage
|
|
* attackers from guessing from a list of common passwords. PBKDF2 requires
|
|
* 2 additional parameters. The first is the number of iterations to run, which
|
|
* will ultimately determine how long it takes to derive the resulting key from
|
|
* the password. The second parameter is a salt that is randomly generated for
|
|
* each dataset. The salt is used to "tweak" PBKDF2 such that a group of
|
|
* attackers cannot reasonably generate a table of commonly known passwords to
|
|
* their output keys and expect it work for all past and future PBKDF2 users.
|
|
* We store the salt as a hidden property of the dataset (although it is
|
|
* technically ok if the salt is known to the attacker).
|
|
*/
|
|
|
|
typedef enum key_locator {
|
|
KEY_LOCATOR_NONE,
|
|
KEY_LOCATOR_PROMPT,
|
|
KEY_LOCATOR_URI
|
|
} key_locator_t;
|
|
|
|
#define MIN_PASSPHRASE_LEN 8
|
|
#define MAX_PASSPHRASE_LEN 512
|
|
#define MAX_KEY_PROMPT_ATTEMPTS 3
|
|
|
|
static int caught_interrupt;
|
|
|
|
static int get_key_material_file(libzfs_handle_t *, const char *, const char *,
|
|
zfs_keyformat_t, boolean_t, uint8_t **, size_t *);
|
|
|
|
static zfs_uri_handler_t uri_handlers[] = {
|
|
{ "file", get_key_material_file },
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static int
|
|
pkcs11_get_urandom(uint8_t *buf, size_t bytes)
|
|
{
|
|
int rand;
|
|
ssize_t bytes_read = 0;
|
|
|
|
rand = open("/dev/urandom", O_RDONLY);
|
|
|
|
if (rand < 0)
|
|
return (rand);
|
|
|
|
while (bytes_read < bytes) {
|
|
ssize_t rc = read(rand, buf + bytes_read, bytes - bytes_read);
|
|
if (rc < 0)
|
|
break;
|
|
bytes_read += rc;
|
|
}
|
|
|
|
(void) close(rand);
|
|
|
|
return (bytes_read);
|
|
}
|
|
|
|
static int
|
|
zfs_prop_parse_keylocation(libzfs_handle_t *restrict hdl, const char *str,
|
|
zfs_keylocation_t *restrict locp, char **restrict schemep)
|
|
{
|
|
*locp = ZFS_KEYLOCATION_NONE;
|
|
*schemep = NULL;
|
|
|
|
if (strcmp("prompt", str) == 0) {
|
|
*locp = ZFS_KEYLOCATION_PROMPT;
|
|
return (0);
|
|
}
|
|
|
|
regmatch_t pmatch[2];
|
|
|
|
if (regexec(&hdl->libzfs_urire, str, ARRAY_SIZE(pmatch),
|
|
pmatch, 0) == 0) {
|
|
size_t scheme_len;
|
|
|
|
if (pmatch[1].rm_so == -1) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid URI"));
|
|
return (EINVAL);
|
|
}
|
|
|
|
scheme_len = pmatch[1].rm_eo - pmatch[1].rm_so;
|
|
|
|
*schemep = calloc(1, scheme_len + 1);
|
|
if (*schemep == NULL) {
|
|
int ret = errno;
|
|
|
|
errno = 0;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid URI"));
|
|
return (ret);
|
|
}
|
|
|
|
(void) memcpy(*schemep, str + pmatch[1].rm_so, scheme_len);
|
|
*locp = ZFS_KEYLOCATION_URI;
|
|
return (0);
|
|
}
|
|
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Invalid keylocation"));
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
hex_key_to_raw(char *hex, int hexlen, uint8_t *out)
|
|
{
|
|
int ret, i;
|
|
unsigned int c;
|
|
|
|
for (i = 0; i < hexlen; i += 2) {
|
|
if (!isxdigit(hex[i]) || !isxdigit(hex[i + 1])) {
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
ret = sscanf(&hex[i], "%02x", &c);
|
|
if (ret != 1) {
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
out[i / 2] = c;
|
|
}
|
|
|
|
return (0);
|
|
|
|
error:
|
|
return (ret);
|
|
}
|
|
|
|
|
|
static void
|
|
catch_signal(int sig)
|
|
{
|
|
caught_interrupt = sig;
|
|
}
|
|
|
|
static const char *
|
|
get_format_prompt_string(zfs_keyformat_t format)
|
|
{
|
|
switch (format) {
|
|
case ZFS_KEYFORMAT_RAW:
|
|
return ("raw key");
|
|
case ZFS_KEYFORMAT_HEX:
|
|
return ("hex key");
|
|
case ZFS_KEYFORMAT_PASSPHRASE:
|
|
return ("passphrase");
|
|
default:
|
|
/* shouldn't happen */
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/* do basic validation of the key material */
|
|
static int
|
|
validate_key(libzfs_handle_t *hdl, zfs_keyformat_t keyformat,
|
|
const char *key, size_t keylen)
|
|
{
|
|
switch (keyformat) {
|
|
case ZFS_KEYFORMAT_RAW:
|
|
/* verify the key length is correct */
|
|
if (keylen < WRAPPING_KEY_LEN) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Raw key too short (expected %u)."),
|
|
WRAPPING_KEY_LEN);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (keylen > WRAPPING_KEY_LEN) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Raw key too long (expected %u)."),
|
|
WRAPPING_KEY_LEN);
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case ZFS_KEYFORMAT_HEX:
|
|
/* verify the key length is correct */
|
|
if (keylen < WRAPPING_KEY_LEN * 2) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Hex key too short (expected %u)."),
|
|
WRAPPING_KEY_LEN * 2);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (keylen > WRAPPING_KEY_LEN * 2) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Hex key too long (expected %u)."),
|
|
WRAPPING_KEY_LEN * 2);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* check for invalid hex digits */
|
|
for (size_t i = 0; i < WRAPPING_KEY_LEN * 2; i++) {
|
|
if (!isxdigit(key[i])) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid hex character detected."));
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
break;
|
|
case ZFS_KEYFORMAT_PASSPHRASE:
|
|
/* verify the length is within bounds */
|
|
if (keylen > MAX_PASSPHRASE_LEN) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Passphrase too long (max %u)."),
|
|
MAX_PASSPHRASE_LEN);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (keylen < MIN_PASSPHRASE_LEN) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Passphrase too short (min %u)."),
|
|
MIN_PASSPHRASE_LEN);
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
default:
|
|
/* can't happen, checked above */
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
libzfs_getpassphrase(zfs_keyformat_t keyformat, boolean_t is_reenter,
|
|
boolean_t new_key, const char *fsname,
|
|
char **restrict res, size_t *restrict reslen)
|
|
{
|
|
FILE *f = stdin;
|
|
size_t buflen = 0;
|
|
ssize_t bytes;
|
|
int ret = 0;
|
|
struct termios old_term, new_term;
|
|
struct sigaction act, osigint, osigtstp;
|
|
|
|
*res = NULL;
|
|
*reslen = 0;
|
|
|
|
/*
|
|
* handle SIGINT and ignore SIGSTP. This is necessary to
|
|
* restore the state of the terminal.
|
|
*/
|
|
caught_interrupt = 0;
|
|
act.sa_flags = 0;
|
|
(void) sigemptyset(&act.sa_mask);
|
|
act.sa_handler = catch_signal;
|
|
|
|
(void) sigaction(SIGINT, &act, &osigint);
|
|
act.sa_handler = SIG_IGN;
|
|
(void) sigaction(SIGTSTP, &act, &osigtstp);
|
|
|
|
(void) printf("%s %s%s",
|
|
is_reenter ? "Re-enter" : "Enter",
|
|
new_key ? "new " : "",
|
|
get_format_prompt_string(keyformat));
|
|
if (fsname != NULL)
|
|
(void) printf(" for '%s'", fsname);
|
|
(void) fputc(':', stdout);
|
|
(void) fflush(stdout);
|
|
|
|
/* disable the terminal echo for key input */
|
|
(void) tcgetattr(fileno(f), &old_term);
|
|
|
|
new_term = old_term;
|
|
new_term.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);
|
|
|
|
ret = tcsetattr(fileno(f), TCSAFLUSH, &new_term);
|
|
if (ret != 0) {
|
|
ret = errno;
|
|
errno = 0;
|
|
goto out;
|
|
}
|
|
|
|
bytes = getline(res, &buflen, f);
|
|
if (bytes < 0) {
|
|
ret = errno;
|
|
errno = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* trim the ending newline if it exists */
|
|
if (bytes > 0 && (*res)[bytes - 1] == '\n') {
|
|
(*res)[bytes - 1] = '\0';
|
|
bytes--;
|
|
}
|
|
|
|
*reslen = bytes;
|
|
|
|
out:
|
|
/* reset the terminal */
|
|
(void) tcsetattr(fileno(f), TCSAFLUSH, &old_term);
|
|
(void) sigaction(SIGINT, &osigint, NULL);
|
|
(void) sigaction(SIGTSTP, &osigtstp, NULL);
|
|
|
|
/* if we caught a signal, re-throw it now */
|
|
if (caught_interrupt != 0)
|
|
(void) kill(getpid(), caught_interrupt);
|
|
|
|
/* print the newline that was not echo'd */
|
|
(void) printf("\n");
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
get_key_interactive(libzfs_handle_t *restrict hdl, const char *fsname,
|
|
zfs_keyformat_t keyformat, boolean_t confirm_key, boolean_t newkey,
|
|
uint8_t **restrict outbuf, size_t *restrict len_out)
|
|
{
|
|
char *buf = NULL, *buf2 = NULL;
|
|
size_t buflen = 0, buf2len = 0;
|
|
int ret = 0;
|
|
|
|
ASSERT(isatty(fileno(stdin)));
|
|
|
|
/* raw keys cannot be entered on the terminal */
|
|
if (keyformat == ZFS_KEYFORMAT_RAW) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Cannot enter raw keys on the terminal"));
|
|
goto out;
|
|
}
|
|
|
|
/* prompt for the key */
|
|
if ((ret = libzfs_getpassphrase(keyformat, B_FALSE, newkey, fsname,
|
|
&buf, &buflen)) != 0) {
|
|
free(buf);
|
|
buf = NULL;
|
|
buflen = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!confirm_key)
|
|
goto out;
|
|
|
|
if ((ret = validate_key(hdl, keyformat, buf, buflen)) != 0) {
|
|
free(buf);
|
|
return (ret);
|
|
}
|
|
|
|
ret = libzfs_getpassphrase(keyformat, B_TRUE, newkey, fsname, &buf2,
|
|
&buf2len);
|
|
if (ret != 0) {
|
|
free(buf);
|
|
free(buf2);
|
|
buf = buf2 = NULL;
|
|
buflen = buf2len = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (buflen != buf2len || strcmp(buf, buf2) != 0) {
|
|
free(buf);
|
|
buf = NULL;
|
|
buflen = 0;
|
|
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Provided keys do not match."));
|
|
}
|
|
|
|
free(buf2);
|
|
|
|
out:
|
|
*outbuf = (uint8_t *)buf;
|
|
*len_out = buflen;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
get_key_material_raw(FILE *fd, zfs_keyformat_t keyformat,
|
|
uint8_t **buf, size_t *len_out)
|
|
{
|
|
int ret = 0;
|
|
size_t buflen = 0;
|
|
|
|
*len_out = 0;
|
|
|
|
/* read the key material */
|
|
if (keyformat != ZFS_KEYFORMAT_RAW) {
|
|
ssize_t bytes;
|
|
|
|
bytes = getline((char **)buf, &buflen, fd);
|
|
if (bytes < 0) {
|
|
ret = errno;
|
|
errno = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* trim the ending newline if it exists */
|
|
if (bytes > 0 && (*buf)[bytes - 1] == '\n') {
|
|
(*buf)[bytes - 1] = '\0';
|
|
bytes--;
|
|
}
|
|
|
|
*len_out = bytes;
|
|
} else {
|
|
size_t n;
|
|
|
|
/*
|
|
* Raw keys may have newline characters in them and so can't
|
|
* use getline(). Here we attempt to read 33 bytes so that we
|
|
* can properly check the key length (the file should only have
|
|
* 32 bytes).
|
|
*/
|
|
*buf = malloc((WRAPPING_KEY_LEN + 1) * sizeof (uint8_t));
|
|
if (*buf == NULL) {
|
|
ret = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
n = fread(*buf, 1, WRAPPING_KEY_LEN + 1, fd);
|
|
if (n == 0 || ferror(fd)) {
|
|
/* size errors are handled by the calling function */
|
|
free(*buf);
|
|
*buf = NULL;
|
|
ret = errno;
|
|
errno = 0;
|
|
goto out;
|
|
}
|
|
|
|
*len_out = n;
|
|
}
|
|
out:
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
get_key_material_file(libzfs_handle_t *hdl, const char *uri,
|
|
const char *fsname, zfs_keyformat_t keyformat, boolean_t newkey,
|
|
uint8_t **restrict buf, size_t *restrict len_out)
|
|
{
|
|
FILE *f = NULL;
|
|
int ret = 0;
|
|
|
|
if (strlen(uri) < 7)
|
|
return (EINVAL);
|
|
|
|
if ((f = fopen(uri + 7, "r")) == NULL) {
|
|
ret = errno;
|
|
errno = 0;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to open key material file"));
|
|
return (ret);
|
|
}
|
|
|
|
ret = get_key_material_raw(f, keyformat, buf, len_out);
|
|
|
|
(void) fclose(f);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Attempts to fetch key material, no matter where it might live. The key
|
|
* material is allocated and returned in km_out. *can_retry_out will be set
|
|
* to B_TRUE if the user is providing the key material interactively, allowing
|
|
* for re-entry attempts.
|
|
*/
|
|
static int
|
|
get_key_material(libzfs_handle_t *hdl, boolean_t do_verify, boolean_t newkey,
|
|
zfs_keyformat_t keyformat, char *keylocation, const char *fsname,
|
|
uint8_t **km_out, size_t *kmlen_out, boolean_t *can_retry_out)
|
|
{
|
|
int ret;
|
|
zfs_keylocation_t keyloc = ZFS_KEYLOCATION_NONE;
|
|
uint8_t *km = NULL;
|
|
size_t kmlen = 0;
|
|
char *uri_scheme = NULL;
|
|
zfs_uri_handler_t *handler = NULL;
|
|
boolean_t can_retry = B_FALSE;
|
|
|
|
/* verify and parse the keylocation */
|
|
ret = zfs_prop_parse_keylocation(hdl, keylocation, &keyloc,
|
|
&uri_scheme);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* open the appropriate file descriptor */
|
|
switch (keyloc) {
|
|
case ZFS_KEYLOCATION_PROMPT:
|
|
if (isatty(fileno(stdin))) {
|
|
can_retry = B_TRUE;
|
|
ret = get_key_interactive(hdl, fsname, keyformat,
|
|
do_verify, newkey, &km, &kmlen);
|
|
} else {
|
|
/* fetch the key material into the buffer */
|
|
ret = get_key_material_raw(stdin, keyformat, &km,
|
|
&kmlen);
|
|
}
|
|
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
break;
|
|
case ZFS_KEYLOCATION_URI:
|
|
for (handler = uri_handlers; handler->zuh_scheme != NULL;
|
|
handler++) {
|
|
if (strcmp(handler->zuh_scheme, uri_scheme) != 0)
|
|
continue;
|
|
|
|
if ((ret = handler->zuh_handler(hdl, keylocation,
|
|
fsname, keyformat, newkey, &km, &kmlen)) != 0)
|
|
goto error;
|
|
|
|
break;
|
|
}
|
|
|
|
ret = ENOTSUP;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"URI scheme is not supported"));
|
|
|
|
break;
|
|
default:
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid keylocation."));
|
|
goto error;
|
|
}
|
|
|
|
if ((ret = validate_key(hdl, keyformat, (const char *)km, kmlen)) != 0)
|
|
goto error;
|
|
|
|
*km_out = km;
|
|
*kmlen_out = kmlen;
|
|
if (can_retry_out != NULL)
|
|
*can_retry_out = can_retry;
|
|
|
|
free(uri_scheme);
|
|
return (0);
|
|
|
|
error:
|
|
free(km);
|
|
|
|
*km_out = NULL;
|
|
*kmlen_out = 0;
|
|
|
|
if (can_retry_out != NULL)
|
|
*can_retry_out = can_retry;
|
|
|
|
free(uri_scheme);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
derive_key(libzfs_handle_t *hdl, zfs_keyformat_t format, uint64_t iters,
|
|
uint8_t *key_material, size_t key_material_len, uint64_t salt,
|
|
uint8_t **key_out)
|
|
{
|
|
int ret;
|
|
uint8_t *key;
|
|
|
|
*key_out = NULL;
|
|
|
|
key = zfs_alloc(hdl, WRAPPING_KEY_LEN);
|
|
if (!key)
|
|
return (ENOMEM);
|
|
|
|
switch (format) {
|
|
case ZFS_KEYFORMAT_RAW:
|
|
bcopy(key_material, key, WRAPPING_KEY_LEN);
|
|
break;
|
|
case ZFS_KEYFORMAT_HEX:
|
|
ret = hex_key_to_raw((char *)key_material,
|
|
WRAPPING_KEY_LEN * 2, key);
|
|
if (ret != 0) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid hex key provided."));
|
|
goto error;
|
|
}
|
|
break;
|
|
case ZFS_KEYFORMAT_PASSPHRASE:
|
|
salt = LE_64(salt);
|
|
|
|
ret = PKCS5_PBKDF2_HMAC_SHA1((char *)key_material,
|
|
strlen((char *)key_material), ((uint8_t *)&salt),
|
|
sizeof (uint64_t), iters, WRAPPING_KEY_LEN, key);
|
|
if (ret != 1) {
|
|
ret = EIO;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to generate key from passphrase."));
|
|
goto error;
|
|
}
|
|
break;
|
|
default:
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
*key_out = key;
|
|
return (0);
|
|
|
|
error:
|
|
free(key);
|
|
|
|
*key_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static boolean_t
|
|
encryption_feature_is_enabled(zpool_handle_t *zph)
|
|
{
|
|
nvlist_t *features;
|
|
uint64_t feat_refcount;
|
|
|
|
/* check that features can be enabled */
|
|
if (zpool_get_prop_int(zph, ZPOOL_PROP_VERSION, NULL)
|
|
< SPA_VERSION_FEATURES)
|
|
return (B_FALSE);
|
|
|
|
/* check for crypto feature */
|
|
features = zpool_get_features(zph);
|
|
if (!features || nvlist_lookup_uint64(features,
|
|
spa_feature_table[SPA_FEATURE_ENCRYPTION].fi_guid,
|
|
&feat_refcount) != 0)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static int
|
|
populate_create_encryption_params_nvlists(libzfs_handle_t *hdl,
|
|
zfs_handle_t *zhp, boolean_t newkey, zfs_keyformat_t keyformat,
|
|
char *keylocation, nvlist_t *props, uint8_t **wkeydata, uint_t *wkeylen)
|
|
{
|
|
int ret;
|
|
uint64_t iters = 0, salt = 0;
|
|
uint8_t *key_material = NULL;
|
|
size_t key_material_len = 0;
|
|
uint8_t *key_data = NULL;
|
|
const char *fsname = (zhp) ? zfs_get_name(zhp) : NULL;
|
|
|
|
/* get key material from keyformat and keylocation */
|
|
ret = get_key_material(hdl, B_TRUE, newkey, keyformat, keylocation,
|
|
fsname, &key_material, &key_material_len, NULL);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* passphrase formats require a salt and pbkdf2 iters property */
|
|
if (keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
|
|
/* always generate a new salt */
|
|
ret = pkcs11_get_urandom((uint8_t *)&salt, sizeof (uint64_t));
|
|
if (ret != sizeof (uint64_t)) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to generate salt."));
|
|
goto error;
|
|
}
|
|
|
|
ret = nvlist_add_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
|
|
if (ret != 0) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to add salt to properties."));
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* If not otherwise specified, use the default number of
|
|
* pbkdf2 iterations. If specified, we have already checked
|
|
* that the given value is greater than MIN_PBKDF2_ITERATIONS
|
|
* during zfs_valid_proplist().
|
|
*/
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
|
|
if (ret == ENOENT) {
|
|
iters = DEFAULT_PBKDF2_ITERATIONS;
|
|
ret = nvlist_add_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
|
|
if (ret != 0)
|
|
goto error;
|
|
} else if (ret != 0) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get pbkdf2 iterations."));
|
|
goto error;
|
|
}
|
|
} else {
|
|
/* check that pbkdf2iters was not specified by the user */
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
|
|
if (ret == 0) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Cannot specify pbkdf2iters with a non-passphrase "
|
|
"keyformat."));
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* derive a key from the key material */
|
|
ret = derive_key(hdl, keyformat, iters, key_material, key_material_len,
|
|
salt, &key_data);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
free(key_material);
|
|
|
|
*wkeydata = key_data;
|
|
*wkeylen = WRAPPING_KEY_LEN;
|
|
return (0);
|
|
|
|
error:
|
|
if (key_material != NULL)
|
|
free(key_material);
|
|
if (key_data != NULL)
|
|
free(key_data);
|
|
|
|
*wkeydata = NULL;
|
|
*wkeylen = 0;
|
|
return (ret);
|
|
}
|
|
|
|
static boolean_t
|
|
proplist_has_encryption_props(nvlist_t *props)
|
|
{
|
|
int ret;
|
|
uint64_t intval;
|
|
char *strval;
|
|
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &intval);
|
|
if (ret == 0 && intval != ZIO_CRYPT_OFF)
|
|
return (B_TRUE);
|
|
|
|
ret = nvlist_lookup_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &strval);
|
|
if (ret == 0 && strcmp(strval, "none") != 0)
|
|
return (B_TRUE);
|
|
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &intval);
|
|
if (ret == 0)
|
|
return (B_TRUE);
|
|
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &intval);
|
|
if (ret == 0)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_get_encryption_root(zfs_handle_t *zhp, boolean_t *is_encroot,
|
|
char *buf)
|
|
{
|
|
int ret;
|
|
char prop_encroot[MAXNAMELEN];
|
|
|
|
/* if the dataset isn't encrypted, just return */
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) == ZIO_CRYPT_OFF) {
|
|
*is_encroot = B_FALSE;
|
|
if (buf != NULL)
|
|
buf[0] = '\0';
|
|
return (0);
|
|
}
|
|
|
|
ret = zfs_prop_get(zhp, ZFS_PROP_ENCRYPTION_ROOT, prop_encroot,
|
|
sizeof (prop_encroot), NULL, NULL, 0, B_TRUE);
|
|
if (ret != 0) {
|
|
*is_encroot = B_FALSE;
|
|
if (buf != NULL)
|
|
buf[0] = '\0';
|
|
return (ret);
|
|
}
|
|
|
|
*is_encroot = strcmp(prop_encroot, zfs_get_name(zhp)) == 0;
|
|
if (buf != NULL)
|
|
strcpy(buf, prop_encroot);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_create(libzfs_handle_t *hdl, char *parent_name, nvlist_t *props,
|
|
nvlist_t *pool_props, boolean_t stdin_available, uint8_t **wkeydata_out,
|
|
uint_t *wkeylen_out)
|
|
{
|
|
int ret;
|
|
char errbuf[1024];
|
|
uint64_t crypt = ZIO_CRYPT_INHERIT, pcrypt = ZIO_CRYPT_INHERIT;
|
|
uint64_t keyformat = ZFS_KEYFORMAT_NONE;
|
|
char *keylocation = NULL;
|
|
zfs_handle_t *pzhp = NULL;
|
|
uint8_t *wkeydata = NULL;
|
|
uint_t wkeylen = 0;
|
|
boolean_t local_crypt = B_TRUE;
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
dgettext(TEXT_DOMAIN, "Encryption create error"));
|
|
|
|
/* lookup crypt from props */
|
|
ret = nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
|
|
if (ret != 0)
|
|
local_crypt = B_FALSE;
|
|
|
|
/* lookup key location and format from props */
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
|
|
(void) nvlist_lookup_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
|
|
|
|
if (parent_name != NULL) {
|
|
/* get a reference to parent dataset */
|
|
pzhp = make_dataset_handle(hdl, parent_name);
|
|
if (pzhp == NULL) {
|
|
ret = ENOENT;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to lookup parent."));
|
|
goto out;
|
|
}
|
|
|
|
/* Lookup parent's crypt */
|
|
pcrypt = zfs_prop_get_int(pzhp, ZFS_PROP_ENCRYPTION);
|
|
|
|
/* Params require the encryption feature */
|
|
if (!encryption_feature_is_enabled(pzhp->zpool_hdl)) {
|
|
if (proplist_has_encryption_props(props)) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption feature not enabled."));
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* special case for root dataset where encryption feature
|
|
* feature won't be on disk yet
|
|
*/
|
|
if (!nvlist_exists(pool_props, "feature@encryption")) {
|
|
if (proplist_has_encryption_props(props)) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption feature not enabled."));
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
pcrypt = ZIO_CRYPT_OFF;
|
|
}
|
|
|
|
/* Get the inherited encryption property if we don't have it locally */
|
|
if (!local_crypt)
|
|
crypt = pcrypt;
|
|
|
|
/*
|
|
* At this point crypt should be the actual encryption value. If
|
|
* encryption is off just verify that no encryption properties have
|
|
* been specified and return.
|
|
*/
|
|
if (crypt == ZIO_CRYPT_OFF) {
|
|
if (proplist_has_encryption_props(props)) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption must be turned on to set encryption "
|
|
"properties."));
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If we have a parent crypt it is valid to specify encryption alone.
|
|
* This will result in a child that is encrypted with the chosen
|
|
* encryption suite that will also inherit the parent's key. If
|
|
* the parent is not encrypted we need an encryption suite provided.
|
|
*/
|
|
if (pcrypt == ZIO_CRYPT_OFF && keylocation == NULL &&
|
|
keyformat == ZFS_KEYFORMAT_NONE) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Keyformat required for new encryption root."));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Specifying a keylocation implies this will be a new encryption root.
|
|
* Check that a keyformat is also specified.
|
|
*/
|
|
if (keylocation != NULL && keyformat == ZFS_KEYFORMAT_NONE) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Keyformat required for new encryption root."));
|
|
goto out;
|
|
}
|
|
|
|
/* default to prompt if no keylocation is specified */
|
|
if (keyformat != ZFS_KEYFORMAT_NONE && keylocation == NULL) {
|
|
keylocation = "prompt";
|
|
ret = nvlist_add_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), keylocation);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If a local key is provided, this dataset will be a new
|
|
* encryption root. Populate the encryption params.
|
|
*/
|
|
if (keylocation != NULL) {
|
|
/*
|
|
* 'zfs recv -o keylocation=prompt' won't work because stdin
|
|
* is being used by the send stream, so we disallow it.
|
|
*/
|
|
if (!stdin_available && strcmp(keylocation, "prompt") == 0) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Cannot use "
|
|
"'prompt' keylocation because stdin is in use."));
|
|
goto out;
|
|
}
|
|
|
|
ret = populate_create_encryption_params_nvlists(hdl, NULL,
|
|
B_FALSE, keyformat, keylocation, props, &wkeydata,
|
|
&wkeylen);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (pzhp != NULL)
|
|
zfs_close(pzhp);
|
|
|
|
*wkeydata_out = wkeydata;
|
|
*wkeylen_out = wkeylen;
|
|
return (0);
|
|
|
|
out:
|
|
if (pzhp != NULL)
|
|
zfs_close(pzhp);
|
|
if (wkeydata != NULL)
|
|
free(wkeydata);
|
|
|
|
*wkeydata_out = NULL;
|
|
*wkeylen_out = 0;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_clone_check(libzfs_handle_t *hdl, zfs_handle_t *origin_zhp,
|
|
char *parent_name, nvlist_t *props)
|
|
{
|
|
char errbuf[1024];
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
dgettext(TEXT_DOMAIN, "Encryption clone error"));
|
|
|
|
/*
|
|
* No encryption properties should be specified. They will all be
|
|
* inherited from the origin dataset.
|
|
*/
|
|
if (nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT)) ||
|
|
nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION)) ||
|
|
nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION)) ||
|
|
nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS))) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption properties must inherit from origin dataset."));
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
typedef struct loadkeys_cbdata {
|
|
uint64_t cb_numfailed;
|
|
uint64_t cb_numattempted;
|
|
} loadkey_cbdata_t;
|
|
|
|
static int
|
|
load_keys_cb(zfs_handle_t *zhp, void *arg)
|
|
{
|
|
int ret;
|
|
boolean_t is_encroot;
|
|
loadkey_cbdata_t *cb = arg;
|
|
uint64_t keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
|
|
|
|
/* only attempt to load keys for encryption roots */
|
|
ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
|
|
if (ret != 0 || !is_encroot)
|
|
goto out;
|
|
|
|
/* don't attempt to load already loaded keys */
|
|
if (keystatus == ZFS_KEYSTATUS_AVAILABLE)
|
|
goto out;
|
|
|
|
/* Attempt to load the key. Record status in cb. */
|
|
cb->cb_numattempted++;
|
|
|
|
ret = zfs_crypto_load_key(zhp, B_FALSE, NULL);
|
|
if (ret)
|
|
cb->cb_numfailed++;
|
|
|
|
out:
|
|
(void) zfs_iter_filesystems(zhp, load_keys_cb, cb);
|
|
zfs_close(zhp);
|
|
|
|
/* always return 0, since this function is best effort */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function is best effort. It attempts to load all the keys for the given
|
|
* filesystem and all of its children.
|
|
*/
|
|
int
|
|
zfs_crypto_attempt_load_keys(libzfs_handle_t *hdl, char *fsname)
|
|
{
|
|
int ret;
|
|
zfs_handle_t *zhp = NULL;
|
|
loadkey_cbdata_t cb = { 0 };
|
|
|
|
zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
|
|
if (zhp == NULL) {
|
|
ret = ENOENT;
|
|
goto error;
|
|
}
|
|
|
|
ret = load_keys_cb(zfs_handle_dup(zhp), &cb);
|
|
if (ret)
|
|
goto error;
|
|
|
|
(void) printf(gettext("%llu / %llu keys successfully loaded\n"),
|
|
(u_longlong_t)(cb.cb_numattempted - cb.cb_numfailed),
|
|
(u_longlong_t)cb.cb_numattempted);
|
|
|
|
if (cb.cb_numfailed != 0) {
|
|
ret = -1;
|
|
goto error;
|
|
}
|
|
|
|
zfs_close(zhp);
|
|
return (0);
|
|
|
|
error:
|
|
if (zhp != NULL)
|
|
zfs_close(zhp);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_load_key(zfs_handle_t *zhp, boolean_t noop, char *alt_keylocation)
|
|
{
|
|
int ret, attempts = 0;
|
|
char errbuf[1024];
|
|
uint64_t keystatus, iters = 0, salt = 0;
|
|
uint64_t keyformat = ZFS_KEYFORMAT_NONE;
|
|
char prop_keylocation[MAXNAMELEN];
|
|
char prop_encroot[MAXNAMELEN];
|
|
char *keylocation = NULL;
|
|
uint8_t *key_material = NULL, *key_data = NULL;
|
|
size_t key_material_len;
|
|
boolean_t is_encroot, can_retry = B_FALSE, correctible = B_FALSE;
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
dgettext(TEXT_DOMAIN, "Key load error"));
|
|
|
|
/* check that encryption is enabled for the pool */
|
|
if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption feature not enabled."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* Fetch the keyformat. Check that the dataset is encrypted. */
|
|
keyformat = zfs_prop_get_int(zhp, ZFS_PROP_KEYFORMAT);
|
|
if (keyformat == ZFS_KEYFORMAT_NONE) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"'%s' is not encrypted."), zfs_get_name(zhp));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Fetch the key location. Check that we are working with an
|
|
* encryption root.
|
|
*/
|
|
ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, prop_encroot);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get encryption root for '%s'."),
|
|
zfs_get_name(zhp));
|
|
goto error;
|
|
} else if (!is_encroot) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Keys must be loaded for encryption root of '%s' (%s)."),
|
|
zfs_get_name(zhp), prop_encroot);
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* if the caller has elected to override the keylocation property
|
|
* use that instead
|
|
*/
|
|
if (alt_keylocation != NULL) {
|
|
keylocation = alt_keylocation;
|
|
} else {
|
|
ret = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION, prop_keylocation,
|
|
sizeof (prop_keylocation), NULL, NULL, 0, B_TRUE);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get keylocation for '%s'."),
|
|
zfs_get_name(zhp));
|
|
goto error;
|
|
}
|
|
|
|
keylocation = prop_keylocation;
|
|
}
|
|
|
|
/* check that the key is unloaded unless this is a noop */
|
|
if (!noop) {
|
|
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
|
|
if (keystatus == ZFS_KEYSTATUS_AVAILABLE) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key already loaded for '%s'."), zfs_get_name(zhp));
|
|
ret = EEXIST;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* passphrase formats require a salt and pbkdf2_iters property */
|
|
if (keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
|
|
salt = zfs_prop_get_int(zhp, ZFS_PROP_PBKDF2_SALT);
|
|
iters = zfs_prop_get_int(zhp, ZFS_PROP_PBKDF2_ITERS);
|
|
}
|
|
|
|
try_again:
|
|
/* fetching and deriving the key are correctable errors. set the flag */
|
|
correctible = B_TRUE;
|
|
|
|
/* get key material from key format and location */
|
|
ret = get_key_material(zhp->zfs_hdl, B_FALSE, B_FALSE, keyformat,
|
|
keylocation, zfs_get_name(zhp), &key_material, &key_material_len,
|
|
&can_retry);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* derive a key from the key material */
|
|
ret = derive_key(zhp->zfs_hdl, keyformat, iters, key_material,
|
|
key_material_len, salt, &key_data);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
correctible = B_FALSE;
|
|
|
|
/* pass the wrapping key and noop flag to the ioctl */
|
|
ret = lzc_load_key(zhp->zfs_name, noop, key_data, WRAPPING_KEY_LEN);
|
|
if (ret != 0) {
|
|
switch (ret) {
|
|
case EPERM:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Permission denied."));
|
|
break;
|
|
case EINVAL:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid parameters provided for dataset %s."),
|
|
zfs_get_name(zhp));
|
|
break;
|
|
case EEXIST:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key already loaded for '%s'."), zfs_get_name(zhp));
|
|
break;
|
|
case EBUSY:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"'%s' is busy."), zfs_get_name(zhp));
|
|
break;
|
|
case EACCES:
|
|
correctible = B_TRUE;
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Incorrect key provided for '%s'."),
|
|
zfs_get_name(zhp));
|
|
break;
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
free(key_material);
|
|
free(key_data);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
|
|
if (key_material != NULL) {
|
|
free(key_material);
|
|
key_material = NULL;
|
|
}
|
|
if (key_data != NULL) {
|
|
free(key_data);
|
|
key_data = NULL;
|
|
}
|
|
|
|
/*
|
|
* Here we decide if it is ok to allow the user to retry entering their
|
|
* key. The can_retry flag will be set if the user is entering their
|
|
* key from an interactive prompt. The correctable flag will only be
|
|
* set if an error that occurred could be corrected by retrying. Both
|
|
* flags are needed to allow the user to attempt key entry again
|
|
*/
|
|
attempts++;
|
|
if (can_retry && correctible && attempts < MAX_KEY_PROMPT_ATTEMPTS)
|
|
goto try_again;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_unload_key(zfs_handle_t *zhp)
|
|
{
|
|
int ret;
|
|
char errbuf[1024];
|
|
char prop_encroot[MAXNAMELEN];
|
|
uint64_t keystatus, keyformat;
|
|
boolean_t is_encroot;
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
dgettext(TEXT_DOMAIN, "Key unload error"));
|
|
|
|
/* check that encryption is enabled for the pool */
|
|
if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption feature not enabled."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* Fetch the keyformat. Check that the dataset is encrypted. */
|
|
keyformat = zfs_prop_get_int(zhp, ZFS_PROP_KEYFORMAT);
|
|
if (keyformat == ZFS_KEYFORMAT_NONE) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"'%s' is not encrypted."), zfs_get_name(zhp));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Fetch the key location. Check that we are working with an
|
|
* encryption root.
|
|
*/
|
|
ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, prop_encroot);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get encryption root for '%s'."),
|
|
zfs_get_name(zhp));
|
|
goto error;
|
|
} else if (!is_encroot) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Keys must be unloaded for encryption root of '%s' (%s)."),
|
|
zfs_get_name(zhp), prop_encroot);
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* check that the key is loaded */
|
|
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
|
|
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key already unloaded for '%s'."), zfs_get_name(zhp));
|
|
ret = EACCES;
|
|
goto error;
|
|
}
|
|
|
|
/* call the ioctl */
|
|
ret = lzc_unload_key(zhp->zfs_name);
|
|
|
|
if (ret != 0) {
|
|
switch (ret) {
|
|
case EPERM:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Permission denied."));
|
|
break;
|
|
case EACCES:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key already unloaded for '%s'."),
|
|
zfs_get_name(zhp));
|
|
break;
|
|
case EBUSY:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"'%s' is busy."), zfs_get_name(zhp));
|
|
break;
|
|
}
|
|
zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
|
|
}
|
|
|
|
return (ret);
|
|
|
|
error:
|
|
zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
zfs_crypto_verify_rewrap_nvlist(zfs_handle_t *zhp, nvlist_t *props,
|
|
nvlist_t **props_out, char *errbuf)
|
|
{
|
|
int ret;
|
|
nvpair_t *elem = NULL;
|
|
zfs_prop_t prop;
|
|
nvlist_t *new_props = NULL;
|
|
|
|
new_props = fnvlist_alloc();
|
|
|
|
/*
|
|
* loop through all provided properties, we should only have
|
|
* keyformat, keylocation and pbkdf2iters. The actual validation of
|
|
* values is done by zfs_valid_proplist().
|
|
*/
|
|
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
|
|
const char *propname = nvpair_name(elem);
|
|
prop = zfs_name_to_prop(propname);
|
|
|
|
switch (prop) {
|
|
case ZFS_PROP_PBKDF2_ITERS:
|
|
case ZFS_PROP_KEYFORMAT:
|
|
case ZFS_PROP_KEYLOCATION:
|
|
break;
|
|
default:
|
|
ret = EINVAL;
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Only keyformat, keylocation and pbkdf2iters may "
|
|
"be set with this command."));
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
new_props = zfs_valid_proplist(zhp->zfs_hdl, zhp->zfs_type, props,
|
|
zfs_prop_get_int(zhp, ZFS_PROP_ZONED), NULL, zhp->zpool_hdl,
|
|
B_TRUE, errbuf);
|
|
if (new_props == NULL) {
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
*props_out = new_props;
|
|
return (0);
|
|
|
|
error:
|
|
nvlist_free(new_props);
|
|
*props_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zfs_crypto_rewrap(zfs_handle_t *zhp, nvlist_t *raw_props, boolean_t inheritkey)
|
|
{
|
|
int ret;
|
|
char errbuf[1024];
|
|
boolean_t is_encroot;
|
|
nvlist_t *props = NULL;
|
|
uint8_t *wkeydata = NULL;
|
|
uint_t wkeylen = 0;
|
|
dcp_cmd_t cmd = (inheritkey) ? DCP_CMD_INHERIT : DCP_CMD_NEW_KEY;
|
|
uint64_t crypt, pcrypt, keystatus, pkeystatus;
|
|
uint64_t keyformat = ZFS_KEYFORMAT_NONE;
|
|
zfs_handle_t *pzhp = NULL;
|
|
char *keylocation = NULL;
|
|
char origin_name[MAXNAMELEN];
|
|
char prop_keylocation[MAXNAMELEN];
|
|
char parent_name[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
dgettext(TEXT_DOMAIN, "Key change error"));
|
|
|
|
/* check that encryption is enabled for the pool */
|
|
if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Encryption feature not enabled."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* get crypt from dataset */
|
|
crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION);
|
|
if (crypt == ZIO_CRYPT_OFF) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Dataset not encrypted."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* get the encryption root of the dataset */
|
|
ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get encryption root for '%s'."),
|
|
zfs_get_name(zhp));
|
|
goto error;
|
|
}
|
|
|
|
/* Clones use their origin's key and cannot rewrap it */
|
|
ret = zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin_name,
|
|
sizeof (origin_name), NULL, NULL, 0, B_TRUE);
|
|
if (ret == 0 && strcmp(origin_name, "") != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Keys cannot be changed on clones."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* If the user wants to use the inheritkey variant of this function
|
|
* we don't need to collect any crypto arguments.
|
|
*/
|
|
if (!inheritkey) {
|
|
/* validate the provided properties */
|
|
ret = zfs_crypto_verify_rewrap_nvlist(zhp, raw_props, &props,
|
|
errbuf);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/*
|
|
* Load keyformat and keylocation from the nvlist. Fetch from
|
|
* the dataset properties if not specified.
|
|
*/
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
|
|
(void) nvlist_lookup_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
|
|
|
|
if (is_encroot) {
|
|
/*
|
|
* If this is already an encryption root, just keep
|
|
* any properties not set by the user.
|
|
*/
|
|
if (keyformat == ZFS_KEYFORMAT_NONE) {
|
|
keyformat = zfs_prop_get_int(zhp,
|
|
ZFS_PROP_KEYFORMAT);
|
|
ret = nvlist_add_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
|
|
keyformat);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl,
|
|
dgettext(TEXT_DOMAIN, "Failed to "
|
|
"get existing keyformat "
|
|
"property."));
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (keylocation == NULL) {
|
|
ret = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION,
|
|
prop_keylocation, sizeof (prop_keylocation),
|
|
NULL, NULL, 0, B_TRUE);
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl,
|
|
dgettext(TEXT_DOMAIN, "Failed to "
|
|
"get existing keylocation "
|
|
"property."));
|
|
goto error;
|
|
}
|
|
|
|
keylocation = prop_keylocation;
|
|
}
|
|
} else {
|
|
/* need a new key for non-encryption roots */
|
|
if (keyformat == ZFS_KEYFORMAT_NONE) {
|
|
ret = EINVAL;
|
|
zfs_error_aux(zhp->zfs_hdl,
|
|
dgettext(TEXT_DOMAIN, "Keyformat required "
|
|
"for new encryption root."));
|
|
goto error;
|
|
}
|
|
|
|
/* default to prompt if no keylocation is specified */
|
|
if (keylocation == NULL) {
|
|
keylocation = "prompt";
|
|
ret = nvlist_add_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
keylocation);
|
|
if (ret != 0)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* fetch the new wrapping key and associated properties */
|
|
ret = populate_create_encryption_params_nvlists(zhp->zfs_hdl,
|
|
zhp, B_TRUE, keyformat, keylocation, props, &wkeydata,
|
|
&wkeylen);
|
|
if (ret != 0)
|
|
goto error;
|
|
} else {
|
|
/* check that zhp is an encryption root */
|
|
if (!is_encroot) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key inheritting can only be performed on "
|
|
"encryption roots."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* get the parent's name */
|
|
ret = zfs_parent_name(zhp, parent_name, sizeof (parent_name));
|
|
if (ret != 0) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Root dataset cannot inherit key."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* get a handle to the parent */
|
|
pzhp = make_dataset_handle(zhp->zfs_hdl, parent_name);
|
|
if (pzhp == NULL) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to lookup parent."));
|
|
ret = ENOENT;
|
|
goto error;
|
|
}
|
|
|
|
/* parent must be encrypted */
|
|
pcrypt = zfs_prop_get_int(pzhp, ZFS_PROP_ENCRYPTION);
|
|
if (pcrypt == ZIO_CRYPT_OFF) {
|
|
zfs_error_aux(pzhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Parent must be encrypted."));
|
|
ret = EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* check that the parent's key is loaded */
|
|
pkeystatus = zfs_prop_get_int(pzhp, ZFS_PROP_KEYSTATUS);
|
|
if (pkeystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
|
|
zfs_error_aux(pzhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Parent key must be loaded."));
|
|
ret = EACCES;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* check that the key is loaded */
|
|
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
|
|
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key must be loaded."));
|
|
ret = EACCES;
|
|
goto error;
|
|
}
|
|
|
|
/* call the ioctl */
|
|
ret = lzc_change_key(zhp->zfs_name, cmd, props, wkeydata, wkeylen);
|
|
if (ret != 0) {
|
|
switch (ret) {
|
|
case EPERM:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Permission denied."));
|
|
break;
|
|
case EINVAL:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Invalid properties for key change."));
|
|
break;
|
|
case EACCES:
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
"Key is not currently loaded."));
|
|
break;
|
|
}
|
|
zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
|
|
}
|
|
|
|
if (pzhp != NULL)
|
|
zfs_close(pzhp);
|
|
if (props != NULL)
|
|
nvlist_free(props);
|
|
if (wkeydata != NULL)
|
|
free(wkeydata);
|
|
|
|
return (ret);
|
|
|
|
error:
|
|
if (pzhp != NULL)
|
|
zfs_close(pzhp);
|
|
if (props != NULL)
|
|
nvlist_free(props);
|
|
if (wkeydata != NULL)
|
|
free(wkeydata);
|
|
|
|
zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
|
|
return (ret);
|
|
}
|